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Abstract: An interesting class of physical systems, including those associated with life, demonstrates
the ability to hold thermalization at bay and perpetuate states of high free-energy compared to a local
environment. In this work we study quantum systems with no external sources or sinks for energy,
heat, work, or entropy that allow for high free-energy subsystems to form and persist. We initialize
systems of qubits in mixed, uncorrelated states and evolve them subject to a conservation law. We
find that four qubits make up the minimal system for which these restricted dynamics and initial
conditions allow an increase in extractable work for a subsystem. On landscapes of eight co-evolving
qubits, interacting in randomly selected subsystems at each step, we demonstrate that restricted
connectivity and an inhomogeneous distribution of initial temperatures both lead to landscapes with
longer intervals of increasing extractable work for individual qubits. We demonstrate the role of
correlations that develop on the landscape in enabling a positive change in extractable work.

Keywords: open quantum systems; non-equilibrium dynamics; quantum thermodynamics

1. Introduction

The universe, even after nearly 14 billion years, is an out-of-equilibrium system.
Within a large volume that was once hot and nearly homogeneous, a remarkable small-scale
diversity of structures has developed. These sub-structures can be individually described
as open systems, co-evolving under local interactions that generate non-equilibrium states
with respect to an ambient average temperature. The reference temperature is defined
on some larger scale and is generally also evolving. One way to characterize this type of
system is through the evolution of non-equilibrium free-energy [1,2] of subsystems, which
quantifies the amount of work that can be extracted if the subsystem is brought in contact
with a bath at some temperature T. Subsystems for which extractable work increases with
time are effectively extracting resources from the environment, to be used at a later time [3].

In this paper, we study the minimal ingredients required for a thermodynamic evo-
lution that can result in the sustained generation of extractable work for subsystems. We
address this question in two steps. First, we find the smallest quantum systems, made
entirely of thermal qubits, that allow an increase in the extractable work for a subsystem.
The small quantum machines prescribe a single-step evolution scheme for both the focal-
subsystem qubit and a reference thermal qubit, allowing the former to exploit a change
in the latter to achieve an increase in extractable work. Next, we consider co-evolving
subsystems on small, closed landscapes of qubits. On the landscape, unitary evolution
occurs in dynamically defined, rather than fixed, subsystem neighborhoods. The evolution
conserves total energy while allowing some correlations to develop. The correlations then
act as a resource that can be redistributed across the landscape. We find that both the
quantum correlations that develop and the gradients in a classical notion of the reference
temperature on the landscape affect how subsystems achieve an increase in extractable
work. We study how properties of the qubit network, including the connectivity and initial
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state, affect the magnitude and persistence of steps for which the extractable work of a
subsystem increases.

Within the framework of the thermodynamics of quantum systems, our work inter-
sects with several developing directions in the literature, including studies on the role of
extractable work for out-of-equilibrium systems, systems that share properties of life, [3–6],
and on systems that utilize correlations and coherence for extractable work [7–12]. Be-
cause we consider finite systems, we can characterize the role of dynamics that are non-
Markovian and not CP-divisble [13,14] in generating an increase in extractable work.
The landscape approach can provide a new perspective on systems that resist rapid ther-
malization, as characterized by the evolution of the ensemble of subsystems. The use of a
time-dependent Hamiltonian is the key distinction between the framework we consider
and most work on understanding which closed systems have thermal subsystems. Both
the eigenstate thermalization hypothesis [15–17] and the non-thermal, many-body local-
ized phase of finite-sized quantum systems [18–21] rely on fixed, although disordered,
Hamiltonians. In contrast, in the closed systems (the landscapes) that we study here,
the Hamiltonian is time-dependent and does not have fixed eigenstates. Our work shares
features with systems that show Hilbert-space fragmentation [22–24], by virtue of the total
Hilbert space of our closed system being divided into dynamically independent subspaces.
As is shown in recent literature these systems demonstrate non-thermalizing behaviour,
which is crucial for our systems. As in the study of many-body localization [25], a careful
characterization of behavior of these landscapes in the thermodynamic limit is an essential
point for future work.

The landscape evolution can also be represented as quantum circuits and shares some
features with random circuits studied in the literature [26–28]. However, in our work,
we allow more complex connectivity and consider a conservation law that restricts the
unitaries that may be applied and ensures that the landscape is thermodynamically closed.
The dynamics we impose resembles that of the “thermodynamic compatibility" criterion
of [29–31], but unlike that work, we do not impose a time-independent Hamiltonian or
rely on a purely bipartite construction. Those restrictions lead to time-translation invariant,
Markovian evolution, which is quite different for what occurs on the landscapes here.

Another set of related but distinct work is that on Quantum Cellular Automata (QCA).
Those investigations (e.g., [32–34]) often focus on measures of complexity that can also be
argued to be related to thermodynamically complex evolution, but in QCA, the update
or evolution rule is deterministic and ultra-local, acting on a single qubit. In contrast,
we consider random unitaries, restricted by the conservation law, acting on randomly
selected multi-qubit subsystems. In addition, we want to study conditions that capture how
finite resources on the landscape may be utilized and examine the statistics of incidents of
increasing extractable work rather than some other measure of complexity.

In the remainder of the introduction, we define the framework we will use more
formally. In Section 2, we define the smallest qubit machine that can lead to an increase in
extractable work. In Section 3, we study the evolution of larger qubit landscapes. Contrast-
ing the landscape results with the small machines illustrates the utility of correlations in
obtaining positive extractable work, generalizing previous results [9,10].

Defining the Rules of the Game: Initial States and Evolution

We are interested in constructing a system with no external thermodynamic sources or
sinks, and one where the advantage, if any, of quantum dynamics may be tracked. To that
end, we consider systems of N initially uncorrelated qubits beginning in mixed states
described by thermal density matrices for each qubit,

ρ(i) = (1− pi)|0〉〈0|+ pi|1〉〈1| , (1)
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where i = 1, . . . , N. Here the orthonormal states |0〉 and |1〉 can be thought of as the ground
state and excited state, respectively, with the free Hamiltonian for the ith qubit given by

Ĥ(i)
0 = E(i)

0 |0〉〈0|+ E(i)
1 |1〉〈1| . (2)

This Hamiltonian serves to define several thermodynamic quantities. We set all
E(i)

0 = 0 for simplicity.
We consider 0 < pi < 0.5 so that the population fractions can be associated to a

positive, finite temperature via the Gibbs distribution. Although we model small numbers
of qubits with no explicit reference to external thermal baths, at least formally a temperature
Ti can be defined via

kBTi =
E(i)

1

ln
[

1−pi
pi

] , (3)

where kB is the Boltzmann constant.
The choice of initial state given in Equation (1) serves two purposes. First, it is

a classical initialization that will allow us to track the role of quantum correlations that
develop as the system evolves. Second, this choice anticipates the eventual goal of treating a
distribution of many degrees of freedom in a large spatial volume, where local temperatures
can be well-defined. The initial density matrix for the full system is the tensor product of
the density matrices for each qubit at possibly different temperatures,

ρ = ρ1 ⊗ ρ2 . . .⊗ ρn . (4)

For simplicity, we will work within the special case where the energy spacing of all
qubits is identical, and then units are defined by E(i)

1 = 1. In that case, the expectation
value of the energy for each qubit is

〈Ei〉 = Tr[ρi Ĥ
(i)
0 ] = pi , (5)

where Ĥ(i)
0 is the Hamiltonian associated with the ith qubit. The initial energy of the full

system is the sum of the individual ensemble energies, 〈E〉 = ∑i pi.
We will use the definition of the free Hamiltonian for the qubits to restrict the class of

operations we will consider. Since we want to study the co-evolution of the qubits, as they
trade thermodynamic quantities, we choose to work with unitaries that commute with the
free Hamiltonian of the N-qubit system,

Ĥ0 = Ĥ(1)
0 ⊗ 1

(N−1) + 1(1) ⊗ Ĥ(2)
0 ⊗ 1

(N−2) + · · ·+ 1(N−1) ⊗ Ĥ(N)
0 (6)

where 1(k) represents an identity matrix acting on k qubits. This class of operations obey
the energy conservation condition

[Û, Ĥ0] = 0 . (7)

Often, interaction Hamiltonians are considered that do not commute with the Hamil-
tonian of the system and can result in unaccounted for sources of work and energy [35].
Restricting to unitaries that commute with the free Hamiltonian allows us to not only define
a conservation law for the qubits but also allows us to isolate the thermodynamic effect of
coherence and correlation that the focal qubit has with the other qubits on the landscape.
Over the course of evolution the coherence can act as a resource that is transferred and
shared between the qubits.
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In the literature, a closely related choice of dynamics has been used to study funda-
mental limitations for quantum thermodynamics [36–38]. This class of thermal operations
can be implemented by a dynamical map, Λ[.], acting on the focal system (ρ f ) as,

Λ[ρ f ] = TrB[ÛfB(ρ f ⊗ ρB)Û†
fB] . (8)

Here, ÛfB is the energy-preserving unitary that commutes with the focal-system and
bath Hamiltonian ĤfB = Ĥf ⊗ 1B + 1f ⊗ ĤB, and ρB is the bath or reservoir in a Gibbs state

ρB =
exp−βHB

ZB
. (9)

Owing to the restrictions on the evolution and the choice of factorized initial states,
this map is Gibbs-preserving, does not generate coherence between energy levels, and is
completely positive. Consequently the relative entropy, or the distance between qubits
evolved with this map, monotonically decreases.

