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Abstract: Evidence theory is widely used to deal with the fusion of uncertain information, but
the fusion of conflicting evidence remains an open question. To solve the problem of conflicting
evidence fusion in single target recognition, we proposed a novel evidence combination method
based on an improved pignistic probability function. Firstly, the improved pignistic probability
function could redistribute the probability of multi-subset proposition according to the weight of
single subset propositions in a basic probability assignment (BPA), which reduces the computational
complexity and information loss in the conversion process. The combination of the Manhattan
distance and evidence angle measurements is proposed to extract evidence certainty and obtain
mutual support information between each piece of evidence; then, entropy is used to calculate the
uncertainty of the evidence and the weighted average method is used to correct and update the
original evidence. Finally, the Dempster combination rule is used to fuse the updated evidence.
Verified by the analysis results of single-subset proposition and multi-subset proposition highly
conflicting evidence examples, compared to the Jousselme distance method, the Lance distance
and reliability entropy combination method, and the Jousselme distance and uncertainty measure
combination method, our approach achieved better convergence and the average accuracy was
improved by 0.51% and 2.43%.

Keywords: DS evidence theory; pignistic probability function; information fusion

1. Introduction

As an uncertain reasoning method, evidence theory [1,2] needs weaker conditions
than Bayesian probability theory, but it possesses the ability to express “uncertainty” and
“ignorance” directly. The primary data required in evidence theory are more intuitive
and easy to obtain than in probability reasoning theory. One can quickly integrate the
knowledge and data from different experts or data sources to describe the uncertainty
flexibly. It has been widely used in supplier selection [3,4], target recognition [5,6], decision
making [7,8], reliability analysis [9–13], optimization in uncertain environments [14–16], etc.
However, in the application of DS evidence theory, evidence fusion plays a crucial role due
to the unreliability of the evidence source. The Dempster fusion rule was established based
on the multiplication principle. In cases where there is conflicting evidence in evidence
theory, the Dempster combination rule is used to explain counterintuitive outcomes, which
can lead to what is known as the “Zadeh paradox”.

To address the issue of conflicting evidence fusion, scholars have presented many
outstanding studies. When there are conflicts in original evidence, traditional DS theory
cannot be applied and it needs to be improved. In recent years, a large number of scholars
and experts have improved evidence theory from two aspects. The first is to improve the
fusion rules of DS evidence theory. Sun promoted the concept of credibility, believing
that the credibility of all evidence is equal, and modified the Dempster rule by weighted
summation [17]. Yang established a unique evidential reasoning (ER) rule, combining
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multiple pieces of independent evidence with weight and reliability, improving and en-
hancing the Dempster rule by determining how to combine completely reliable evidence
and analyzing significant or complete conflicts through new reliability disturbances [18].
Deng Yong proposed a new concept called generalized evidence theory (GET), and defined
a new concept called generalized basic probability assignment (GBPA). They established a
model to deal with uncertain information, provided generalized combination rules (GCR)
for the combination of GBPA, and constructed a generalized conflict model to measure
the conflict between evidence [19]. The second aspect is to modify the original evidence.
Smets proposed pignistic probability transformations and adopted an average distribution
strategy in order for the mass function of assignments to meet the conditions [20]. Based
on a geometric interpretation of this evidence theory, Jousselme defined the Jousselme
evidence distance to describe the differences in evidence through distance information [21].
Murphy believed that the evidence should be a weighted average, which would better
deal with the normalization problem [22]. Tang proposed a new multi-sensor data fusion
method based on weighted confidence entropy, which measures the uncertainty of evidence
through mass functions and an identification framework to reduce the loss of evidence
information [23].

