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Abstract: In this paper, we present a general framework that provides a comprehensive and uniform
treatment of integral majorization inequalities for convex functions and finite signed measures. Along
with new results, we present unified and simple proofs of classical statements. To apply our results,
we deal with Hermite-Hadamard-Fejér-type inequalities and their refinements. We present a general
method to refine both sides of Hermite-Hadamard-Fejér-type inequalities. The results of many papers
on the refinement of the Hermite-Hadamard inequality, whose proofs are based on different ideas, can
be treated in a uniform way by this method. Finally, we establish a necessary and sufficient condition
for when a fundamental inequality of f -divergences can be refined by another f -divergence.
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1. Introduction

The theory of majorization is a useful mathematical tool, and many important and
interesting inequalities can be obtained by combining it with the theory of convex functions.
The basic concepts of majorization include the following binary relations for finite sequences
of real numbers:

Definition 1. Let x := (x1, . . . , xn) ∈ Rn and y := (y1, . . . , yn) ∈ Rn.
(a) We say that x is weakly majorized by y, denoted as x ≺w y, if

k

∑
i=1

x[i] ≤
k

∑
i=1

y[i], k = 1, . . . , n, (1)

where x[1] ≥ x[2] ≥ . . . ≥ x[n] and y[1] ≥ y[2] ≥ . . . ≥ y[n] are the entries of x and y, respectively,
in decreasing order.

(b) We say that x is majorized by y, denoted as x ≺ y, if (1) holds, and in addition,

n

∑
i=1

x[i] =
n

∑
i=1

y[i].

The fundamental inequality relating majorization and convexity is the Hardy–Littlewood–
Pólya inequality, (see [1]).

Theorem 1. Let C ⊂ R be an interval, let f : C → R be a convex function, and let x :=
(x1, . . . , xn) ∈ Cn and y := (y1, . . . , yn) ∈ Cn.
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(a) If x ≺ y, then
n

∑
i=1

f (xi) ≤
n

∑
i=1

f (yi). (2)

(b) If f is increasing and x ≺w y, then (2) also holds.

Among the weighted versions of the previous result, we highlight the following
inequality by Fuchs [2].

Theorem 2. Let C ⊂ R be an interval, and let f : C → R be a convex function. If (x1, . . . , xn) ∈
Cn, (y1, . . . , yn) ∈ Cn and q1, . . . , qn are real numbers, such that

(a) x1 ≥ . . . ≥ xn and y1 ≥ . . . ≥ yn,

(b)
k
∑

i=1
qixi ≤

k
∑

i=1
qiyi (k = 1, . . . , n− 1),

(c)
n
∑

i=1
qixi =

n
∑

i=1
qiyi,

then
n

∑
i=1

qi f (xi) ≤
n

∑
i=1

qi f (yi).

The notion of majorization can be extended to the continuous case.

Definition 2. Let ϕ, ψ : [a, b]→ R be decreasing functions. We say that ϕ is majorized by ψ in
symbols ϕ ≺ ψ if

x∫
a

ϕ(t)dt ≤
x∫

a

ψ(t)dt, x ∈ [a, b]

and
b∫

a

ϕ(t)dt =
b∫

a

ψ(t)dt.

The next result is the integral version of the Hardy–Littlewood–Pólya inequality
(see [3]).

Theorem 3. Let ϕ, ψ : [a, b] → C represent decreasing functions, where C ⊂ R is an interval.
Then, ϕ is majorized by ψ if and only if

b∫
a

f (ϕ(t))dt ≤
b∫

a

f (ψ(t))dt

holds for every continuous and convex function f on C, such that the integrals exist.

In the results related to the previous statement (majorization-type inequalities for
integrals, see, e.g., the papers [4–7]), the conditions on the convex function are generally
the same; it is defined on a compact interval and it is continuous. The proofs are usually
based on different methods; the pointwise approximation of convex functions by smooth
convex functions is a frequently used technique. Definition 2 can be naturally generalized
by using measures and even signed measures, so Theorem 3 has extensions in these
directions; see, e.g., the papers [7,8]. In this paper, we provide a general framework that
offers a comprehensive and uniform treatment of the problem by providing conditions for
the inequality ∫

[a,b]

f ◦ ϕdµ ≤
∫

[a,b]

f ◦ ψdν, (3)
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to be valid, where µ and ν are finite signed measures on a σ-algebra containing the Borel
sets of [a, b], and f is a convex function defined on an interval C ⊂ R. We obtain previously
known results and solve this problem in new cases. We emphasize that neither the com-
pactness of interval C nor the continuity of function f is required. The proofs only use the
approximability of convex functions by piecewise linear convex functions (no smoothness
condition is used). This result is well known when C is a compact interval (see [1]). We
extend this statement to convex functions defined on arbitrary intervals, and show that
the approximating sequence can always be chosen to be an increasing sequence. By using
this, necessary and sufficient conditions are given for the inequality (3) to be fulfilled. As a
consequence, some majorization-type inequalities for integrals are obtained. To apply these
results, we deal with Hermite-Hadamard-Fejér-type inequalities and their refinements.
Along with new results, we obtain unified and simple proofs of classical statements of
Fink [9] and Florea and Niculescu [10]. We present a general method to refine both sides of
Hermite-Hadamard-Fejér-type inequalities. The results of many papers on the refinement
of the Hermite-Hadamard inequality, whose proofs are based on different ideas, can be
treated in a uniform way by this method. Finally, we establish a necessary and sufficient
condition for when a fundamental inequality of f -divergences can be refined by another
f -divergence.

2. Preliminary Results

Positive and negative parts of a real number x are denoted by x+ and x−, respectively.
The complement of a set A ⊂ B, with respect to B, is denoted by Ac.
The σ-algebra of Borel sets and the σ-algebra of Lebesgue measurable sets on an

interval C ⊂ R are denoted by BC and LC, respectively.
Let (X,A) be a measurable space. The unit mass at x ∈ X (the Dirac measure at x) is

denoted by εx. Let µ be a signed measure on A. The total variation of µ is denoted by |µ|.
The real vector space of µ-integrable real functions on X is denoted by L(X, µ).

Let C ⊂ R be an interval with a nonempty interior. The following notations are
introduced for some special functions defined on C:

idC(x) := x, pC,w(x) := (x− w)+, nC,w(x) := (x− w)− x, w ∈ C.

We begin with two preparatory lemmas, which are important for what follows and
are of interest in their own right.

Lemma 1. Let [a, b] ⊂ R with a < b, and let ([a, b],A) be a measurable space, such that
B[a,b] ⊂ A and µ is a finite signed measure on A. Assume ϕ, ψ ∈ L([a, b], µ).

(a) If ∫
[a,x]

ϕdµ ≤
∫

[a,x]

ψdµ, x ∈ [a, b], (4)

then ∫
[a,x]

ϕdµ ≤
∫

[a,x]

ψdµ, x ∈ [a, b].

(b) If (4) holds, and α : [a, b]→ R is a nonnegative and decreasing function, then∫
[a,b]

αϕdµ ≤
∫

[a,b]

αψdµ.

Proof. (a) It can be assumed that x ∈ [a, b]. Choose a strictly increasing sequence (xn)
∞
n=1

in [a, x], such that xn → x.
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Since both set functions

A→
∫
A

ϕdµ and A→
∫
A

ψdµ, A ∈ A

are (finite) signed measures on A, and ([a, xn])
∞
n=1 is an increasing sequence converging to

[a, x], inequality (4) implies that∫
[a,x]

ϕdµ = lim
n→∞

∫
[a,xn ]

ϕdµ ≤ lim
n→∞

∫
[a,xn ]

ψdµ =
∫

[a,x]

ψdµ.

(b) Since α is decreasing on the compact interval [a, b], it is Borel-measurable and
bounded. According to B[a,b] ⊂ A, this implies that αϕ and αψ are also µ-integrable.