The evolution we consider is similar to the class of thermal operations in that the
unitaries must commute with the free Hamiltonian of the full system, Equation (7). As a
consequence, in the total density matrix of the qubits system, the two states with all the
qubits either in the ground state, |00 . . . 0〉 or the excited state, |11 . . . 1〉, only evolve by
separate U(1) rotations. The remaining states may be divided according to the energy
subspaces E = 1, . . . , E = N − 1 with dimension NC1, NC2. . . NCN−1 respectively where
NCM = N!

M!(N−M)! . Allowed unitary rotations can then be broken into a block diagonal
form acting in subspaces of fixed energy,

Û = Û(1)
⊕

ÛE=1
⊕

ÛE=2 . . .
⊕

ÛE=n−1
⊕

Û(1). (10)

This results in division of the full Hilbert space into dynamically independent sub-
spaces. Under evolution the off-diagonal elements of any individual qubit evolve inde-
pendently from the diagonal elements. Thus, single-qubit Gibbs states are mapped to new
Gibbs states. From this unitary, Equation (10), we can derive the form of the dynamical map
Φ[.] that drives the evolution of a focal qubit ( f ) evolving in an environment also made up
of qubits (in the construction here, not a thermal bath) E ,

ρ f (t + 1) = Φt+1,t[ρ f (t)] = TrE [U.ρ fE (t).U†] (11)

where t is the step index in the evolution. The explicit form of the superoperator acting on

the vectorized form of the focal density matrix,
⇒
ρ f = (ρ00, ρ01, ρ10, ρ11), is

Φt+1,t =


1− ∆ 0 0 1− ∆̃

0 Γ 0 0
0 0 Γ 0
∆ 0 0 ∆̃

 (12)

where ∆, ∆̃ and Γ depend on the parameters of the unitary and the state of the environment
qubits at time t. In structure, this map is identical to the one-qubit Davies map which drives
the evolution for a qubit under thermal operations with a fixed Hamiltonian [39].

However, the maps considered in our work go beyond those generated by thermal
operations, in that the range of the map parameters expands. This is due to the difference
in the form of the environment we consider and in the type of states we apply the evolution
on. Firstly, our environment, ρE , consists of qubits that were independently in contact with
different reservoirs at different temperatures. The temperature inhomogeneity in the bath
of the machine, as we will demonstrate below, facilitates generation of ∆Wex ≥ 0 under one
application of the unitary extending the results in literature that relate the inhomogeneity
in reservoir temperature with addition of new resource states [40].
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Secondly, when we explore the development of ∆Wex ≥ 0 under co-evolution of
multiple qubits on the closed landscape, the energy-preserving unitaries no longer act on
uncorrelated states (except at the first step). As has been discussed in the literature [41,42],
this can lead to individual qubit maps that are not completely positive (CP). Furthermore,
as the qubits are co-evolving and the subsystems where unitary rotations act are chosen
randomly, and the environment seen by any qubit changes at each step of the evolution.
In summary, the inhomogeneity in environment temperature and the use of correlated
states modifies the range of parameters in Equation (12) compared to those found in
thermal operations.

While the map induces open-system evolution on individual qubits, the class of
unitaries considered has a global conserved quantity. The total energy of the system is
strictly conserved, so if pi indicates the initial population fraction of the ith qubit,

〈E〉 = ∑
i

pi = ∑
i

qi (13)

where qi is the population fraction of the excited state at any time t > 0. In addition,
we show below that the conservation law bounds the population fraction (and von Neu-
mann entropy, and effective temperature) of any individual qubit to remain between the
maximum and minimum of the qubits in initial state.

The energy of a system 〈E〉 can be combined with the von Neumann entropy S of a
system described by the density matrix ρ, weighted by a reference temperature, T, to give
the non-equilibrium free energy [2] of the system,

F (ρ) = 〈E〉 − TS(ρ) . (14)

Since we require 〈E〉 for the whole system to be constant, there can be no source
of free energy that is not entirely accounted for within the qubit system itself [35]. That
is, the restriction to energy-conserving evolution helps to keep the systems considered
here closed.

We will define the free energy for subsystems of various sizes, and take the reference
temperature T to be determined by the state of some qubit(s) outside the subsystem but
co-evolving within the closed system. Any excess in the free energy of a system described
by density matrix ρ, above that of the same system in the reference thermal state ρth at T,
defines the extractable work:

Wex = F (ρ)−Fth(ρth) . (15)

We are interested in understanding dynamics that allow the extractable work to
increase for a subsystem.

For a Gibbs-preserving process that takes ρth,0 to ρth,1, and the subsystem from ρ0 to
ρ1, an increase in extractable work requires

∆Wex = [F (ρ1, T1)−Fth(ρth,1, T1)]− [F (ρ0, T0)−Fth(ρth,0, T0)] > 0 , (16)

where the reference temperature may evolve from T0 to T1. To understand the bounds
on increasing the extractable work [3], it is helpful to keep in mind that the difference of
free energies is proportional to a quantity that cannot decrease with time under positive
evolution [43], the relative entropy, D(ρ1||ρ0), between the two states:

F1 −F0 = kBT ln 2D(ρ1||ρ0) . (17)

Kolchinsky et al. [3] recently discussed criteria on generic classical and quantum
stochastic processes that lead to an increase in extractable work. Here, we will find the
minimum requirements on a small, self-contained quantum system that includes a repre-
sentative of the bath at temperature T such that ∆Wex > 0 can occur at least sometimes
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during the evolution of a subsystem. The conservation law we have imposed and the
finite system size of the small machines both lead to restrictions in our in Section 2 results
compared to the conclusions in [3]. On the other hand, the co-evolving systems on the land-
scape result in single-qubit dynamics that is more complex than the single-step, completely
positive evolution of the quantum machines. While the evolution of the overall landscape
is closed, few-qubit subsystems within the landscape most generally undergo non-unitary,
non-Markovian evolution (relevant for work extraction via erasure [10]). In particular, we
will be able to demonstrate the role of development of correlations between environment
qubits in obtaining increases in extractable work. Our results extend recent work exploring
the effect of environment-environment correlations on non-Markovianinty and memory
effects in qubit systems [44–46].

We define the notion of interesting substructures by the following criteria:

• In small qubit machines, the occurrence of ∆Wex > 0 under application of a single dy-
namical map arising from an energy-preserving unitary on a focal qubit and reference
thermal qubit.

• On the landscape, the length and distribution in time of intervals over which qubits
exhibit ∆Wex > 0.

In the small qubit machines (next Section) we are able to affirmatively characterize
athermal qubits (relative to a reference temperature T) as a resource which making the
possible state space bigger and allows a positive change in extractable work. We numeri-
cally demonstrate that in a single-step evolution, a minimum of four qubits is needed to
give a positive change in extractable work. Then, when qubits are replaced on a landscape
(Section 3), an intermediate connectivity that is neither too restrictive nor too competitive is
most conducive to generating steps with positive change in extractable work. On the land-
scape, we show how the correlations developed between the qubits lead to the development
of additional sites with positive free energy gain.

2. Qubit Machines

In this section, we demonstrate that the smallest qubit machine that can lead to a
positive change in extractable work for a focal qubit requires four qubits.