In this field, domestic and foreign scholars and experts have achieved excellent results
in a particular range. However, in the application of single target recognition, there is
only a single result, i.e., m(A1). Multi-subset BPAs such as m(A1 A2), which means there is
still uncertainty in the outcome of the fusion, reduce the probability of target recognition.
At present, there has been no relevant research conducted on the matter. In this article,
a method for recognizing single targets through conflicting evidence fusion is proposed.
This method involves consolidating multiple subsets within the framework of evidence
theory into a single subset, while incorporating the evidence distance, evidence angle, and
entropy to enhance the accuracy of target fusion. First, the pignistic probability function
is improved to transform each original evidence into a single propositional subset to
avoid a single recognition result including multiple subset propositions in the process of
the Dempster rule. Then, the combination of the Manhattan distance and evidence angle
measurements is proposed to extract the degree of evidence certainty and obtain the mutual
support information between all data. Furthermore, entropy is introduced to calculate
the uncertainty of evidence. The initial evidence is fused according to the coefficient of
uncertainty and is transformed to updated evidence. Finally, the Dempster combination
rule is used to fuse the updated evidence.

2. Materials and Methods
2.1. Dempster Rule

Let U be a domain set representing all values of X, and all elements in U are not
integrated. Then, U is called the recognition framework of X.

The research objects in scientific theory compose a nonempty set, which is called a
domain.

Definition 1. Let U be a recognition framework, then the function m : 2U → [0, 1] satisfies the
following conditions:

(1) m(∅) = 0;
(2) ∑A⊂U = 1.

Then, m(A) is the basic probability assignment (BPA) of A, m(A) is the mass function,
and m(A) represents the degree of trust in A. If m(A) > 0, A is called a focal element.

Hypothesis m1 and m2 are the two basic probability assignments on the same recogni-
tion framework U, and the focal elements are A1, A2, . . . , Ak and B1, B2, . . . , Br. Namely,

K = ∑
Ai∩Bj=∅

m1(Ai)m2(Bj) < 1 (1)
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Then,

m(C) =


∑Ai∩Bj=∅ m1(Ai)m2(Bj)

1− K
, ∀C ⊂ U

0, C = ∅.
(2)

where i = 1, 2, . . . , k; j = 1, 2, . . . , r; and K is the conflict factor, which reflects the degree
of conflict between evidence. 1

1−K is called the normalization factor. The Dempster rule
allocates the conflict to each set in equal proportion.

Define the system identification framework as U = {A1, A2, . . . , AM}, N evidence as
E1, E2, . . . , EN , and the mass functions corresponding to each evidence as m1, m2, . . . , mN .

2.2. Improved Pignistic Probability Function

In single target recognition, the fusion recognition result often only has a certain
target. In the framework of DS evidence theory, when evidence contains multiple subset
propositions, the fusion result also contains multiple subset propositions, which increases
the computational complexity. This work improves the pignistic probability function to
transform the multiple subset propositions into single subset propositions, in which the
BPA of multiple subset propositions is distributed according to the weight of single subset
propositions. The weight is allocated according to the information of each single subset
proposition provided by the evidence itself, which reduces the computational complexity
and information lost in the process of transforming the pignistic probability function [24]
from the BPA to the single subset BPA. The improved pignistic probability conversion
function is as follows:

BetPm(Ai) = ∑
Ai∪Aj⊆U,B⊆Aj

m(Ai)

∑
|Aj |
k=1 m(B)

·
m(Aj)

1−m(φ)
(3)

where A is the proposition of original evidence and B is a simple subset proposition in Aj,
Ai, Aj refers to the multi sub proposition in evidence, Ai 6= Aj, ∅ is an empty set, m(∅) 6= 1,
and | Aj | represents the number of elements contained in proposition A.

After the pignistic probability function is conserved, the BPA is converted into a single
subset BPA m′1, m′2, . . . , m′N .

m′i = {BetPmi (A1), BetPmi (A2), . . . , BetPmi (AN)} (4)

2.3. Evidence Support Based on the Manhattan Distance

The distance between evidence [25] can effectively measure the degree of support
between evidence. At present, domestic and foreign scholars have proposed a variety of
methods to measure distance, including the Lance distance, the Jousselme distance, and
the Mahalanobis distance. However, the Lance distance does not take into account the
correlation between indicators. The Jousselme distance is affected by the dispersion of
the basic probability distribution of evidence [26]. The Mahalanobis distance function
requires calculation of the covariance of the matrix, which is hugely complex. The Man-
hattan distance introduced in this paper calculates the distance of each single subset BPA
identification result to measure the similarity between the evidence. This method has low
computational complexity.