We first assume that α is a simple decreasing function of the form

α =
k

∑
i=1

ciχIi , (5)

where
c1 > . . . > ck ≥ 0, (6)

I1, . . . Ik are pairwise disjoint and nonempty intervals with
k⋃

i=1
Ii = [a, b] (these intervals

can include open, closed, half-open intervals, and singletons; the upper endpoint of Ii is
the same as the lower endpoint of Ii+1 (i = 1, . . . , k− 1)), and χIi (i = 1, . . . k) denotes the
characteristic function of Ii with domain [a, b]. We introduce the intervals

J0 := ∅, Ji :=
i⋃

l=1

Il , i = 1, . . . , k.

By using (4), part (a), and (6), we obtain

∫
[a,b]

αψdµ−
∫

[a,b]

αϕdµ =
k

∑
i=1

ci

∫
Ii

(ψ− ϕ)dµ =
k

∑
i=1

ci

∫
Ji�Ji−1

(ψ− ϕ)dµ

=
k−1

∑
i=1

(ci − ci+1)
∫
Ji

(ψ− ϕ)dµ + ck

∫
Jk

(ψ− ϕ)dµ ≥ 0.

The general case follows from this and from the well-known result that there exists
a sequence (αn) of nonnegative and decreasing functions, such that each αn has the same
structure as (5) and αn → α, uniformly, on [a, b].

The proof is complete.

We proceed with a simple but essential statement.

Lemma 2. Let [a, b] ⊂ R with a < b, and let ([a, b],A) be a measurable space, such that
B[a,b] ⊂ A and µ, ν are finite signed measures onA with µ([a, b]) = ν([a, b]). Let ϕ ∈ L([a, b], µ)

and ψ ∈ L([a, b], ν), such that
∫

[a,b]
ϕdµ =

∫
[a,b]

ψdν. Then, for every w ∈ R, the following

two assertions are equivalent.
(a) ∫

[a,b]

pR,w ◦ ϕdµ ≤
∫

[a,b]

pR,w ◦ ψdν. (7)



Entropy 2023, 25, 954 5 of 27

(b) ∫
[a,b]

nR,w ◦ ϕdµ ≤
∫

[a,b]

nR,w ◦ ψdν.

Proof. We only prove that (b) follows from (a); the converse statement can be handled
similarly. By introducing the sets (these sets may be empty, and they belong to A)

Aϕ := {t ∈ [a, b] | ϕ(t) ≥ w}, Aψ := {t ∈ [a, b] | ψ(t) ≥ w}, (8)

we obtain that∫
[a,b]

nR,w ◦ ϕdµ =
∫

Ac
ϕ

(w− ϕ)dµ =
∫

[a,b]

(w− ϕ)dµ−
∫

Aϕ

(w− ϕ)dµ

=
∫

[a,b]

(w− ϕ)dµ +
∫

[a,b]

pR,w ◦ ϕdµ.

Thus, the conditions µ([a, b]) = ν([a, b]),
∫

[a,b]
ϕdµ =

∫
[a,b]

ψdν and (7) imply that

∫
[a,b]

nR,w ◦ ϕdµ =
∫

[a,b]

(w− ψ)dν +
∫

[a,b]

pR,w ◦ ϕdµ

≤
∫

[a,b]

(w− ψ)dν +
∫

[a,b]

pR,w ◦ ψdν

=
∫

[a,b]

(w− ψ)dν−
∫

Aψ

(w− ψ)dν =
∫

[a,b]

nR,w ◦ ψdν.

The proof is complete.

The next result contains integral majorization-type inequalities for some special functions.

Lemma 3. Let [a, b] ⊂ R with a < b, and let ([a, b],A) be a measurable space, such that
B[a,b] ⊂ A. Suppose that one of the following two conditions is met:

(i) Let µ be a finite measure on A, let ϕ : [a, b] → R be a decreasing function, and let
ψ ∈ L([a, b], µ), such that (4) holds.

(ii) Let µ be a finite signed measure on A, and let ϕ, ψ : [a, b]→ R be decreasing functions,
such that (4) holds.

(a) If function f is either idR or pR,w for some w ∈ R, then∫
[a,b]

f ◦ ϕdµ ≤
∫

[a,b]

f ◦ ψdµ. (9)

(b) Assume that ∫
[a,b]

ϕdµ =
∫

[a,b]

ψdµ (10)

is also satisfied. If f = nR,w for some w ∈ R, then inequality (9) holds too.

Proof. We first consider the case where condition (i) is satisfied.
(a) If f = idR, then the result follows from (4).
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Now, assume that f = pR,w for some w ∈ R. Using the sets Aϕ and Aψ introduced
in (8), we have∫

[a,b]

f ◦ ϕdµ =
∫

Aϕ

(ϕ− w)dµ and
∫

[a,b]

f ◦ ψdµ =
∫

Aψ

(ψ− w)dµ. (11)

Since ϕ is decreasing, either Aϕ = [a, c] or Aϕ = [a, c] for some c ∈ [a, b]. If Aϕ = ∅,
inequality (9) trivially follows from (11) and, thus, it can be supposed that Aϕ is a nonempty interval.

Let Ac
ψ denote the complement of Aψ with respect to [a, b]. Then, by the first part

of (11) and Lemma 1 (a),∫
[a,b]

f ◦ ϕdµ ≤
∫

Aϕ

(ψ− w)dµ =
∫

Aϕ∩Aψ

(ψ− w)dµ +
∫

Aϕ∩Ac
ψ

(ψ− w)dµ,

and, therefore, it follows from the definition of the set Aψ and from the second part of (11) that∫
[a,b]

f ◦ ϕdµ ≤
∫

Aϕ∩Aψ

(ψ− w)dµ ≤
∫

Aψ

(ψ− w)dµ =
∫

[a,b]

f ◦ ψdµ.

(b) It comes from (a) and Lemma 2.
We now turn to the case where condition (ii) is satisfied.
(a) If f = idR, then the result follows from (4).
Now assume that f = pR,w for some w ∈ R.
Using sets Aϕ and Aψ introduced in (8), we obtain that

f (ψ(t))− f (ϕ(t)) =


ψ(t)− ϕ(t), t ∈ Aϕ

⋂
Aψ

w− ϕ(t), t ∈ Aϕ
⋂

Ac
ψ

ψ(t)− w, t ∈ Ac
ϕ
⋂

Aψ

0, t ∈ Ac
ϕ
⋂

Ac
ψ

, (12)

where any of the four intersections can be the empty set, their union is [a, b], and at least
one of the sets Aϕ

⋂
Ac

ψ and Ac
ϕ
⋂

Aψ is empty.
We consider only the case when Aϕ

⋂
Ac

ψ = ∅; that is, Aϕ ⊂ Aψ (the other cases can
be treated in a similar way). It can be supposed that the other three intersections are not
empty. Since ϕ and ψ are decreasing, Aϕ and Aψ are nonempty intervals. It can be seen that
I1 := Aϕ, I2 := Ac

ϕ
⋂

Aψ, and I3 := Ac
ϕ
⋂

Ac
ψ are pairwise disjoint and nonempty intervals

with I1
⋃

I2
⋃

I3 = [a, b]. We define the function α : [a, b]→ R by

α(t) :=


1, t ∈ I1

ψ(t)−w
ψ(t)−ϕ(t) , t ∈ I2

0, t ∈ I3

Then, α is well-defined and nonnegative. It is easy to verify that α(t) < 1 if t ∈ I2.
Next, we show that α is decreasing on I2; that is, for all t, s ∈ I2, t > s

ψ(t)− w
ψ(t)− ϕ(t)

≥ ψ(s)− w
ψ(s)− ϕ(s)

.

This inequality is equivalent to

(ψ(t)− w)(w− ϕ(s)) ≥ (ψ(s)− w)(w− ϕ(t)),

which is obvious.
To summarize, we can see that α is decreasing.
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By (12) and the definition of α, we have∫
[a,b]

( f ◦ ψ− f ◦ ϕ)dµ =
∫

[a,b]

α(ψ− ϕ)dµ,

and, hence, Lemma 1 (b) can be applied.
(b) It can be treated similarly to (b) under the condition of (i).
The proof is complete.