The N-qubit machine is defined by a unitary evolution in the class Equation (7)
together with the initial state of N − 1 qubits, which act as the environment for the focal
qubit. Together, the unitary and the environment qubits define a stochastic map that
transforms a focal system (or actor) qubit in state ρsys by coupling it to a reference state ρref via
a unitary of the type given in Equation (18). We schematically denote the choice of unitary
by θ. It is easy to see that this is precise in the case of two qubits, where a generic unitary of
the type we consider can be written

Û2Q =


1 0 0 0
0 cos θ eiφ sin θ 0
0 −e−iφ sin θ cos θ 0
0 0 0 1

. (18)

Here, it is sufficient to consider maps Φ(ρsys|ρref; θ) defined in terms of the rotation
angle, θ. Including the phases φ does not change the conclusions. On the larger Hilbert
spaces of larger machines, there are additional rotation angles appearing in the allowed
unitaries. We also label this more general set as θ. Figure 1 schematically illustrates the
qubit machines of size N = 2, 3 and 4.
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Figure 1. Pictorial representation of the action of qubit machines, where individual square blocks
represent thermal qubits with density matrix ρi as given in Equation (1). Each collection of boxes
highlighted in blue contains both a block with a black border, representing the qubit that evolves
under the stochastic process (the “actor” that activates the machine), as well as the qubits that
contribute to the definition of the process (the machine). The map for evolution is denoted by
Φ( . |ρref, ρen1, ρen2, . . . ; θ) defined by the initial density matrices for the qubits in the machine and
the unitary operation that couples the qubits, labeled by θ. The top half of the diagram shows
the evolution of the reference temperature qubit (ρref), and the bottom shows the evolution of the
qubit system of interest, the “actor” qubit (ρsys). The other diverse qubits, represented by ρen in the
machine, enable non-trivial transformations. Three qubits are required for a non-trivial evolution of
the reference temperature. Four are required for a subsystem that has an increase in extractable work
after evolution.

2.1. Two-Qubit Machines

First, consider two qubits initialized in thermal states as given in Equation (1), char-
acterized by p1 and p2. The energy-conserving transformations contain a 2× 2 block of
rotations among the equal energy states (|01〉 and |10〉). This class of unitaries can be
thought of as (partial) swapping operations, partially exchanging the population fractions
in the |01〉 and |10〉 states. The total density matrix develops correlations reflected in the
non-zero off diagonal elements under evolution. In Appendix A, we derive the conditions
for some of those correlations to be quantum by computing the concurrence [47].

To determine whether a two-qubit system contains sufficient parameters and structure
to describe an increase in extractable work, we evolve a generic actor qubit via the machine
defined by the map Φ( . |ρref; θ). Applying the same machine to a qubit initialized at the
reference temperature allows us to use the monotonicity of relative entropy under stochastic
processes, D(ρ||σ) ≥ D(Φ(ρ)||Φ(σ)), to understand the requirements for achieving an
increase in extractable work. Our results will then be a special case of those in [3], which
considered more generic states and processes.

The transformations of the focal system, or actor, qubit and the reference qubit are

ρsys → Φ(ρsys|ρref; θ) = ρ′sys (19)

ρref → Φ(ρref|ρref; θ) = ρ′ref .

This process is Gibbs preserving; both ρ′sys and ρ′ref are diagonal, and so the final
reference temperature, T′, is defined from ρ′ref. Combining Equations (16) and (17), and the
monotonicity of the relative entropy, shows that for a stochastic process that is Gibbs
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preserving, the reference temperature must go up (T′ > T) in order to have an increase in
extractable work [3],

∆Wex = kBT′ ln 2D(ρ′sys||ρ′ref)− kBT ln 2D(ρsys||ρref) . (20)

However, under a single qubit machine defined by ρref, the evolution of the reference
temperature qubit is trivial, ρref → ρ′ref = ρref, and consequently the reference temperature
remains unchanged. Unsurprisingly, a single qubit machine is not sufficient to characterize
a scenario with an increase in extractable work.

2.2. Three-Qubit Machines

Now consider a set of three qubits, with identical energy levels for each qubit, and for
simplicity E0 = 0, E1 = 1. Energy-preserving transformations now consist of two indepen-
dent sets of rotations, one among the three states of total energy E = 1 and the other in
the three states of total energy E = 2. For this case, we can consider the actor system to be
either a subsystem with two qubits, or with one.

First, consider a two-qubit actor subsystem. In this case, the evolution for the subsys-
tem is not Gibbs preserving and consequently a thermal state is not mapped onto a thermal
ρ1,th → ρ′1 6= ρ′1,th. In many cases, as shown in [3], processes that are not Gibbs preserving
can lead to an increase in extractable work, irrespective of the final temperature. This is
because the system can be prepared in a thermal state according to the initial reference
temperature and then

∆Wex = kBT1 ln 2D(ρ1||ρth, 1)− kBT0 ln 2D(ρth, 0||ρth, 0) = kBT1 ln 2D(ρ1||ρth, 1) (21)

which is positive definite as long as D(ρ1||ρth, 1) > 0. However, our three qubit example
is a special, trivial case of this: if we use the third qubit to set the initial thermal state and
reference temperature, then initializing the subsystem in the same thermal state, to track
the evolution of the temperature under the same map, sets all three qubits to be at the same
temperature. The evolution of the reference temperature is, thus, trivial and cannot result
in an increase in extractable work.

Now, consider the case of a one-qubit actor subsystem as is shown in Figure 1b. Now,
ρsys is our subsystem of interest and the initial reference temperature and thermal state is set
by ρref. The third qubit given by the density matrix ρen1 now acts as an enabler allowing non-
trivial evolution for both the subsystem and the reference temperature qubit. The map that
defines the evolution of the subsystem and the reference temperature is Φ( . |ρref, ρen1; θ).
The evolved density matrices for the subsystem and the reference temperature under this
map are given by

ρsys → Φ(ρsys|ρref, ρen1; θ) = ρ′sys (22)

ρref → Φ(ρref|ρref, ρen1; θ) = ρ′ref .

As before, the one-qubit state after evolution, ρ′sys remains fully mixed, so the qubit
undergoes a Gibbs-preserving process. Without loss of generality, either of the two remain-
ing qubits (the environment qubits) may be used to set the initial reference thermal state
and reference temperature. Here, we have chosen qubit 2 to set the reference temperature.
For an evolution defined by a fixed sequence of unitary operators, the reference state
and temperature after evolution is found by replacing the system qubit by a copy of the
reference qubit; see Equation (22). If the reference qubit begins at a lower temperature
than the remaining environment qubit (Tref < Ten1), then generically its temperature can
increase. However, this is not a sufficient condition for the extractable work to increase
since D(ρsys||ρref) decreases as Tref increases. At the level of three qubits with the above
defined unitary characterized by six rotation angles θ, and for the entire parameter space
for the initial qubit population 0 ≤ pi ≤ 0.5, we do not see a case for positive change in
extractable work for randomized trials over the entire parameter space.
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We have considered three identical qubits for simplicity, but one can check that
allowing different level spacing while maintaining energy conservation does not generate
a more flexible system. Consider three qubits with E(1)

1 < E(2)
1 and E(3)

1 = E(2)
1 − E(1)

1

(and all E(i)
0 = 0). If E(2)

1 = 2E(1)
1 there are three, two-dimensional subspaces of equal

energy. For any other choice for E(2)
1 , there is a single two-dimensional energy subspace

with energy E(2)
1 plus six isolated states of different energies. This is the setup used by [48]

to construct the smallest quantum refrigerator. If qubits one and two are initialized in
thermal states at a cold temperature Tc, the state with qubit two in the ground state and
qubit one in the excited state, |01〉, is more probable than the state |10〉. If the third qubit is
initialized in a thermal state at a hotter temperature Th > Tc, then |101〉 is more populated
than |010〉, and an energy conserving operation that swaps the populations of those two
states effectively cools qubit 1. Although this system cools one qubit at the expense of
heating another, it does not generate processes that allow an increase in extractable work.
If qubit 1 is considered the actor, or system, and the hot temperature qubit as the reference
temperature, then the reference qubit is also cooled by the machine. Since the reference
temperature goes down, the extractable work cannot increase. Consider instead taking
qubit two as the actor (since it heats up) and Th as the initial reference temperature. But,
the evolution of the reference temperature is found by initializing the second qubit at Th
and performing the same rotation with the same environment qubits. In that case, the initial
state begins with |010〉more populated than |101〉 and so the machine that heats the system
qubit cools the reference qubit. Again, the reference temperature goes down and no gain in
extractable work can be achieved. If qubit three is the actor, the reference temperature is
Tc, which cannot evolve under a machine running at Tc. In other words, small quantum
refrigerators do not automatically generate increases in extractable work, and allowing
different energy spacing does not change the conclusion that three qubits is insufficient to
demonstrate ∆Wex > 0.