The Manhattan distance between two pieces of evidence is calculated as:

d(Ei, Ej) =
M

∑
k=1
| BetPmi (Ak)− BetPmj(Ak) | (5)
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where i, j = 1, 2, . . . , N. The Manhattan distance between each evidence is calculated to
obtain the distance matrix D:

D =


d(E1, E1) d(E2, E1) · · · d(EN , E1)
d(E1, E2) d(E2, E2) · · · d(EN , E2)
· · · · · · · · · · · ·

d(E1, EN) d(E2, EN) · · · d(EN , EN)

 (6)

The distance between evidence is negatively correlated with the support.
The calculation of the evidence support of E1, E2, . . . , EN is:

SUPi =
1

N − 1

N

∑
k=1,k 6=i

1
Dik

(7)

The support degree is obtained based on the Manhattan distance between evidence.
The support is normalized to obtain the support coefficient of the evidence Cor_d(Ei).

Cor_d(Ei) =
SUPi

∑N
j=1 SUPj

(8)

2.4. Evidence Similarity Based on Evidence Angle

The angle between the two pieces of evidence can be used to structure the consis-
tency between the evidence subjects, and the results obtained can be used to measure the
similarity between the two evidence subjects. The formula for the evidence angle [27] is
as follows:

cos(Ei, Ej) =
m′i ×m′j

‖m′i‖ × ‖m′j‖
=

∑M
k=1 BetPmi (Ak)× BetPmj(Ak)√

∑M
k=1 [BetPmi (Ak)]2 ×

√
∑M

k=1 [BetPmj(Ak)]2
(9)

The larger value of cos(Ei, Ej), the more consistent two pieces of evidence are. It shows
that there is a higher similarity between the two pieces of evidence. The evidence angle
between each evidence is calculated from the angle matrix, Ang. The similarity between
evidence is calculated from the angle matrix:

SIMi =
1

N − 1

N

∑
k=1,k 6=i

Angik (10)

The similarity between evidence is measured based on the evidence angle. The
similarity is normalized to obtain the similarity coefficient of the evidence CorA(Ei).

Cor_A(Ei) =
SIMi

∑N
j=1 SIMj

(11)

2.5. Evidence Uncertainty Based on Entropy

In evidence theory, the amount of information content that evidence carries can be
measured by information entropy. The higher the information entropy, the more informa-
tion the evidence carries, and the lower the probability of occurrence in the real world, the
higher the uncertainty. The calculation formula for information entropy is as follows:

H(Ei) = − ∑
Ak⊂Ei

mi(Ak)log2(mi(Ak)) (12)
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The uncertainty coefficient of each piece of evidence Cor_S(Ei) is calculated by:

Cor_S(Ei) = eHn(Ei) (13)

where i = 1, 2, . . . , N.

2.6. Evidence Fusion Based on the Dempster Rule

The evidence fusion coefficient integrating the Manhattan distance, the evidence angle,
and the reliability entropy is:

Cor(Ei) = Cor_S(Ei)× Cor_d(Ei)× Cor_A(Ei) (14)

The fusion coefficient Cor(Ei) is normalized to obtain the final evidence fusion coeffi-
cient Cor_ f usion(Ei). The single subset BPA {m′1, m′2, . . . , m′N} is modified:

m′′ =
N

∑
i=1

Cor f usion(Ei)×m′i (15)

where i = 1, 2, . . . , N;
All the initial evidence is replaced with m′′, and finally the modified evidence is fused

with the Dempster rules:

m f us = (((m′′ ⊕m′′)1 · · · )i ⊕m′′)N−1 (16)

The flow graph of the method proposed in this paper is shown in Figure 1.

Figure 1. The flow graph of the proposed method.
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3. Results

In the following, we verify the effectiveness of the method through two conflict-
ing examples: those that only contain single-subset propositions and those that contain
multiple-subset propositions.