The next result is a simple consequence of the previous lemma.

Corollary 1. Let [a, b] ⊂ R with a < b, and let ([a, b],A) be a measurable space, such that
B[a,b] ⊂ A. Suppose that one of the following two conditions is met:

(i) Let µ be a finite measure on A, let ϕ ∈ L([a, b], µ), and let ψ : [a, b]→ R be an increasing
function, such that (4) holds.

(ii) Let µ be a finite signed measure on A, and let ϕ, ψ : [a, b]→ R be increasing functions,
such that (4) holds.

(a) If function f is either −idR or nR,w for some w ∈ R, then∫
[a,b]

f ◦ ϕdµ ≥
∫

[a,b]

f ◦ ψdµ. (13)

(b) Assume that (10) is also satisfied. If f = pR,w for some w ∈ R, then inequality (13)
holds too.

Proof. Assume (i) is satisfied.
(a) Under the conditions where −ψ is decreasing, −ϕ ∈ L([a, b], µ), and∫

[a,x]

−ψdµ ≤
∫

[a,x]

−ϕdµ, x ∈ [a, b].

It now follows from Lemma 3 (a) that∫
[a,b]

f ◦ (−ψ)dµ ≤
∫

[a,b]

f ◦ (−ϕ)dµ,

where f is either idR or pR,w for some w ∈ R. This gives the result by using (−a)+ = a−.
(b) By (10), ∫

[a,b]

−ψdµ =
∫

[a,b]

−ϕdµ.

Since (−a)− = a+, Lemma 3 (b) can be applied.
We can prove it in a similar manner if (ii) is satisfied.
The proof is complete.

In the next statement, we will investigate the approximation of convex functions
defined on intervals by monotone sequences of simple convex functions.

Definition 3. Let C ⊂ R be an interval with the nonempty interior. A function f : C → R is
called piecewise linear if it is continuous and there exists finite points x1 < x2 < . . . < xk in the
interior of C, such that the restriction of f to each interval C

⋂
[−∞, x1], [x1, x2], . . ., C

⋂
[xk, ∞] is

an affine function.

Theorem 4. Let C ⊂ R be an interval with a nonempty interior, and let f : C → R be a continuous
convex function.
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(a) Function f is the pointwise limit of an increasing sequence of piecewise linear convex
functions on C.

(b) If f is increasing, then f is the pointwise limit of an increasing sequence of piecewise linear,
increasing, and convex functions on C.

(c) If f is decreasing, then f is the pointwise limit of an increasing sequence of piecewise linear,
decreasing, and convex functions on C.

(d) In all three cases, the convergence is uniform on every compact subinterval of C.

Proof. (i) Assume first that C is a bounded interval with endpoints u < v.
Let y = l−12(x) be the equation of the left-hand tangent line to the graph of f at u+v

2 ,
and let y = l+22(x) be the equation of the right-hand tangent line to the graph of f at u+v

2 .
Define function f1 : C → R by

f1(x) := max
(
l+12(x), l−22(x)

)
.

It is obvious that f1 is a simple convex function, it is increasing if f is increasing, it is
decreasing if f is decreasing, and f1 ≤ f .

Next, we divide interval C into 2n subintervals of equal widths for some n > 1. If
u =: x0 < x1 < . . . < x2n := v is the appropriate partition, then let y = l−in(x) be the
equation of the left-hand tangent line to the graph of f at xi, and let y = l+in(x) be the
equation of the right-hand tangent line to the graph of f at xi (i = 1, . . . , 2n − 1). We define
the function fn : C → R by

fn(x) := max
1≤i≤2n−1

(
l−in(x), l+in(x)

)
.

It is also easy to believe that fn is a simple convex function; it is increasing if f is
increasing, and it is decreasing if f is decreasing, fn−1 ≤ fn ≤ f , and

f (x)− fn(x) ≤
(

f ′−(x2n−1)− f ′+(x1)
)v− u

2n , x ∈ [x1, x2n−1].

It can be seen that ( fn) converges uniformly to f on every compact subinterval of the
interior of C and, therefore, ( fn) converges pointwise to f on the interior of C.

Suppose that at least one of the endpoints belongs to C. We consider the case when
v ∈ C. By the convexity of f ,

( f (v)− f (x2n−2))
2n−1

v− u
≤ f ′+(x2n−1) ≤ ( f (v)− f (x2n−1))

2n

v− u
,

and, hence,

1
2
( f (v)− f (x2n−2)) ≤ f ′+(x2n−1)(v− x2n−1) ≤ f (v)− f (x2n−1), n ≥ 2.

Since f is continuous,

lim
n→∞

f ′+(x2n−1)(v− x2n−1) = 0,

and, thus, fn(v)→ f (v).
(ii) Assume that C is an unbounded interval. We consider the case when C is bounded

from the left with the left-hand endpoint u ∈ R. The other two cases can be treated in an
analogous way.

We can proceed similarly to the first part. Let n ≥ 1 be an integer, and divide interval
C
⋂
[−∞, u + n] into n2n subintervals of equal width. If this partition is defined by the
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points u =: x0 < x1 < . . . < xn2n = u + n, and equations y = l−in(x) and y = l+in(x) mean
the same as in (i), then we define function fn : C → R by

fn(x) := max
1≤i≤n2n−1

(
l−in(x), l+in(x)

)
.

Then, fn is a simple convex function, it is increasing if f is increasing, it is decreasing
if f is decreasing, and fn−1 ≤ fn ≤ f .

For all fixed k ≥ 1, let ( fk,n)
∞
n=1 be the sequence of functions constructed in (i) the re-

striction of f to C
⋂
[−∞, u + k]. It follows from the definitions of the introduced sequences

of functions that for all n ≥ k ≥ 1, the restriction of fn to C
⋂
[−∞, u + k] is fk,n. By part (i),

this implies that ( fn) converges pointwise to f on C.
The proof is complete.

Remark 1. It is well known that if C ⊂ R is a compact interval with a nonempty interior, and
f : C → R is a continuous convex function, then f is the pointwise limit of a sequence of piecewise
linear convex functions on C. Its origins can be traced back to the paper by Popoviciu [11]. Our
results can be applied to every continuous convex function defined on any type of interval, and the
approximating sequence is increasing.

Remark 2. Let C ⊂ R be an interval with a nonempty interior, and let f : C → R be a piecewise
linear convex function. If C is compact, then it is well known (see [1]) that f has a simple structure.
The same is true for the functions described in Definition 3, and the proof can be copied as well. For
the sake of completeness, and because we need representations in the proofs, we provide them.

(a) Function f has the following form:

f (x) = αx + β +
k

∑
i=1

γi

(
(x− xi)

+ + (x− xi)
−
)

, x ∈ C

for suitable points x1 < x2 < . . . < xk in the interior of C, α, β ∈ R, and γi > 0 (i = 1, . . . , k).
(b) If f is increasing, then f is of the form

f (x) = αx + β +
k

∑
i=1

γi(x− xi)
+, x ∈ C

for suitable points x1 < x2 < . . . < xk in the interior of C, α ≥ 0, β ∈ R and γi > 0
(i = 1, . . . , k).

(c) If f is decreasing, then f is of the form

f (x) = αx + β +
n

∑
i=1

γi(x− xi)
−, x ∈ C

for suitable points x1 < x2 < . . . < xk in the interior of C, α ≤ 0, β ∈ R and γi > 0
(i = 1, . . . , k).

The final result will be used to obtain Fejér-, especially Hermite-Hadamard type
inequalities.

Lemma 4. Let [a, b] ⊂ R with a < b, and let µ be a finite signed measure on B[a,b] such that

µ(A) = µ(a + b− A), A ∈ B[a,b]. (14)

Assume ϕ, ψ : [a, b]→ [a, b] are µ-integrable functions, such that

ϕ(a + b− t) = a + b− ϕ(t), ψ(a + b− t) = a + b− ψ(t), t ∈ [a, b]. (15)
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(a) If ∫
[a,x]

ϕdµ ≤
∫

[a,x]

ψdµ, x ∈
[

a,
a + b

2

]
, (16)

then ∫
[a,x]

ϕdµ ≤
∫

[a,x]

ψdµ, x ∈ [a, b] (17)

and ∫
[a,b]

ϕdµ =
∫

[a,b]

ψdµ =
a + b

2
µ([a, b]). (18)

(b) If µ is a measure and

ϕ(t) ≤ ψ(t), t ∈
[

a,
a + b

2

]
, (19)

then (16) holds.