2.3. Four-Qubit Machines

Now consider four qubits, each with E0 = 0, E1 = 1. There are four-state sets with
energy E = 1 and E = 3, and a six-state set with energy E = 2. The same class of two qubit
conditional swaps that was available in the three-qubit and two-qubit systems is allowed
again for four qubits. Additionally, a new class of evolution is now allowed within the
E = 2 states, corresponding to simultaneous swaps of two-qubit pairs. For example,

Û2pairs =|0000〉〈0000|+ · · ·+ cos θ|1001〉〈1001| (23)

+ cos θ|0110〉〈0110| − sin θ|1001〉〈0110|+ sin θ|0110〉〈1001| ,

where the dots denote diagonal terms in the other basis states, is a simultaneous partial
swap of two pairs of qubits. This, along with the presence of a fourth distinct qubit,
expands the state space available for an individual qubit to explore under evolution. For a
general rotation in the a four-qubit system, the set of fourteen rotation angles and three
(two) distinct initial states of the machine qubits govern the accessible states of single (two)
actor-qubit subsystem. The correlations can once again be read from the generation of
off-diagonal terms that correspond to rotations between equal energy states.

For four qubits, the actor subsystem could consist of three, two or one qubit(s). For the
case with a three qubit subsystem, while the evolution of the actor subsystem is non-trivial,
the evolution of the reference temperature is once again trivial. Since the temperature
is unchanging, once again there is no evolution of the system, and no change in the
extractable work.

For the case of a two qubit actor subsystem, we can arbitrarily choose two out of
the four qubits to define the initial state of the subsystem as ρsys1 ⊗ ρsys2. The remaining
two qubits and the unitary define the stochastic process and the reference temperature.
We choose the third qubit to define the reference temperature. Then, the evolution of the
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subsystem and the reference temperature is Φ( . |ρref, ρen1, θ). The evolved density matrices
for the subsystem and the reference temperature under this map are given by

ρsys1 ⊗ ρsys2 → Φ(ρsys1 ⊗ ρsys2|ρref, ρen1; θ) = ρ′sys (24)

ρref ⊗ ρref → Φ(ρref ⊗ ρref|ρref, ρen1; θ) = ρ′re f .

Both the actor subsystem and the reference temperature undergo non-trivial transfor-
mations. Before discussing the scope of this system and process in extracting work, we will
present the third alternative of a one qubit subsystem as is shown in Figure 1c. Now, ρsys is
our subsystem of interest and the initial reference temperature and thermal state is set by
ρref. The third and fourth qubits (ρen1 and ρen2) now act as enablers, allowing non-trivial
evolution for both the subsystem and the reference temperature qubit. The map is now
given by

ρsys → Φ(ρsys|ρref, ρen1, ρen2; θ) = ρ′sys (25)

ρref → Φ(ρref|ρref, ρen1, ρen2; θ) = ρ′ref .

For numerical simulation of such four-qubit systems, with both two-qubit subsystems
as well as one qubit subsystems, we see positive change in extractable work under the
allowed unitary evolution of the total system. Cases for ∆Wex ≥ 0 can be seen for four-qubit
systems with four distinct initial temperature as well as three distinct initial temperatures
(i.e., two qubits have the same initial state). To develop ∆Wex ≥ 0, under contractive CP
maps, it is essential that the relative rise in temperature of the reference qubit must over
come the fall in the relative entropy between the system and the reference qubit. At the
level of three qubit systems, we could recover non-trivial evolution for the temperature
of the reference qubit, but the trade-off between evolution of temperature and relative
entropy was not sufficient. At the level of four-qubit systems we not only recover non-
trivial evolution of reference qubit, but crucially, we also see that the rise in temperature
overcomes the fall in relative entropy,

Tf (ρ
′
ref)

Ti(ρref)
≥

D(ρsys||ρref)

D(ρsys′ ||ρref′)
(26)

This results in the development of ∆Wex ≥ 0 in four qubits. While we are yet to fully
characterize the utility of the four qubit machines, our numerical investigation allows us
to speculate that generation of ∆Wex ≥ 0 is related to the increase in the dimension of the
equal energy subspace available for rotation.

3. Qubit Landscapes

In the previous sections, we found a minimal system for which ∆Wex ≥ 0 can occur
in a subsystem. With this building block, we now explore the occurrence of ∆Wex ≥ 0 in
a multi-step stochastic, closed evolution of a landscape of qubits. We perform an initial
exploration of how the connectivity of the landscape (which defines the set of qubits on the
landscape any one qubit can directly interact with), temperature variations in the initial
state, and the choice of unitary evolution affects the evolution of temperature and ∆Wex

on the landscape. The closed nature of the landscape makes it an example of co-evolving
quantum systems [49,50].

We consider here landscapes of eight qubits labeled as Qi for i = 1, 2, . . . , 8. The al-
lowed interaction terms are defined by assigning a connectivity to the landscape. Unitary
evolution can only occur in subsystems of connected qubits. Figure 2 shows the symmetric
connectivities we consider. We also consider one asymmetric case, shown in Figure 3a,
which we call the messenger-qubit system. On this landscape, we begin by choosing two
subsystems of four qubits each–subsystem A and subsystem B. From each of these subsys-
tems, a qubit is chosen to act as a messenger qubit. Between steps, these two qubits are
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exchanged between subsystems A and B. The messenger qubits (Q4 and Q5 in the figure)
can directly interact with six qubits of the landscape, whereas the remaining six qubits can
only directly interact with four other qubits of the landscape.

Figure 2. Symmetric connectivities considered on the landscape of eight qubits. The nodes represent
the qubits and the links connect the qubits to the others they can directly interact with under
unitary evolution.

We initialize the system with thermal qubits, most at a uniform cold temperature and
the rest at a hot temperature. We select a unitary from the family of four-qubit, energy
conserving unitaries. For every step of evolution, two mutually exclusive four-qubit
subsystems allowed by the connectivity are selected randomly. The subsystems each evolve
under the unitary. This evolution can be visualized as a random quantum circuit, as shown
in Figures 3b and 4.

We compute the temperature associated with each qubit from its updated reduced
density matrix, which after the evolution is still diagonal. Figure 5 shows the temperature
associated with each qubit across 500 time steps, for each connectivity. In the case shown,
each landscape was initialized with a single hot qubit and the chosen unitary is a simulta-
neous pair of qubit swaps in each subsystem, Equation (23). Even though this is a small,
closed system, the top panel shows that it is large enough to show the expected trend to
homogenization of temperature when the qubits are fully connected.

(a) (b)

Figure 3. Connectivity (a) and circuit diagram (b) (for the first six steps of the evolution) for
the messenger-qubit system. The two subsystems of size four that initially interact together are
{Q1, Q2, Q3, Q4} and {Q6, Q7, Q8, Q5}, but Q4 and Q5 are then exchanged so that at the next step,
the subsystems that interact together are {Q1, Q2, Q3, Q5} and {Q6, Q7, Q8, Q4}. Compared to the
connectivities shown in Figure 2, the messenger-qubit system has asymmetric structure since the
messenger qubits can participate in interactions with six other qubits of the landscape, while the
members of subsystems only interact with four qubits on the landscape.
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(a) (b)

Figure 4. Quantum circuit for the first six steps of an example eight-qubit landscape with connectivity
six (a) and five (b). The colors denote the four-qubit subsystem grouping that is randomly chosen to
undergo a unitary evolution. We use a periodic boundary so that the first qubit, Q1, is connected to
last qubit, Q8. The degree of connectivity manifests in the number of possible groupings. Panel (a)
shows the four possible groupings allowed for connectivity six, and (b) shows that more restricted
connectivity results in fewer possible groupings. In the paper we also consider the connectivity
seven, full connectivity for an eight-qubit landscape, which allows grouping any four qubits into
a subsystem.