3.1. An Example of Single-Subset Proposition Conflicting Evidence

An example of single-subset proposition conflicting evidence can be found in refer-
ence [28]. An evidence recognition framework is assumed and there are five independent
pieces of evidence. The corresponding BPA is shown in Table 1 [28].

Table 1. Single-subset proposition conflicting evidence.

Evidence m(A1) m(A2) m(A3)

E1 0.90 0 0.10
E2 0 0.01 0.99
E3 0.50 0.20 0.30
E4 0.98 0.01 0.01
E5 0.90 0.05 0.05

3.1.1. Improved Pignistic Probability Function

This example is a simple subset proposition, and the conversed BPA is obtained by
Formula (1). m′1 = {0.90, 0, 0.10}, m′2 = {0, 0.01, 0.99}, m′3 = {0.50, 0.20, 0.30},
m′4 = {0.98, 0.01, 0.01}, m′5 = {0.90, 0.05, 0.05}.

3.1.2. Calculate Fusion Coefficient

Apply Formulas (5)–(8) as follows to obtain the evidence support coefficient, the
distance matrix, and support matrix as:

D =


0 1.8 0.8 0.18 0.10

1.80 0 1.38 1.96 1.88
0.80 1.38 0 0.96 0.80
0.18 1.96 0.96 0 0.16
0.10 1.88 0.80 0.16 0


The support based on the Manhattan distance between evidence is:

SUPi = {4.3425, 0.5800, 1.0650, 3.3400, 4.5075}

The evidence support coefficient Cor(Ei) is:

Cord_d(Ei) = {0.3139, 0.0419, 0.0770, 0.2414, 0.3258}

Apply Formulas (9)–(11) as follows to obtain the the evidence similarity coefficient
Cor_A(Ei),

Ang =


1 0.11 0.86 0.99 1.00

0.11 1 0.49 0.01 0.06
0.86 0.49 1 0.82 0.85
0.99 0.01 0.82 1 1.00
1.00 0.06 0.85 1.00 1


Angi = {0.7400, 0.1675, 0.7550, 0.7050, 0.7275}

The evidence similarity coefficient Cor_A(Ei) is:

Cord_A(Ei) = {0.2391, 0.0541, 0.2439, 0.2278, 0.2351}
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Apply Formulas (12) and (13) as follows to obtain the evidence uncertainty coefficient
Cor_S(Ei).

Cord_S(Ei) = {1.60, 1.08, 4.44, 1.17, 1.77}

The support coefficient and similarity coefficient represent the certainty of evidence,
and the uncertainty coefficient represents the uncertainty of evidence. The final evidence
fusion coefficient is obtained by applying Formulas (14) and (15):

Cord_ f usion(Ei) = {0.2960, 0.0059, 0.2055, 0.1585, 0.3342}

Modify the evidence again

m′′ =
N

∑
i=1

Cor_ f usion(Ei)×m′i = {0.8253, 0.0595, 0.1154}

to replace the initial evidence.

3.1.3. Evidence Fusion Based on the Dempster Rule

Formula (16) is applied for fusion four times, and the fusion results are shown in
Table 2 and Figure 2. A comparison with other methods is shown in Table 3 and Figure 3.

Table 2. Fusion results of single-subset proposition conflicting examples.

Fusion Times m(A1) m(A2) m(A3)

First 0.9758 0.0051 0.0191
Second 0.9969 0.0004 0.0027
Third 0.9996 0.0000 0.0004

Fourth 0.9999 0.0000 0.0001

Table 3. Comparison of evidence fusion with different methods.