Proof. (a) We divide the proof into six parts.
(i) We define function T :

[
a, a+b

2

]
→
[

a+b
2 , b

]
by T(t) := a + b− t. Let T(µ) be the

image measure of the restriction of µ to B[a, a+b
2 ] under the mapping T. If B ∈ B[ a+b

2 ,b], then

by (14),
µ
(

T−1(B)
)
= µ(a + b− B) = µ(B),

and, hence, T(µ) is the restriction of µ to B[ a+b
2 ,b].

(ii) Since

µ

([
a,

a + b
2

])
= µ

([
a + b

2
, b
])

,

it follows that

a + b
2

µ

({
a + b

2

})
+ (a + b)µ

([
a,

a + b
2

])
=

a + b
2

µ([a, b]). (20)

According to (15),

ϕ

(
a + b

2

)
= ψ

(
a + b

2

)
=

a + b
2

.

For the rest of the proof of (a), assume x ∈
[

a+b
2 , b

]
.

(iii) By (i) and the first part of (15),∫
[a,x]

ϕdµ =
∫

[a, a+b
2 ]

ϕdµ +
∫

[ a+b
2 ,x]

ϕdµ =
∫

[a, a+b
2 ]

ϕdµ +
∫

[ a+b
2 ,x]

ϕdT(µ)

=
∫

[a, a+b
2 ]

ϕdµ +
∫

[a+b−x, a+b
2 ]

ϕ ◦ Tdµ =
∫

[a, a+b
2 ]

ϕdµ +
∫

[a+b−x, a+b
2 ]

(a + b− ϕ)dµ

=
∫

[a,a+b−x]

ϕdµ +
a + b

2
µ

({
a + b

2

})
+ (a + b)µ

([
a + b− x,

a + b
2

])
. (21)

By using the second part of (15), we can similarly obtain that∫
[a,x]

ψdµ =
∫

[a,a+b−x]

ψdµ +
a + b

2
µ

({
a + b

2

})
+ (a + b)µ

([
a + b− x,

a + b
2

])
. (22)
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(iv) Since a + b− x ∈
[

a, a+b
2

]
, (16) and Lemma 1 (a) yield that

∫
[a,a+b−x]

ϕdµ ≤
∫

[a,a+b−x]

ψdµ.

(v) It can be seen that (iv), (21) and (22) imply inequality (17).
(vi) By applying (21) and (22) to x = b, (18) follows from (20).
(b) According to the nonnegativity of µ and (19), inequality (16) obviously holds.
The proof is complete.

3. Majorization-Type Theorems for Integrals

The key to a further discussion lies in the following result.
By N+ we denote the set of positive integers.
The interior of a set H ⊂ R is denoted by H◦.

Theorem 5. Let [a, b] ⊂ R with a < b, and let ([a, b],A) be a measurable space, such that
B[a,b] ⊂ A and µ, ν are finite signed measures on A. Let C ⊂ R be an interval with a nonempty
interior, and let ϕ, ψ : [a, b]→ C be functions, such that ϕ ∈ L([a, b], µ) and ψ ∈ L([a, b], ν).

(a) Let Fi
C denote the set of all increasing and convex functions f : C → R for which

f ◦ ϕ ∈ L([a, b], µ) and f ◦ ψ ∈ L([a, b], ν). Then, for each f ∈ Fi
C inequality,∫

[a,b]

f ◦ ϕdµ ≤
∫

[a,b]

f ◦ ψdν (23)

holds if and only if µ([a, b]) = ν([a, b]) and it is satisfied in the following special cases: function f
is either idC or pC,x (x ∈ C◦).

(b) Let Fd
C denote the set of all decreasing and convex functions f : C → R for which

f ◦ ϕ ∈ L([a, b], µ) and f ◦ ψ ∈ L([a, b], ν). Then, for each f ∈ Fd
C inequality, (23) holds if and

only if µ([a, b]) = ν([a, b]) and it is satisfied in the following special cases: the function f is either
−idC or nC,x (x ∈ C◦).

(c) Let FC denote the set of all convex functions f : C → R for which f ◦ ϕ ∈ L([a, b], µ) and
f ◦ ψ ∈ L([a, b], ν). Then, for each f ∈ FC inequality, (23) holds if and only if µ([a, b]) = ν([a, b])
and it is satisfied in the following special cases: the function f is either idC or −idC or pC,x
(x ∈ C◦).

Proof. We first note that if inequality (23) holds for each f ∈ Fi
C, then

∫
[a,b]

ϕdµ ≤
∫

[a,b]
ψdν,

if (23) holds for each f ∈ Fd
C, then

∫
[a,b]

ϕdµ ≥
∫

[a,b]
ψdν, and if (23) holds for each f ∈ FC, then

∫
[a,b]

ϕdµ =
∫

[a,b]

ψdν. (24)

(a) The constant functions f1, f2 : C → R, f1(x) := 1 and f2(x) := −1 belong to
Fi

C and, hence, (23) implies µ([a, b]) = ν([a, b]). The functions idC and pC,x (x ∈ C◦) are
increasing and convex, and since ϕ ∈ L([a, b], µ), ψ ∈ L([a, b], ν) and µ, ν are finite, they
belong to Fi

C. This shows that the condition is necessary.
To prove sufficiency, we distinguish two cases.
(i) Assume that f is continuous.
By Theorem 4 (b), f is the pointwise limit of an increasing sequence of piecewise linear,

increasing, and convex functions on C. If ( fn) is such a sequence, then ( fn ◦ ϕ) converges
pointwise to f ◦ ϕ and ( fn ◦ ψ) converges pointwise to f ◦ ψ.
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By Remark 2 (b), if g is a piecewise linear increasing and convex function on C, then g
is of the form

g(x) = αx + β +
k

∑
i=1

γi(x− xi)
+, x ∈ C (25)

for suitable points x1 < x2 < . . . < xk in the interior of C, α ≥ 0, β ∈ R and γi > 0
(i = 1, . . . , k). Since ϕ ∈ L([a, b], µ) and µ is finite, g ◦ ϕ ∈ L([a, b], µ). Similarly, g ◦ ψ ∈
L([a, b], ν) and, hence, g ∈ Fi

C.
Since

| fn ◦ ϕ| ≤ max(| f ◦ ϕ|, | f1 ◦ ϕ|), | fn ◦ ψ| ≤ max(| f ◦ ψ|, | f1 ◦ ψ|), (26)

the dominated convergence theorem implies that∫
[a,b]

fn ◦ ϕdµ→
∫

[a,b]

f ◦ ϕdµ and
∫

[a,b]

fn ◦ ψdν→
∫

[a,b]

f ◦ ψdν.

In summary, it is enough to prove (23) for piecewise linear increasing and convex
functions on C. Since such a function is of the form (25), it follows from the condition.

(ii) Assume that f is not continuous at the right-hand endpoint of the interval C.
Then, it is not hard to believe that there exists a decreasing sequence ( fn)

∞
n=1 from

Fi
C, such that fn is continuous (n ∈ N+) and ( fn) converges pointwise to f on C. In this

case, (26) is also satisfied and, therefore, the result follows from the first part of the proof
and the dominated convergence theorem.

(b) It can be proven similarly to (a) by using Theorem 4 (c) and taking Remark 2 (c)
into account.

(c) It can be proven similarly to (a) by using Theorem 4 (a) and taking Remark 2 (a)
into account. In the sufficiency part of the proof, we can apply Lemma 2, which shows
that (23) holds for nC,x (x ∈ C◦) too.

The proof is complete.