In contrast to Section 2, we no longer use the condition that the reference temperature
and the focal qubit undergo the same evolution as this is not enforceable beyond one step.
To frame the evolution of the out-of-equilibrium landscape in thermodynamic language
requires introducing some notion of reference temperature, but this is not straightforward
to define. There is an unambiguous notion of temperature for individual qubits, which
always remain in Gibbs states, but not for the set of correlated qubits that make up the
local environment [51–54]. Here we choose to define an effective reference temperature
that encodes the information that would be classically accessible at a fixed time step by
taking the average over the single-qubit temperatures in the multi-qubit environment.
For example, for qubit 1, Q1, on a landscape of N qubits

Tre f |Q1
=

1
N − 1

N

∑
i=2

1

log[ 1−pi
pi

]
. (27)

This choice of reference temperature allows us to isolate the role of quantum correla-
tions in the thermodynamic evolution of the landscape. We comment further on this choice
in Section 3.4.

Using reference temperatures computed from Equation (27) we compute an effec-
tive non-equilibrium free energy and then the effective change in extractable work, ∆Wex,
for each qubit compared to the qubit state and the reference temperature of its environment
at the previous step:

∆Wex
Q1

= T′re f |Q1
D(ρ′1||ρ′th)− Tre f |Q1

D(ρ1||ρth) (28)

where T′re f |Q1
and Tre f |Q1

are the final and initial reference temperature for qubit Q1 on
the landscape, respectively. The state of the qubit Q1 and of the thermal reference qubit
at the reference temperatures is given by ρ1 and ρth, respectively. Under this definition
for the effective free energy, we show that under evolution some qubits on the landscape
develop a positive change in extractable work. This landscape does not have the machinery
for maximal work extraction embedded in it, but the ensemble of the ∆Wex

Qi
contains the

trade-offs associated with the restricted landscape evolution. This notion of extractable
work is well suited to comparing out-of-equilibrium landscapes and delineating classical
(effective temperature) effects from quantum correlation effects but should be interpreted



Entropy 2023, 25, 947 13 of 26

with caution beyond this landscape setting. Figure 6 shows the change in extractable work
for each qubit under the same evolution shown in Figure 5.

Figure 5. Evolution of the temperature of the 8 qubits under 500 steps in energy subspace E = 2
for an angle θ = 0.1, under different levels of connectivity. The hot qubit starts with a population
fraction of ph = 0.4, and the colder qubits start at a population fraction of pc = 0.2. The diffusion for
a connectivity of seven follows a more gradual trend towards looking homogeneous, whereas for the
landscape of connectivity five and six, and the messenger system, pockets of hot and cold regions
develop on the landscape.

There are different ways of forming the subsystems that will interact together at any
one step of evolution, restricted by the connectivity. Thus, qubits in any subsystem can
utilize other qubits on the landscape as resources to explore a larger state space under the
course of evolution. This is different from the evolution considered in Section 2, where there
were no external resources a system could utilize, and in fact, it relaxes the need to choose
pockets of four-qubit subsystems to find an increase in extractable work. Nevertheless,
we will continue to use four-qubit subsystems since the class of energy-preserving four-
qubit unitaries since they include the simultaneous swap of two qubit pairs used for the
small machines (Section 2.3) as well as two-qubit and three-qubit rotations in the form of
unconditional and conditional (partial) swaps.

In the rest of the section, we study how the development of positive change in ex-
tractable work for the qubits is affected by the following:

• The level of connectivity. This changes the number of ways any one qubit can directly
interact with another qubit and generate correlations on the landscape. The network
graphs for connectivities we consider are shown in Figures 2 and 3.

• The degree of initial temperature variation on landscape. We consider initializing the
landscape with between one and seven hot qubits.

• The type of unitary. We consider two qubit conditional partial swaps, two qubit un-
conditional partial swaps and simultaneous partial swaps of two different qubit pairs.
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All of the closed landscapes result in diffusion of energy from the initially hot qubit
in the system, so that the qubits evolve through a range of temperatures and do not
reach a mean temperature. In Section 3.4 we contrast these systems with two types of
open landscapes: a fully Markovian collisional model and evolution under our landscape
rules but with correlations thrown away at each step. The comparison illustrates how
closed evolution contains temperature variations and correlations that generate instances
of ∆Wex ≥ 0.

Figure 6. The change in extractable work from each qubit across 500 steps corresponding to the
landscapes shown in Figure 5. The change in work is computed between two consecutive steps and
thus a positive change corresponds to change with respect to the previous step. Fully connected
landscape of connectivity seven shows dilution of ∆Wex ≥ 0 pockets, while the restricted connectivity
show persistent instances of ∆Wex ≥ 0. Furthermore, the restriction in connectivity results in slow
diffusion of energy from the hot qubit onto the landscape resulting in higher magnitude for extractable
work early on on the landscape (as is depicted by the colors of the swatch).

3.1. Results: Connectivity and Initial Temperature Inhomogeneity

To study the efficiency of diffusion of energy under different levels of connectiv-
ity, we ran 100 evolution consisting of 500 steps each, for the 3 levels of connectivity
shown in Figure 2, starting with 1 hot qubit and 7 cold qubits. For each of the 100 evo-
lutions, we chose a different unitary within the class of simultaneous two-qubit swaps
and then used it throughout the evolution. The left panel of Figure 7 averages over all
evolution (and all qubits at the same temperature) for each connectivity to show the per-
centage of steps for which a qubit that starts as cold (hot) develops ∆Wex ≥ 0 in a run of
500 steps. The mean number of cases for positive change in extractable work for a cold
(hot) qubit on the landscape is smallest (largest) for full connectivity. The large number of
times the hot qubit experiences ∆Wex > 0, corresponds to greater energy diffusion and
faster thermalization (although energy dissipation and extractable work are not necessarily
maximized for the same conditions [55]). However, for the qubits that begin in the cold
state, the hot qubit is ultimately the resource that allows them to have ∆Wex ≥ 0 at some
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times. Although the difference between connectivities is not large, Figure 7 suggests that a
landscape with restricted connectivity fares better in terms of generating the conditions for
the initially cold qubits of the landscape to exhibit ∆Wex ≥ 0 persistently under evolution.

Some general features are seen across the different types of connectivity, including
diffusion of energy and a decrease in the magnitude of ∆Wex as the system evolves. For the
qubit initialized in the hot state, the reference temperature provided by the landscape
necessarily goes up under the first stages of evolution. This is not the case for the cold
qubits. Thus, the number of steps where a positive change in free energy develops for the
hot qubit is more than that for cold qubits for any level of connectivity. The cold qubits
are initially at the maximum distance from the hot qubit. Over the course of evolution,
the magnitude of free energy decreases since any closed evolution overall decreases the
distance between the states.

(a) (b)

Figure 7. (a) Box plots showing the distribution in the percent of steps for which ∆Wex ≥ 0 for the
qubits starting cold and hot, under 500 steps for the different levels of connectivity, for 100 trials.
(b) Total ∆Wex

〈T〉 > 0 as a function of the fraction of hot qubits on the landscape, where 〈T〉 is the
average initial temperature on the whole landscape. The fit for the plot for the degree of connectivity
six is proportional to e−0.25x, where x is the initial number of hot qubits on landscape.

To study how the level of inhomogeneity of the initial cold versus hot temperature
distribution on the landscape affects the thermodynamics, we evolved landscapes with
different numbers of initially hot qubits. As the fraction of qubits that start out hot is
increased, the total positive change in extractable work from the landscape decreases.
The right panel of Figure 7 shows the total positive extractable work, normalized by the
initial mean temperature of the landscape, summed over the entire landscape for the
three different symmetric connectivities, under 500 steps. Although the connectivity is a
comparatively small effect, the total extractable work for a given fraction of hot qubits is
largest for the landscape with full connectivity. The decrease in the total extractable work,
as a function of the number of hot qubits, is exponential for all connectivities.

From the results so far, it is clear that neither maximizing the of steps with ∆Wex ≥ 0
or the total magnitude ∆Wex

〈T〉 > 0 is the right way to pick out landscapes that are slow
to thermalize. After confirming that varying the number of qubits directly interacting
gives results consistent with the effects of connectivity, we will instead look at persistence
measures (in Section 3.3).

3.2. Results: Varying the Unitaries

We now consider the effect of three different classes of unitaries which correspond to
three classes of possible correlations that can be generated in the system:

• Simultaneous swap of two qubit pairs generated by interaction of the class
Ĥ4Q ⊗ 14 + 14 ⊗ Ĥ4Q, where Ĥ4Q is a four-qubit interaction in the energy subspace
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E = 2, with two pairs of qubit simultaneously being swapped. A representative
unitary of this type is given in Equation (23).