Approach
Fusion Result

BPA m(A1), m(A2)
m(A1), m(A2),

m(A3)
m(A1), m(A2),
m(A3), m(A4)

m(A1), m(A2), m(A3),
m(A4), m(A5)

m(A1) 0 0 0 0
Dempster-Shafer m(A2) 0 0 0 0

m(A3) 1 1 1 1
m(A1) 0.4054 0.5055 0.8930 0.9834

Murphy [22] m(A2) 0.0001 0.0000 0.0001 0.0000
m(A3) 0.5946 0.4945 0.1069 0.0166
m(A1) 0.4054 0.7211 0.9910 0.9996

Deng [29] m(A2) 0.0001 0.0040 0.0001 0.0000
m(A3) 0.5946 0.2749 0.0089 0.0003
m(A1) 0.5745 0.8382 0.9558 0.9968

Wang [28] m(A2) 0.0033 0.0142 0.0010 0.0001
m(A3) 0.4223 0.1476 0.0431 0.0031
m(A1) 0.4054 0.7211 0.9910 0.9996

Chen [30] m(A2) 0.0001 0.0040 0.0001 0.0000
m(A3) 0.5946 0.2749 0.0089 0.0003
m(A1) 0.2790 0.5763 0.9397 0.9963

Xiao [31] m(A2) 0.0001 0.0065 0.0004 0.0000
m(A3) 0.7210 0.4173 0.0599 0.0037
m(A1) 0.4571 0.7178 0.9792 0.9991

Zhao [32] m(A2) 0.0000 0.0046 0.0001 0.0000
m(A3) 0.5429 0.2775 0.0207 0.0009
m(A1) 0.5784 0.8406 0.9962 0.9999

Ours m(A2) 0.0000 0.0187 0.0002 0.0000
m(A3) 0.4216 0.1407 0.0036 0.0001
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Figure 2. Fusion results of multi-subset proposition conflicting examples.

Figure 3. Fusion results chart of a comparison of different methods of fusion of several pieces of
single-subset proposition evidence.
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3.2. An Example of Multi-Subset Proposition Conflicting Evidence

Suppose there is a multi-sensor-based target recognition system, then the recognized
targets are U = {A1, A2, A3}, which are the real targets. There are five independent sensors.
The recognition results of the five sensors are shown in Table 4.

Table 4. Single-subset proposition conflicting evidence.

Evidence m(A1) m(A2) m(A3) m(A1 A3)

E1 0.41 0.29 0.30 0.00
E2 0.00 0.90 0.10 0.00
E3 0.58 0.07 0.00 0.35
E4 0.55 0.10 0.00 0.35
E5 0.60 0.00 0.10 0.30

3.2.1. Improved Pignistic Probability Function

According to Formula (3), the conversed BPA is as shown in Table 5.

Table 5. Conversed BPA.

Evidence m(A1) m(A2) m(A3)

E1 0.41 0.29 0.30
E2 0.00 0.90 0.10
E3 0.93 0.07 0.00
E4 0.90 0.10 0.00
E5 0.8571 0.00 0.1429

3.2.2. Calculate Fusion Coefficient Cor(Ei)

As calculated by Formulas (4)–(15), the coefficients are shown in Table 6.

Table 6. Fusion coefficients of multi-subset proposition evidence.

Coefficient E1 E2 E3 E4 E5

Cord(Ei) 0.0440 0.0221 0.2924 0.3212 0.3203
CorA(Ei) 0.2352 0.0629 0.2336 0.2376 0.2307
CorS(Ei) 4.7894 1.5984 1.4470 1.5984 1.8072
Cor(Ei) 0.1221 0.0054 0.2433 0.3004 0.3287

We obtained the final evidence of the BPA:

m′′ =
N

∑
i=1

Cord_ f usion(Ei) ∗m′i = {0.8284, 0.0873, 0.0841}

3.2.3. Evidence Fusion Based on the Dempster Rule

Evidence fusion was performed four times by the Dempster rule, and the fusion results
are shown in Table 7 and Figure 4. A comparison with other methods is shown in Table 8
and Figure 5.

Table 7. Fusion results of multi-subset proposition conflict examples.

Fusion Times m(A1) m(A2) m(A3)

First 0.9790 0.0109 0.0101
Second 0.9978 0.0012 0.0010
Third 0.9998 0.0001 0.0001

Fourth 1.0000 0.0000 0.0000
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Figure 4. Fusion results of multi-subset proposition conflict.