Remark 3. (a) By Lemma 2, in part (c) of Theorem 5, “the function f is either idC or −idC or pC,x
(x ∈ C◦)" can be replaced by “function f is either idC or −idC or nC,x (x ∈ C◦)".

(b) It is easy to verify that Theorem 5 (c) contains the following result from Levin and
Stečkin [12]: Let H : [a, b]→ R be a function with bounded variations, such that H(a) = 0. Then∫

[a,b]

f dH ≥ 0

for all continuous and convex functions on [a, b] if and only if the following three conditions
are fulfilled:

H(b) = 0,
∫

[a,b]

H(x)dx = 0,
∫

[a,x]

H(t)dt ≥ 0, x ∈ [a, b].

(c) It can be easily seen that the main results of Theorem 6 and Theorem 7 in the paper by
Barnett, Cerone, and Dragomir [8] are also special cases of Theorem 5 (c). They provide some
sufficient conditions for the inequality

b∫
a

p(t) f (ϕ(t))du(t) ≤
b∫

a

p(t) f (ψ(t))du(t),

to be valid, where f is a convex function, p is a bounded variation on [a, b] and is nonnegative, u is
increasing, and the Stietjes integral is used. Their proofs are specific; The notions of sub-differential
and a Chebyshev-type inequality are used.
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The next result is a special case of Theorem 5. It more closely follows the usual form
of majorization inequalities for integrals.

Theorem 6. Let C ⊂ R be an interval with a nonempty interior, and let f : C → R be a convex
function. Let [a, b] ⊂ R with a < b, and let ([a, b],A) be a measurable space, such that B[a,b] ⊂ A.

(a) Suppose that one of the following two conditions is met:
(i) Let µ be a finite measure on A. Assume ϕ : [a, b] → C is a decreasing function, and

ψ : [a, b]→ C is a µ-integrable function for which f ◦ ψ is also µ-integrable.
(ii) Let µ be a finite signed measure on A. Assume ϕ, ψ : [a, b]→ C are decreasing functions.
(a1) If f is increasing and (4) is satisfied, then∫

[a,b]

f ◦ ϕdµ ≤
∫

[a,b]

f ◦ ψdµ. (27)

(a2) If (4) and (10) are satisfied, then inequality (27) holds too.
(b) Suppose that one of the following two conditions is met:
(i) Let µ be a finite measure on A. Assume ϕ : [a, b]→ C is a µ-integrable function for which

f ◦ ϕ is also µ-integrable, and ψ : [a, b]→ C is an increasing function.
(ii) Let µ be a finite signed measure on A. Assume ϕ, ψ : [a, b]→ C are increasing functions.
(b1) If f is decreasing and (4) is satisfied, then∫

[a,b]

f ◦ ϕdµ ≥
∫

[a,b]

f ◦ ψdµ. (28)

(b2) If (4) and (10) are satisfied, then inequality (28) holds too.

Proof. (a) The proof is valid even under conditions (i) and (ii).
The functions ϕ, ψ, f ◦ ϕ, and f ◦ ψ are obviously µ-integrable.
(a1) It follows from Theorem 5 (a) by applying Lemma 3 (a).
(a2) It can be proven similarly to (a1) by using Theorem 5 (c) and taking into account

Lemma 3.
(b1) It can be proven similarly to (a1) by using Theorem 5 (b) and taking into account

Corollary 1 (a).
(b2) It can be proven similarly to (a1) by using Theorem 5 (c) and taking into account

Corollary 1.
The proof is complete.

It is worth mentioning the following two special cases of Theorem 6 separately.
First, we consider the case when µ is absolutely continuous with respect to a σ-finite

measure ν on A. In this case, µ has a ν-almost-everywhere uniquely determined density
p : [a, b]→ R, with respect to ν. Since µ is finite, p is ν-integrable.

Corollary 2. Let C ⊂ R be an interval with a nonempty interior, and let f : C → R be a convex
function. Let [a, b] ⊂ R with a < b, let ([a, b],A, ν) be a measure space, such that B[a,b] ⊂ A, and
ν is a σ-finite measure ν on A, and let p : [a, b]→ R be a ν-integrable function.

(a) Suppose that one of the following two conditions is met:
(i) Assume p is nonnegative, ϕ : [a, b]→ C is a decreasing function, and ψ : [a, b]→ C is an

A-measurable function for which ψp and ( f ◦ ψ)p are ν-integrable.
(ii) Assume that ϕ, ψ : [a, b]→ C are decreasing functions.
(a1) If f is increasing and ∫

[a,x]

ϕpdν ≤
∫

[a,x]

ψpdν, x ∈ [a, b] (29)
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is satisfied, then ∫
[a,b]

( f ◦ ϕ)pdν ≤
∫

[a,b]

( f ◦ ψ)pdν. (30)

(a2) If (29) and ∫
[a,b]

ϕpdν =
∫

[a,b]

ψpdν (31)

are satisfied, then inequality (30) holds too.
(b) Suppose that one of the following two conditions is met:
(i) Assume p is nonnegative, ϕ : [a, b] → C is a A-measurable function for which ϕp and

( f ◦ ϕ)p re ν-integrable, and ψ : [a, b]→ C is an increasing function.
(ii) Assume ϕ, ψ : [a, b]→ C are increasing functions.
(b1) If f is decreasing and (29) is satisfied, then∫

[a,b]

( f ◦ ϕ)pdν ≥
∫

[a,b]

( f ◦ ψ)pdν. (32)

(b2) If (29) and (31) are satisfied, then inequality (32) holds too.

Proof. Let the set function µ be defined on A by

µ(A) =
∫
A

pdν, A ∈ A.

If p is nonnegative, then µ is a measure on A; otherwise, µ is a signed measure on A.
The result immediately follows from Theorem 6.
The proof is complete.

This is an important special case of the previous result when A = L[a,b], and µ is
absolutely continuous with respect to the Lebesgue measure λ on L[a,b].

Next, we consider the case when µ is a discrete measure on A.

Corollary 3. Let C ⊂ R be an interval with a nonempty interior, and let f : C → R be a convex
function. Let the index set I be either a finite set of the form {1, . . . , n} for some integer n ≥ 1 or
N+. Let (µi)i∈I be a sequence of real numbers with ∑

i∈I
|µi| < ∞.

(a) Suppose that one of the following two conditions is met:
(i) Assume µi ≥ 0 (i ∈ I), (xi)i∈I is a decreasing sequence in C, and (yi)i∈I is a sequence in

C for which the series ∑
i∈I

yiµi ∑
i∈I

f (yi)µi are absolutely convergent.

(ii) Assume (xi)i∈I and (yi)i∈I are decreasing sequences in C.
(a1) If f is increasing and

k

∑
i=1

xiµi ≤
k

∑
i=1

yiµi, k ∈ I (33)

is satisfied, then
∑
i∈I

f (xi)µi ≤∑
i∈I

f (yi)µi. (34)

(a2) If (33) and
∑
i∈I

xiµi = ∑
i∈I

yiµi, (35)

are satisfied, then inequality (34) holds too.
(b) Suppose that one of the following two conditions is met:
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(i) Assume µi ≥ 0 (i ∈ I), (xi)i∈I is a sequence in C for which the series ∑
i∈I

xiµi and

∑
i∈I

f (xi)µi are absolutely convergent, and (yi)i∈I is an increasing sequence in C.

(ii) Assume (xi)i∈I and (yi)i∈I are increasing sequences in C.
(b1) If f is decreasing and (33) is satisfied, then

∑
i∈I

f (xi)µi ≥∑
i∈I

f (yi)µi. (36)

(b2) If (33) and (35) are satisfied, then inequality (36) holds too.

Proof. Let [a, b] ⊂ R with a < b, let (ti)i∈I be a strictly decreasing sequence in [a, b], and
let the measure µ be defined on B[a,b] by

µ := ∑
i∈I

µiεti ,

where the measure εti on B[a,b] is the unit mass at ti (i ∈ I). Since ∑
i∈I
|µi| < ∞, µ is a finite

set function.
If µi ≥ 0 (i ∈ I), then µ is a measure on B[a,b]; otherwise, µ is a signed measure on B[a,b].
(a) Under condition (i), it is not hard to verify that there exist functions ϕ, ψ : [a, b]→ C,

such that ϕ is continuous and decreasing, ψ is Borel-measurable, and

ϕ(ti) = xi, ψ(ti) = yi, i ∈ I.