• Conditional two-qubit swap given by Ĥ4Q ⊗ 14 + 14 ⊗ Ĥ4Q, where Ĥ4Q is a four-
qubit interaction that swaps populations between two qubits of a four-qubit system.
For example, the rotation generated by the Hamiltonian interaction |1000〉〈0100|+ h.c.

• Unconditional two-qubit swap given by Ĥ2Q⊗ 16 + 12⊗ Ĥ2Q⊗ 14 + 14⊗ Ĥ2Q⊗ 12 +

16 ⊗ Ĥ2Q where Ĥ2Q is a two qubit interaction that swaps populations. For example
the rotation in Ĥ2Q is generated by a Hamiltonian interaction of the type |10〉〈01|+ h.c.

We ran 50 trials consisting of 500 steps each for a landscape with full connectivity and
one initial hot qubit under the different types of unitary. Within each class, a rotation angle
θ was chosen at random at the initialization stage. Figure 8 shows the distribution for the
percentage of steps for which a qubit that starts as cold (hot) develops ∆Wex ≥ 0 out of
500 steps, over 50 trials. The unitaries that involve fewer qubits or restricted rotations in
energy subspaces slow the rate of diffusion from the hot qubit and subsequently lower the
number of times the hot qubit experiences ∆Wex > 0 in the 500 evolution steps. This is
similar to the effect of restricted connectivity between qubits in Figure 7a. The slow rate of
diffusion of the hot qubit also results in a larger number of times the cold qubits experience
∆Wex > 0 in the 500 evolution steps. This is because the landscape resists approaching the
state where the mutual information between the qubits is the highest or where locally all
qubits look similar. The state where all qubits become identical has no utility for extractable
work on a closed landscape because the relative entropy between the states and thermal
state of environment approaches zero. The other extreme, where qubits do not interact and
evolve, is also of no utility because the change in extractable work would be zero. Therefore,
some but not all correlations in the environment are a key resource for the generation and
persistence of ∆Wex > 0, as we discuss below.

Figure 8. The distribution, over 50 trials, of the percent of steps for which ∆Wex ≥ 0 for a qubit
starting of as cold and hot. All landscapes have connectivity seven but undergo evolution via different
types of unitary rotations: simultaneous swap of two pairs of qubits, two-qubit conditional swap
and two-qubit unconditional swap. A random unitary belonging to the class was chosen at the
initialization step and then applied to each landscape in random subsystems for 500 steps.

3.3. Results: Persistence of ∆Wex ≥ 0

In order to characterize the persistence of ∆Wex ≥ 0 on the landscape, we next examine
the length of the intervals over which a qubit continuously achieves a positive change in
extractable work.



Entropy 2023, 25, 947 17 of 26

To investigate this, we ran 100 trials of 500 steps for four different connectivities
shown in Figures 2 and 3. In all the trials, the landscape was initialized with one hot qubit
and seven cold qubits. For the messenger subsystem, the hot qubit and one cold qubit
were chosen as the messenger qubits since they exhibited more instances of ∆Wex ≥ 0 as
compared to a case where both the messengers initially chosen are cold. Note that this step
of choosing which qubits for the two subsystems act as the messenger completely eliminates
any randomness in the sequence in which the qubits interact in the messenger-qubit system
as is seen in Figure 3b. This is not the case for connectivity seven and six where there is
randomness in the way subsystems that interact together is chosen (see Figure 4). Keeping
all other parameters fixed—initial conditions and form of unitary for evolution—allowed
us to highlight the effect of connectivity of landscape and subsequently the randomness in
choosing the subsystems that interact together.

Figure 9a shows a log-linear scale histogram for the instances of positive change in
extractable work grouped by the intervals, for all qubits on the landscape for the three
connectivities. On the fully connected (connectivity seven) landscape, the majority of
instances when ∆Wex ≥ 0 are short-lived, with interval length ≤ 40 steps. All landscapes
with restricted connectivity are order-of-magnitude more long-lived, with interval length
≥20 steps and instances. The connectivity-six landscape and the messenger-system shows
comparable instances of long-lived (≥40 steps) intervals of ∆Wex ≥ 0 compared to the
more restricted five and less restricted seven connectivity landscape. In fact, the longest-
lived interval was found in the connectivity-six system of ≥40 steps. Between the range
of interval length 10–40 consecutive steps, connectivity five dominates in the number
of instances.

(a)

1
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(b)

Figure 9. (a) Log-linear scale histogram (normalized to relative frequency) of different length intervals
for which the qubit consecutively exhibits ∆Wex ≥ 0. The histogram shows data for 100 trials of
500 steps each for three types of connectivity: fully connected (seven), connectivity six, five and a
messenger-qubit system where two subsystem of size four make up the landscape and under each
iteration a messenger qubit is exchanged between the subsystems. The landscape is initialized with
a hot qubit and seven cold qubits. The horizontal axis shows the number of steps in the interval
over which ∆Wex ≥ 0 persists and the vertical axis shows the percent of total steps that occur within
intervals of that length. (b) Log–log scale plot showing development of ∆Wex ≥ 0 of different lengths
under 500 steps for 100 trials for three types of connectivity. Up until 10% of the evolution, the fully
connected landscape with connectivity seven shows more instances of ∆Wex ≥ 0 than the other two
landscapes, but in the later part of evolution, sparsely connected landscapes—connectivity six and
messenger-qubit system—dominate by showing that more instances of connected landscape show
more instances of ∆Wex ≥ 0 that are long-lived.

To study the evolution of these long-lived ∆Wex ≥ 0 on the landscape, we also looked
at when in the evolution the long-lived intervals occur. In Figure 9b, all three landscapes
have instances of ∆Wex ≥ 0 even at early times due to the initial difference in temperature
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among qubits. However, it is now clear that the fully connected landscape has more in-
stances of ∆Wex ≥ 0 earlier in the evolution (≤ 10%), but the sparsely connected landscapes
eventually develop persistent and more long-lived ∆Wex ≥ 0. The landscape of connectiv-
ity six shows more cases of long-lived ∆Wex ≥ 0 than either the more (connectivity seven)
or less (five) connected examples. The later-time behavior contrasts the homogenizing fully
connected landscape with the more sparsely connected systems that continue to exchange
athermality and evolution in dynamically disconnected sectors in the Hilbert space as
a resource.

3.4. Contrast with Thermalizing Landscapes

We now contrast the landscapes studied in this work with related systems that display
Markovian evolution and rapid thermalization [56]. First, we consider a model where each
of the qubits is initialized as for the landscape but evolves via collision with bath qubits
at a fixed temperature, set to the average initial temperature of the landscape. After each
collision, any correlations developed with the bath are thrown away and the state of the
bath qubit is reset for the next evolution step. The qubits undergo a Markovian evolution
which has been studied as a microscopic model of thermalization [57].

The results are shown in Figure 10, compared to the full non-Markovian evolution of
identically initialized qubits on landscapes of several connectivities. In the collisional case
each qubit quickly reaches the average reference temperature with no instance of ∆Wex ≥ 0
ever developing. Our results share the key feature observed in previous studies [10]: for
non-Markovian evolution only, the amplitude of extractable work shows an oscillatory
behaviour, indicating a “revival” of work extraction. The plot illustrates the utility of
non-Markovian evolution in developing positive changes in extractable work. This exercise
further indicates how the analysis might change if a notion of temperature that folded in
the correlations, as in ref. [53], was used.

(a) (b)

Figure 10. Time evolution of the extractable work divided by mean initial temperature of the
landscape, Wex

〈T〉in , for a cold (a) and hot (b) one-qubit subsystem on the landscape. The dark gray
line shows the extractable work from a qubit on a landscape that undergoes subsequent collisions
with qubits at the initial mean temperature of the landscape. The purple, orange, yellow and blue
lines show the time evolution of normalized extractable work of one-qubit subsystems on closed
landscapes where the allowed interactions occur in subsystems chosen under several different
connectivity constraints as indicated in the legend. In the collisional model there is a monotonic
decrease in extractable work, while in all three closed landscapes revivals of work extraction can
be observed.