Table 8. Comparison of evidence fusion with different methods.

Approach
Fusion Result

BPA m(A1), m(A2)
m(A1), m(A2),

m(A3)
m(A1), m(A2),
m(A3), m(A4)

m(A1), m(A2), m(A3),
m(A4), m(A5)

m(A1) 0 0 0 0
Dempster-Shafer m(A2) 0.8969 0.6350 0.3320 0

m(A3) 0.1031 0.3650 0.6680 1
m(A1) 0.0964 0.4939 0.8362 0.9613

Murphy [22] m(A2) 0.8119 0.4180 0.1147 0.0147
m(A3) 0.0917 0.0792 0.0410 0.0166

m(A1 A3) 0.0000 0.0090 0.0081 0.0032
m(A1) 0.0000 0.6019 0.9329 0.9802

Deng [29] m(A2) 0.8969 0.2908 0.0225 0.0009
m(A3) 0.1031 0.0991 0.0354 0.0154

m(A1 A3) 0.0000 0.0082 0.0092 0.0035
m(A1) 0.0000 0.7985 0.9629 0.9855

Chen [30] m(A2) 0.8969 0.1060 0.0043 0.0001
m(A3) 0.1031 0.0752 0.0190 0.0096

m(A1 A3) 0.0000 0.0203 0.0139 0.0048
m(A1) 0.1420 0.6391 0.9400 0.9816

Xiao [31] m(A2) 0.7412 0.2462 0.0165 0.0006
m(A3) 0.1168 0.1072 0.0341 0.0141

m(A1 A3) 0.0000 0.0075 0.0093 0.0037
m(A1) 0.1046 0.6945 0.9355 0.9817

Zhao [32] m(A2) 0.7989 0.1902 0.0163 0.0000
m(A3) 0.0965 0.1062 0.0409 0.0147

m(A1 A3) 0.0000 0.0091 0.0073 0.0036
m(A1) 0.2678 0.6714 0.9983 1.0000

Ours m(A2) 0.5551 0.2205 0.0015 0.0000
m(A3) 0.1771 0.1080 0.0001 0.0000
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Figure 5. Fusion results chart of a comparison of different methods on the fusion of several pieces of
multi-subset proposition evidence.

4. Discussion

As shown in the figure above, applying the Dempster fusion rule leads to counter-
intuitive results.

The fusion results of single- and multi-subset conflicting evidence are discussed in
this section. Analyzing Tables 2 and 7 and Figures 2 and 4, our proposed method has a
good fusion effect, and the BPA reaches 0.9999 and 1.0000 in the fourth fusion. The BPA
decreases with the increase in fusion time. It shows that the method proposed in this paper
can effectively extract the characteristics of the evidence.

Analyzing Tables 3 and 8 and Figures 3 and 5, when the number of pieces of evidence
is two or three, our method is not as effective as Chen’s method and Zhao’s method. In
the case of a small amount of evidence, the input data are insufficient and it is difficult to
extract multiple features from each evidence source. However, with the increase in the
number of evidence sources, our method’s accuracy rapidly improves and its accuracy
performance is expected to be even better. According to the tables and the figures, it can be
seen that our proposed method has a higher accuracy and better effect after three or more
fusion processes. Furthermore, for four or more fusion processes, our proposed method has
a higher accuracy and better impact in the fusion results of multi-subset conflict examples.

Experiments have shown that the method proposed in this article can effectively
extract mutually supportive features between various evidence sources when there are
sufficient evidence sources and can achieve good results.
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5. Conclusions

In this article, we proposed a novel evidence combination method based on an im-
proved pignistic probability function. Considering evidence characteristics and information
richness, this paper proposes a novel method to solve the problem of highly conflicting
evidence fusion in DS evidence theory. Through experiments, it has been shown that we
have achieved good results in dealing with single target recognition problems and an
improved fusion accuracy of the evidence theory framework in target fusion recognition.
Evidence theory has a strong ability to handle uncertainty problems. Our next work will
further investigate how evidence theory can be extended and applied in the real world.
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