If (ii) holds, then ψ can also be chosen as a continuous and decreasing function.
We can apply Theorem 6 (a).
(b) It can be verified in a similar manner as (a).
The proof is complete.

Remark 4. The result contains the weighted version of the Hardy–Littlewood–Pólya inequal-
ity and Fuchs inequality (see Theorem 1 and Theorem 2), and even extends them to countably
infinite sequences.

4. Hermite-Hadamard-Fejér-Type Inequalities

The first statement includes known results in a single framework.

Theorem 7. Let [a, b] ⊂ R with a < b, and let µ be a finite signed measure on B[a,b], such that
µ([a, b]) > 0.

(a) The inequality

f
(
xµ

)
µ([a, b]) ≤

∫
[a,b]

f dµ (37)

holds for some xµ ∈ [a, b] and all convex functions f : [a, b]→ R if and only if

xµ :=
1

µ([a, b])

∫
[a,b]

tdµ(t) (38)

and ∫
[a,x]

(x− t)dµ(t) ≥ 0 and
∫

[x,b]

(t− x)dµ(t) ≥ 0, x ∈ [a, b]. (39)
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(b) Assume xµ ∈ [a, b]. The inequality

∫
[a,b]

f dµ ≤
(

b− xµ

b− a
f (a) +

xµ − a
b− a

f (b)
)

µ([a, b]) (40)

holds for all convex functions f : [a, b]→ R if and only if

b− x
b− a

∫
[a,x]

(t− a)dµ(t) +
x− a
b− a

∫
[x,b]

(b− t)dµ(t) ≥ 0, x ∈ [a, b]. (41)

Proof. (a) By Theorem 5 (c), the assertion is true if and only if

xµ · µ([a, b]) =
∫

[a,b]

tdµ(t), (42)

∫
[a,b]

p[a,b],x
(
xµ

)
dµ ≤

∫
[a,b]

p[a,b],xdµ, x ∈ [a, b] (43)

and ∫
[a,b]

n[a,b],x
(
xµ

)
dµ ≤

∫
[a,b]

n[a,b],xdµ, x ∈ [a, b] (44)

are satisfied.
By µ([a, b]) > 0, (38) is equivalent to (42).
It is obvious that xµ ∈ [a, b] is equivalent to∫

[a,b]

(b− t)dµ(t) ≥ 0 and
∫

[a,b]

(t− a)dµ(t) ≥ 0.

By elementary calculations, we can obtain that inequalities (43) and (44) hold exactly if
0 ≤

∫
[x,b]

(t− x)dµ(t), if x ∈
[
xµ, b

]
0 ≤

∫
[a,x]

(x− t)dµ(t), if x ∈
[
a, xµ

] . (45)

The remaining task is to prove that (45) implies (39). Since∫
[x,b]

(t− x)dµ(t) = µ([a, b])
(
xµ − x

)
+
∫

[a,x]

(x− t)dµ(t), x ∈ [a, b],

the first inequality in (39) follows from µ([a, b]) > 0 and (45). The second inequality in (39)
can be handled in a similar way.

(b) Let the function ϕl : [a, b]→ [a, b] be defined by

ϕl(t) =


b, if t ∈

[
a, xµ

]
xµ, if t = xµ

a, if t ∈
[
xµ, b

] ,

and introduce the measure λ̂ := µ([a,b])
b−a λ on B[a,b].

Then ∫
[a,b]

ϕldλ̂ =
∫

[a,b]

tdµ(t),
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and ∫
[a,b]

f ◦ ϕldλ̂ =

(
b− xµ

b− a
f (a) +

xµ − a
b− a

f (b)
)

µ([a, b])

for all convex functions f : [a, b]→ R.
It now follows from Theorem 5 (c) that inequality (40) holds for all convex functions

f : [a, b]→ R if and only if∫
[a,b]

p[a,b],xdµ ≤
∫

[a,b]

p[a,b],x ◦ ϕldλ̂, x ∈ [a, b]

and ∫
[a,b]

n[a,b],xdµ ≤
∫

[a,b]

n[a,b],x ◦ ϕldλ̂, x ∈ [a, b]

are satisfied; however, some easy calculations show that both inequalities are equivalent
to (41).

The proof is complete.

Remark 5. (a) The number xµ defined in (38) is called the barycenter of µ.
(b) The part (a) of Theorem 7 was discovered by Fink [9]. The idea of his proof is different

from the one we use; it is based on the integral representation of convex functions. Finite signed
measures on B[a,b], for which the measure of [a, b] is positive and (39) holds, are called Steffensen–
Popoviciu measures.

(c) In [9], Fink also presented a sufficient but not necessary condition for the satisfaction of
inequality (40). Part (b) of Theorem 7, which is the complete characterization of the measures for
which (40) holds, is given by Florea and Niculescu in [10]. Their proof is a modification of Fink’s
argument, which is based on the integral representation of twice continuously differentiable convex
functions using the Green function of the operator d2

dx2 with homogeneous boundary conditions
y(a) = y(b) = 0. This is also different from the method we follow.

(d) We emphasize that the same natural technique is used to prove Theorem 7 (a) and (b). This
may be new.

(e) Condition (41) does not imply xµ ∈ [a, b] in general. This can be illustrated by elemen-
tary examples.

(f) For the sake of completeness, we provide examples of measures that satisfy exactly one of the
following conditions: (39) or (41).

(i) If the measure µ on B[0,3] is defined by

µ := 2ε0 − ε1 − ε2 + ε3,

then some straightforward calculation shows that condition (39) is satisfied, but (41) does not hold.
In this case, the barycenter of µ is 0, and inequality (37) has the form

f (0) ≤ 2 f (0)− f (1)− f (2) + f (3)

which is obviously fulfilled by the convexity of f . The form of inequality (40) is

2 f (0)− f (1)− f (2) + f (3) ≤ f (0)

which is not true in general.
(ii) If the measure µ on B[0,2] is defined by

µ := −ε + 2ε1 + 2ε2,

then it is also easy to show that condition (41) is satisfied, but (39) does not hold.
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Now, the barycenter of µ is 2, and inequality (37) has the form

f (2) ≤ − f (0) + 2 f (1) + 2 f (2)

which does not hold in general. The form of inequality (40) is

− f (0) + 2 f (1) + 2 f (2) ≤ 3 f (2)

which comes from the convexity of f .
(g) It follows from Theorem 7 (a) and (b) that inequalities

f
(

xµ

)
≤ 1

µ([a, b])

∫
[a,b]

f dµ ≤
b− xµ

b− a
f (a) +

xµ − a
b− a

f (b). (46)

are satisfied for all convex functions f : [a, b]→ R if and only if both conditions (39) and (41) are
true. It is still an open question on how to write up the joint fulfillment of conditions (39) and (41)
in a compact form.

In the next result, we deal with refinements of inequalities given in (46).