To further illustrate the role of correlations [58], we consider evolution under our
landscape rules where all correlations are thrown away at each step. That is, the unitaries
always act on uncorrelated, diagonal density matrices for the total system. Figure 11 shows



Entropy 2023, 25, 947 19 of 26

the comparison between dynamics with and without erasing correlations. The unitary
for both the landscapes at all steps of the evolution is identical and the evolution occurs
in the same set of randomly selected four-qubit subsystems. On the landscape with
correlation, all the correlations developed in the full eight-qubit density matrix is retained.
On the landscape without correlation, one evolution step corresponds to application of
the density matrix followed by erasure of any off diagonal terms developed. From the
remaining diagonal density matrix, we compute the updated state of each qubit and
form the uncorrelated new density matrix which undergoes subsequent evolution. Any
correlation formed between the qubits is lost and the landscape, at each step, is factorized.
Note, in this setup, while the correlations are lost, the total energy is still conserved at each
step. In this way, this landscape is energetically closed but is open in reference to entropy
by continually losing mutual information.

(a) (b)

Figure 11. Here, we show the evolution of the change in the ambient temperature, Equation (27),
the change in relative entropy and change in extractable work for an initially cold qubit that is
evolving on a landscape with and without correlations kept. Panel (a) shows values for the landscape
where all the correlations are retained. Panel (b) shows the evolution when any correlations formed
are erased at each step. We see that on a landscape where correlations are erased, all three parameters
for ∆Wex > 0 show an overall diminishing trend whereas for the closed landscape with correlations,
the generation of ∆Wex > 0 persists.

We plot the change in ambient temperature (normalized by the average temperature on
the landscape) for the cold qubit at that step, the change in relative entropy and the change
in extractable work normalized by the average temperature on the landscape. The plot
indicates that the amplitude of the change of the quantities under evolution without
correlations shows a decreasing trend. When correlations are kept, fluctuations at late times
can be as large as at early times which enables relatively large values of ∆Wex > 0 later in the
evolution. A closer look at the fluctuations indicates that on the landscape with correlations,
the change in extractable work can be positive even when the change in temperature is
negative. These features show the importance of correlations both among environment
qubits and between environment and system qubits for generating positive change in
extractable work. In comparison to the fully Markovian evolution where each qubit
individually interacts with a fixed thermal qubit bath that is reset at each step in Figure 10,
the landscape in Figure 11 Panel (b) benefits from some effect of correlations by allowing the
unitary to be updated by the state of each qubit co-evolving on the landscape. Consequently,
unlike the fully Markovian landscape, the state of the environment corresponding to each
qubit is not reset but is updated simultaneously. Therefore, the plot shows some oscillation
in the decay in ∆Wex ≥ 0, but this landscape still does not allow harnessing the full
power of correlations available on the landscape shown in Panel (a). Our future work will
characterize these correlations and their utility further more by studying the effect they
have on the parameters (∆, ∆̃ and Γ) of the ensemble of dynamical maps (see Equation (12))
that evolve the landscape.
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4. Discussion and Conclusions

We have constructed a small, closed, thermal system of four identical qubits that
fully parameterizes an actor qubit together with a machine activated to allow an increase
in extractable work for the actor when the reference temperature evolves via the same
machine. Using four-qubit subsystems as a building block, we defined landscapes of
eight co-evolving qubits with several parameters that can be controlled to explore the
thermodynamic evolution of correlated subsystems. Varying the connectivity, the initial
temperature distribution, and the number of qubits directly interacting at each step, we
explored the frequency of evolution steps where the change in effective extractable work
is positive, ∆Wex > 0, for any individual qubit and the total amount of ∆Wex/〈T〉 > 0
for all qubits on the landscape. Within the landscape, where the qubits that interact are
randomly chosen at each time step, states develop that will eventually act as resources for
neighboring qubits.

We saw that the number of steps where the change in extractable work was positive
for the initially cold (hot) qubit was the smallest (largest) for the landscape with full
connectivity. The total positive change in extractable work was largest on a landscape with
full connectivity but upon increasing the fraction of initially hot qubits on the landscape the
total, normalized, change in extractable work for each connectivity decreases exponentially.
We found that unitaries that are more restricted in the energy subspace and number of qubits
they connect result in a higher frequency of steps with a positive change in extractable
work for the qubits initialized cold, which is consistent with the connectivity results.
A higher frequency of ∆Wex > 0 events for a qubit initialized hot was correlated with
the approach toward a more homogeneous temperature across the landscape rather than
the development of any particularly interesting subsystems. On the other hand, a higher
frequency of ∆Wex > 0 for cold qubits corresponded to a less thermalized landscape. We
also looked at the endurance, through many steps, of ∆Wex > 0 for individual qubits.
The distribution of number of steps in intervals for which a qubit exhibits ∆Wex > 0 shows
that more sparsely connected landscapes produce more instances of and longer intervals
over which ∆Wex > 0 at each step.

These results suggest that landscapes with somewhat restricted connectivity, and there-
fore restrictions on evolution within the disconnected sectors of the full Hilbert space, are
better at developing a richer (less thermalizing) structure of sites with positive change in
extractable work. It would interesting to understand how this result is connected with
other studies showing the benefits of sparsely connected networks for other tasks, which
has been observed in a variety of contexts in the literature (see, for example, [24,59,60] and
references therein for the spectrum of such results).

However, the results for exploring the development of ∆Wex > 0 on non-equilibrium
landscapes relied crucially on defining an effective reference temperature. The definition
used here was motivated by an attempt to isolate the classical part effects by averaging the
well-defined single qubit temperatures, Equations (27) and (28). Recent work [53,54] has
suggested other possible prescriptions that fold in the effects of correlations between the
qubits. It would be interesting to investigate how these prescriptions affect our conclusions
or provide a different insight into the role of quantum correlations.

This exploratory study is restricted in utility by the small size of the landscape consid-
ered. In particular, the difference observed between different levels of connectivity was
small. However, the results do qualitatively point the way toward measures of how well a
closed thermodynamic landscape can do at producing thermodynamically rich subsystems.
We have shown how sub-classes of unitary and connectivity can affect development of
a locally defined ∆Wex > 0, but we have not explored the protocols for work extraction.
Quantitatively defining physically consistent thermodynamic measures on larger land-
scapes, as well as considering work extraction protocols, would be helpful in more fully
understanding out-of-equilibrium landscapes.
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Appendix A. Accessible States and Correlations for Small Quantum Machines

Appendix A.1. Two Qubits

The space of states accessible to the system can be defined by the trace distance
between the initial states of the two qubits

D(ρ1, ρ2) =
1
2

Tr[
√
(ρ1 − ρ2)2] = |p1 − p2|. (A1)

Since both qubit density matrices are originally diagonal, this is equal to the classical
trace distance. Under evolution, the distance between the qubits becomes

D(ρ1(θ), ρ2(θ)) = |(p1 − p2) cos(2θ)| (A2)

The trace distance between the qubits is a non-increasing function of the dynamics.
This implies that the individual qubit entropies and effective temperatures, at all later
times, are bounded by the initial values. To see this, assume p1 ≥ p2. Then even though a
state {q1 = p1 + δ, q2 = p2 − δ}, for δ ≥ 0 appears consistent with the statement of energy
conservation in Equations (13), (A1) and (A2) show that it cannot be reached dynamically
since the trace distance between the qubits would exceed the initial bound. The same
conclusion is also enforced by the entropy condition S1 + S2 ≥ S12 at all times, where S12
must remain fixed under unitary evolution.

Under the evolution given by repeated applications of unitaries from the family
given in Equation (18), the von Neumann entropies of the individual qubits will oscillate,
with one increasing if the other decreases, within the limits set by the initial values, p1
and p2. The qubits develop correlations, with the maximum mutual information occurring
when the initial energy is most evenly distributed between the two qubits. For much of the
parameter space spanned by all possible initial population fractions, the correlations are
classical, but for certain initial conditions and rotation angles θ, quantum correlations also
develop. These are maximized when the mutual information is maximized. The quantum
correlations can be extracted by computing the canonical measure of entanglement for two
qubit systems, the Wooters’ concurrence [47]

C = Max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4} , (A3)
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where the λi’s are the eigenvalues in decreasing order of the matrix
ρρ̃ = ρ(σy ⊗ σy)ρ∗(σy ⊗ σy), ρ is the density matrix for a two qubit system in the compu-
tational basis {|00〉, |01〉, |10〉, |11〉} and ρ∗ is its complex conjugate. The concurrence takes
values 0 ≤ C ≤ 1, where C = 0 corresponds to unentangled qubits and C = 1 corresponds
to maximal entanglement, for example in the Bell states.