Theorem 8. Let [a, b] ⊂ R with a < b, and let µ be a finite measure on B[a,b], such that
µ([a, b]) > 0. Assume ϕ1, ϕ0, ψ1, ψ0 : [a, b]→ [a, b] are increasing functions, such that∫

[a,x]

ϕ0dµ ≤
∫

[a,x]

ϕ1dµ ≤
∫

[a,x]

tdµ(t) ≤
∫

[a,x]

ψ1dµ ≤
∫

[a,x]

ψ0dµ, x ∈ [a, b] (47)

and ∫
[a,b]

ϕ0dµ =
∫

[a,b]

ϕ1dµ =
∫

[a,b]

ψ1dµ =
∫

[a,b]

ψ0dµ =
∫

[a,b]

tdµ(t) (48)

are satisfied. Then, for all convex functions f : [a, b]→ R, we have

f
(
xµ

)
µ([a, b]) (49)

≤
∫

[a,b]

f ◦ ψ0dµ ≤
∫

[a,b]

f ◦ ψ1dµ ≤
∫

[a,b]

f dµ ≤
∫

[a,b]

f ◦ ϕ1dµ ≤
∫

[a,b]

f ◦ ϕ0dµ (50)

≤
(

b− xµ

b− a
f (a) +

xµ − a
b− a

f (b)
)

µ([a, b]). (51)

Proof. Inequalities in (50) are immediate consequences of Theorem 6 (b2).
To prove (49), introduce the increasing function ψu : [a, b]→ [a, b], ψu(t) := xµ.
By Theorem 6 (b2), it is enough to show that∫

[a,x]

ψ0dµ ≤
∫

[a,x]

ψudµ, x ∈ [a, b]. (52)

We argue indirectly and suppose there exists an x ∈ [a, b], such that (52) does not hold.
Since ψ0 is increasing, it follows that

xµ · µ([a, x]) <
∫

[a,x]

ψ0dµ ≤ ψ0(x)µ([a, x]). (53)
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The strict inequality in (53) implies that µ([a, x]) > 0 and, hence, xµ < ψ0(x). Since ψ0 is
increasing, this and the firs part of (53) yield that∫

[a,b]

ψ0dµ =
∫

[a,x]

ψ0dµ +
∫

[x,b]

ψ0dµ > xµ · µ([a, x]) + xµ · µ([x, b])

= xµ · µ([a, b]) =
∫

[a,b]

tdµ(t)

which contradicts (48).
To prove (51), it follows from the convexity of f that

f (ϕ0(t)) ≤
b− ϕ0(t)

b− a
f (a) +

ϕ0(t)− a
b− a

f (b), t ∈ [a, b].

By integrating both sides of this inequality and using (48), we obtain the result.
The proof is complete.

Remark 6. Assume that the conditions of Theorem 8 are satisfied.
(a) We obtain a method to refine both sides of inequalities (46) in Theorem 8.
(b) It is worth noting that further refinements of (46) can be obtained using the following

observation: Define the functions ϕλ : [a, b]→ [a, b] (0 ≤ λ ≤ 1) by

ϕλ(t) := (1− λ)ϕ1(t) + λϕ0(t).

Then it is easy to verify that for each λ ∈ [0, 1], the function ϕλ is also increasing.
By the first inequality in (47),∫

[a,x]

ϕ0dµ ≤
∫

[a,x]

ϕλdµ ≤
∫

[a,x]

ϕ1dµ, x ∈ [a, b], λ ∈ [0, 1],

and by (48), ∫
[a,b]

ϕλdµ =
∫

[a,b]

tdµ(t), λ ∈ [0, 1].

Now, by applying Theorem 6 (b2), the convexity of f , and the fourth inequality in (50), we
have that ∫

[a,b]

f ◦ ϕ1dµ ≤
∫

[a,b]

f ◦ ϕλdµ

≤ (1− λ)
∫

[a,b]

f ◦ ϕ1dµ + λ
∫

[a,b]

f ◦ ϕ0dµ ≤
∫

[a,b]

f ◦ ϕ0dµ.

Similarly, if we define the functions ψλ : [a, b]→ [a, b] (0 ≤ λ ≤ 1) by

ψλ(t) := (1− λ)ψ1(t) + λψ0(t),

then ∫
[a,b]

f ◦ ψ0dµ ≤
∫

[a,b]

f ◦ ψλdµ

≤ (1− λ)
∫

[a,b]

f ◦ ψ1dµ + λ
∫

[a,b]

f ◦ ψ0dµ ≤
∫

[a,b]

f ◦ ψ1dµ.

(c) The results of many papers on the refinement of the Hermite-Hadamard inequality, whose
proofs are based on different ideas, can be treated in a uniform way, taking into account the previous
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remark. See, for example, Theorem 1.1 in [13], Theorem 2.1 and Theorem 2.2 in [14], Theorem
3.1 and Theorem 3.4 in [15], Theorem 2.1, Theorem 2.7, and Theorem 2.8 in [16], and Theorem 1
in [17].

(d) A different approach to refining Fejér-, especially Hermite-Hadamard inequalities, can be
found in [18].

Now, we present general extensions of Fejér-, especially Hermite-Hadamard inequali-
ties. Moreover, an efficient method is obtained for refining such inequalities.

Theorem 9. Let [a, b] ⊂ R with a < b, and let µ be a finite signed measure on B[a,b], such
that (14) holds.

(a) The inequality

f
(

a + b
2

)
µ([a, b]) ≤

∫
[a,b]

f dµ

holds for all convex functions f : [a, b]→ R if and only if∫
[a,x]

(x− t)dµ(t) ≥ 0, x ∈ [a, b].

(b) The inequality ∫
[a,b]

f dµ ≤ f (a) + f (b)
2

µ([a, b])

holds for all convex functions f : [a, b]→ R if and only if (41) is satisfied.
(c) Assume µ is a measure and ϕ1, ϕ0 ψ1, ψ0 : [a, b] → [a, b] are increasing functions,

such that ∫
[a,x]

ϕ0dµ ≤
∫

[a,x]

ϕ1dµ ≤
∫

[a,x]

tdµ(t) ≤
∫

[a,x]

ψ1dµ ≤
∫

[a,x]

ψ0dµ, x ∈ [a, b] (54)

and ∫
[a,b]

ϕ0dµ =
∫

[a,b]

ϕ1dµ =
∫

[a,b]

ψ1dµ =
∫

[a,b]

ψ0dµ =
a + b

2
µ([a, b]) (55)

are satisfied. Then, for all convex functions f : [a, b]→ R, we have

f
(

a + b
2

)
µ([a, b]) (56)

≤
∫

[a,b]

f ◦ ψ0dµ ≤
∫

[a,b]

f ◦ ψ1dµ ≤
∫

[a,b]

f dµ ≤
∫

[a,b]

f ◦ ϕ1dµ ≤
∫

[a,b]

f ◦ ϕ0dµ

≤ f (a) + f (b)
2

µ([a, b]) +
(

f
(

a + b
2

)
− f (a) + f (b)

2

)
µ

({
a + b

2

})
. (57)

Proof. Since the identity function on [a, b] satisfies (15), it follows from (18) that xµ = a+b
2 . By us-

ing this and the symmetry of the measure, Theorem 7 (a) and (b) imply (a) and (b), respectively.
Inequality (56) comes from Theorem 7 (49).
We need to prove (57).
We introduce the increasing function ϕl : [a, b]→ [a, b],

ϕl(t) :=


a, a ≤ t < a+b

2
a+b

2 , t = a+b
2

b, a+b
2 < t ≤ b

.
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By (18), ∫
[a,b]

tdµ(t) =
∫

[a,b]

ϕldµ =
a + b

2
µ([a, b]). (58)

Next, we show that ∫
[a,x]

ϕ0dµ ≥
∫

[a,x]

ϕldµ, x ∈ [a, b].

This is obvious if x ∈
[

a, a+b
2

]
. For x = a+b

2 , suppose that, on the contrary,

∫
[a, a+b

2 ]

ϕ0dµ <
∫

[a, a+b
2 ]

ϕldµ = aµ

([
a,

a + b
2

])
+

a + b
2

µ

({
a + b

2

})
. (59)

Then by using (58), (59) and ϕ0(t) ≤ b (t ∈ [a, b]), we obtain

a + b
2

µ([a, b]) =
∫

[a,b]

ϕ0dµ =
∫

[a, a+b
2 ]

ϕ0dµ +
∫

[ a+b
2 ,b]

ϕ0dµ

< aµ

([
a,

a + b
2

])
+

a + b
2

µ

({
a + b

2

})
+

∫
[ a+b

2 ,b]

ϕ0dµ

≤ aµ

([
a,

a + b
2

])
+

a + b
2

µ

({
a + b

2

})
+ bµ

([
a + b

2
, b
])

=
a + b

2
µ([a, b])

which is a contradiction.
Finally, assume that there exists x ∈

[
a+b

2 , b
]
, such that

∫
[a,x]

ϕ0dµ <
∫

[a,x]

ϕldµ

= aµ

([
a,

a + b
2

])
+

a + b
2

µ

({
a + b

2

})
+ bµ

([
a + b

2
, x
])

.