For the class of unitary evolution considered here, acting on product states of two
thermal qubits, the evolved density matrix always takes the general form

ρ =


ρ11 0 0 0
0 ρ22 ρ23 0
0 ρ32 ρ33 0
0 0 0 ρ44

 (A4)

where the ρ11 and ρ44 entries remain fixed while the other entries evolve. The diagonal
terms are identified with the population dynamics of the system under the unitary, while
the off-diagonal terms indicate coherence between two qubits.

For a density matrix of the form given in Equation (A4), the eigenvalues for ρρ̃ result
in concurrence given by,

C = 2 max{0, |ρ23| −
√

ρ11ρ44} (A5)

When the concurrence is 0 under evolution, one can find a product state decomposition
of the density matrix. However, when there is sufficient coherence in the states that share a
common energy, |ρ23|, concurrence may be non-zero and consequently entanglement may
develop under evolution. Figure A1 shows the initial states that can develop concurrence.
The population fractions of the initial qubits are shown on each axis. The shading tracks
the maximum concurrence that can develop between two qubits for a given set of initial
states and a rotation angle θ = π/4.

Figure A1. The left panel shows contours of the maximum entanglement that can develop under
energy-preserving unitaries acting on two qubit systems initialized in a product of Gibbs states
(Equation (1)). The initial excited state populations are labelled p1 and p2. The contour labels indicate
the maximum possible value of concurrence possible for the initial state, which develops after rotating
by an angle θ = π

4 . On the right, we show the space of accessible linear entropies and concurrence
for all initial states of the closed two-qubit system. The shaded region in blue shows the range of
concurrence for states in our system, given a fixed linear entropy. The curve in green is the “frontier"
line [61] (green) characterizing the states that for a given mixedness or linear entropy are maximally
entangled. The shaded region in yellow shows an example three-qubit calculation that demonstrates
that the range of concurrence for a given linear entropy can be larger when the two qubits are
embedded in a larger system. For more details, see Section Appendix A.2.
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For the class of evolution we consider, with restricted initial states and evolution sub-
ject to a conservation law, there is a threshold above which concurrence (entanglement) is a
resource [62,63]. To quantify this, we compare the space of mixedness and entanglement
explored by the restricted system considered here, to that of the maximally entangled
mixed states (MEMS) considered by Munro et al. [64]. We compute the linear entropy,
SL(ρ) = 4

3 (1− Tr[ρ2]), as a measure of the mixedness of a two-qubit state, and use con-
currence as a measure of entanglement, although one may choose other quantities to
compare [61]. The right-hand panel of Figure A1 shows the “frontier” line [61] (green)
characterizing the states that for a given mixedness or linear entropy are maximally en-
tangled. The filled area (blue) shows the space in the linear entropy-concurrence plane
that can be reached by the states we consider, for any initial population fractions p1 and
p2. This space can be found most directly by choosing the rotation angle to be π

4 , as this
generates the maximum entanglement for any given initial populations. When we consider
larger numbers of qubits, and qubits co-evolving as a landscape in Section 3, states with
higher entanglement for a given linear entropy may develop and serve as resource states
for other subsystems. To illustrate how this may happen, Figure A1 also shows (in the
yellow shaded region) an example of the linear entropy and concurrence for two-qubit
subsystem of the three qubit closed system considered in the next section.

Appendix A.2. Three Qubits

The conservation law imposed on the system limits the possible values that the
population fraction of the qubits within the system can explore. The space of states
accessible to the system can now be characterized by the sum of the trace distances between
the qubits

D(ρ1, ρ2, ρ3) =
1
2 ∑

i,j=1,2,3
Tr|ρi − ρj| =

1
2 ∑

i,j=1,2,3
|pi − pj| (A6)

The state of the individual qubits, by tracing out the other two qubits, remains diago-
nal. Thus, this trace distance is equal to the classical trace distance. Under evolution, this
distance remains a non-increasing function of the dynamics. As for two qubits, the maxi-
mum and minimum population fractions achievable by any individual qubit are bounded
by the initial maximum and minimum. To show this, we use the fact that the initial density
matrix is diagonal and Hermitian, with eigenvalues that do not change under unitary
evolution. The Schur–Horn convexity theorem [65–68] of finite matrix theory provides the
bounds on the diagonal entries after any unitary evolution. Since the diagonal entries are
the only ones that contribute to the final, individual qubit population fractions, the bounds
on the diagonal entry also provide bound for the population for the individual qubit
density matrix.

In more detail, let (λ1, λ2, . . . λn) be the eigenvalues of a hermitian matrix arranged
in a non-increasing order. Then the Schur–Horn convexity theorem guarantees that the
diagonal entries of all matrices with λi’s as eigenvalues, d1 ≥ d2 ≥ . . . ≥ dn (also arranged
in a non-increasing manner) form a convex set. That is,

n

∑
i=1

λi =
n

∑
i=1

di ,
m

∑
i=1

λi ≥
m

∑
i=1

di for m = 1, 2, 3, . . . n

This monotone relation between the diagonals and the eigenvalues of the Hermitian
matrices is called majorization [68] and has played an essential role in defining whether
a transition between states is allowed or not under the set of all possible stochastic pro-
cesses [36]. The largest diagonal entry is bounded by the largest eigenvalue λ1 ≥ d1.

For our system, this implies that the largest entry in the diagonal after unitary evolution
is bounded by the largest eigenvalue of the initial system, which is fixed in terms of the
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initial qubit population fractions. Applying the theorem for (n− 1)th term and using trace
preservation, i.e., ∑n

i=1 λi = ∑n
i=1 di = Λ (constant) gives

λ1 + λ2 + . . . λn−1 ≥ d1 + d2 + . . . dn−1

⇒ Λ− λn ≥ Λ− dn

⇒ λn ≤ dn .

In other words, the smallest entry in the diagonal of the subspace is bounded from
below by the initial smallest entry.

The results above are true for all the energy subspaces of the system. Let us apply
this for the three qubit system. We will label the two, three-dimensional energy subspaces
as M(E) where E = 1, 2. Consider the evolved state of qubit one (tracing out the others).
In terms of the entries of the full, evolved, density matrix ρ, the population fraction is

q1 = ρ88 + ρ44 + ρ66 + ρ77 , (A7)

where we have ordered the states according to energy:{|000〉, |001〉, |010〉, |100〉, |011〉, |101〉,
|110〉, |111〉}.

To find the minimum that q1 can take under any sequence of the allowed unitaries, we
look for the minimum of Equation (A7). Note that ρ88 always remains constant. The entry
ρ44 corresponds to a diagonal entry of the energy subspace M(1). Thus, using the Schur–
Horn theorem, the minimum value that the entry ρ44 can take under any unitary applied in
that subspace is the initial minimum diagonal entry, Min{M(1)

ii }, of that energy subspace.

Similarly, the smallest value ρ66 + ρ77 = M(2)
22 + M(2)

33 = Tr[M(2)] − M11, can take after
any unitary transformation is the bounded by the largest value M11 can reach under any
transformation. However, the largest value M11 can ever reach is bounded by the largest
initial diagonal entry of the subspace. Then, if the initial excited state populations are
p1 ≤ p2 ≤ p3 we can write

Min q1 = ρ88 +
[
Min{M(1)

ii }
]
+

[
Tr[M(2)]−Max{M(2)

ii }
]

= p1 p2 p3 + [p1(1− p2)(1− p3)] + [p1 p2(1− p3) + p1 p3(1− p2)]

= p1

which is indeed the initial minimum. The derivation above does not depend on which
qubit was being considered but rather relies on the nature of the unitary and initial state.
Thus, for q2 and q3, the maximum and minimum population fraction is bounded by the
same initial maximum and minimum as for q1.

For a two qubit subsystem in the three qubit total system, the state space that can
be explored by the qubits increases compared to the previous section. For two qubits,
the entanglement was dependent on the population fractions available in the energy
subspace E = 1. In a three-qubit total system, since this population fraction is less restricted
and can take values in a greater range, we expect the concurrence between the qubits to
explore a wider range. In Figure A1, we show an instance of a three-qubit system where the
population fraction of the third qubit is fixed at p3 = 0.25 and the rotation is in the energy
subspace E = 1 with an angle of θ = π

4 . We can see that for bigger values of linear entropy,
for a given linear entropy, the amount of concurrence that can be generated between the
qubits is now greater than for the case of two qubits. Further studies which allow us to
scale the size of the total qubit system will be needed to develop a full understanding of
how the number of qubits traced out affects the degree of mixedness and concurrence in a
two qubit subsystem.
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