This implies by using (58) that

a + b
2

µ([a, b]) =
∫

[a,b]

ϕ0dµ < aµ

([
a,

a + b
2

])
+

a + b
2

µ

({
a + b

2

})

+bµ

([
a + b

2
, x
])

+
∫

[x,b]

ϕ0dµ.

Since ϕ0 is increasing, it now follows from (14) that

a + b
2

µ([a, b]) <
a + b

2
µ([a, b]) + µ([x, b])(ϕ0(b)− b) ≤ a + b

2
µ([a, b])

which is also a contradiction.
Now, Theorem 6 (b2) can be applied.
The proof is complete.



Entropy 2023, 25, 954 22 of 27

Remark 7. Let [a, b] ⊂ R with a < b, and let µ be a finite measure on B[a,b], such that (14) holds.
(a) Conditions (54) and (55) in the previous statement can be replaced by one of the following

more easily checked conditions:
(i) The functions ϕ1, ϕ0 ψ1, ψ0 satisfy the symmetry property (15) and∫
[a,x]

ϕ0dµ ≤
∫

[a,x]

ϕ1dµ ≤
∫

[a,x]

tdµ(t) ≤
∫

[a,x]

ψ1dµ ≤
∫

[a,x]

ψ0dµ, x ∈
[

a,
a + b

2

]
. (60)

(ii) The functions ϕ1, ϕ0 ψ1, ψ0 satisfy the symmetry property (15), and

ϕ0(t) ≤ ϕ1(t) ≤ t ≤ ψ1(t) ≤ ψ0(t), t ∈
[

a,
a + b

2

]
. (61)

Really, by Lemma 4 (a), (60) implies (54) and (55), and by Lemma 4 (b), (61) implies (60).
(b) We proved in Theorem 9 that

f
(

a + b
2

)
µ([a, b]) ≤

∫
[a,b]

f dµ ≤ f (a) + f (b)
2

µ([a, b]), (62)

moreover, (57) refines the right-hand side of (62).
The theorem also yields refinements of both the left-hand and right-hand inequalities in (62).

Next, we highlight the following special case of the previous result, where we assume
that µ is absolutely continuous with respect to the Lebesgue measure λ on B[a,b].

Corollary 4. Let [a, b] ⊂ R with a < b, and let p : [a, b] → R be a nonnegative and Lebesgue-
integrable function for which

p(t) = p(a + b− t), t ∈ [a, b]. (63)

Let ϕ1, ϕ0 ψ1, ψ0 : [a, b]→ [a, b] be increasing functions, such that

x∫
a

ϕ0 pdλ ≤
x∫

a

ϕ1 pdλ ≤
x∫

a

tp(t)dλ(t) ≤
x∫

a

ψ1 pdλ ≤
x∫

a

ψ0 pdλ, x ∈ [a, b] (64)

and
b∫

a

ϕ0 pdλ =

b∫
a

ϕ1 pdλ =

b∫
a

ψ1 pdλ =

b∫
a

ψ0 pdλ =
b2 − a2

2

are satisfied. If f : [a, b]→ R is a convex function, then

f
(

a + b
2

) b∫
a

pdλ

≤
b∫

a

( f ◦ ψ0)pdλ ≤
b∫

a

( f ◦ ψ1)pdλ ≤
b∫

a

f pdλ ≤
b∫

a

( f ◦ ϕ1)pdλ ≤
b∫

a

( f ◦ ϕ0)pdλ

≤ f (a) + f (b)
2

b∫
a

pdλ.
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Proof. By (63), the measure µ defined on B[a,b] by

µ(A) :=
∫
A

pdλ

satisfies (14) and, thus, Theorem 9 (c) can be applied.
The proof is complete.

Remark 8. Assume the conditions of Corollary 4 are satisfied.
(a) Similar to Remark 7 (a), if the functions ϕ1, ϕ0 ψ1, ψ0 satisfy the symmetry property (15),

then any of conditions (60) and (61) may be used instead of (64).
(b) It can be seen that Fejér’s inequality

f
(

a + b
2

) b∫
a

pdλ ≤
b∫

a

f pdλ ≤ f (a) + f (b)
2

b∫
a

pdλ (65)

and especially the Hermite-Hadamard inequality

f
(

a + b
2

)
≤

b∫
a

f dλ ≤ f (a) + f (b)
2

are very special cases of Theorem 9.
(c) In Corollary 4, we also obtained a method (see Remark 7 (c)) for refining both the left-hand

side and the right-hand side inequality of (65).

5. Application to f -Divergences

The following notion was introduced by Csiszár in [19,20].

Definition 4. Let f : [0, ∞] → [0, ∞] be a convex function, and let p := (p1, . . . , pn) and
q := (q1, . . . , qn) be positive probability distributions. The f -functional divergence is

I f (p, q) :=
n

∑
i=1

qi f
(

pi
qi

)
.

It is possible to use nonnegative probability distributions in the f -functional diver-
gence, by defining

f (0) := lim
t→0+

f (t); 0 f
(

0
0

)
:= 0; 0 f

( a
0

)
:= lim

t→0+
t f
( a

t

)
, a > 0.

The basic inequality (which comes from the discrete Jensen inequality)

I f (p, q) ≥ f (1) (66)

is one of the key properties of f -divergences.
The refinement of inequality (66) is the subject of several papers (for a non-exhaustive

list, see [21] and references therein, and papers [22–25]). In the following statement, we
present a necessary and sufficient condition for the inequality

I f (p, q) ≥ I f (u, v)

to be satisfied; thus, we obtain a necessary and sufficient condition for refining inequal-
ity (66) by another f -divergence.
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Theorem 10. Let X := {1, . . . , n} for some n ≥ 1, and let Y := {1, . . . , m} for some m ≥ 1.
Let p := (p1, . . . , pn), q := (q1, . . . , qn), u := (u1, . . . , um) and v := (v1, . . . , vm) be positive

probability distributions. Let c1 > c2 > . . . > ck be the different elements of
(

pi
qi

)n

i=1
and

( uj
vj

)m

j=1
in decreasing order (1 ≤ k ≤ m + n). For every convex function f : [0, ∞]→ [0, ∞] inequality

n

∑
i=1

qi f
(

pi
qi

)
= I f (p, q) ≥ I f (u, v) =

m

∑
j=1

vj f

(
uj

vj

)
(67)

holds if and only if
∑{

j∈Y|
uj
vj
≥cl

} uj − ∑{
i∈X| pi

qi
≥cl

} pi

≤ cl

 ∑{
j∈Y|

uj
vj
≥cl

} vj − ∑{
i∈X| pi

qi
≥cl

} qi

, l = 1, . . . , k. (68)

Proof. Let [a, b] ⊂ [0, ∞], such that a ≤ ck < c1 ≤ b.
Define the probability measures µ and ν on B[a,b] by

ν :=
n

∑
i=1

qiεpi/qi
and µ :=

m

∑
j=1

vjεuj/vj
,

and let ϕ, ψ : [a, b]→ [0, ∞], ϕ(t) = ψ(t) := t.
Then ϕ ∈ L([a, b], µ), ψ ∈ L([a, b], ν), f ◦ ϕ ∈ L([a, b], µ), f ◦ ψ ∈ L([a, b], ν) and

I f (p, q) =
∫

[a,b]

ψdν and I f (u, v) =
∫

[a,b]

ϕdµ.

By Theorem 5 (c), inequality (67) holds if and only if it is satisfied in the following
special cases: function f is p[0,∞],x (x ∈ [0, ∞]). This means that inequality (67) holds if and
only if

∑{
j∈Y|

uj
vj
≥x
} vj

(
uj

vj
− x

)
≤ ∑{

i∈X| pi
qi
≥x
} qi

(
pi
qi
− x
)

, x ∈ [0, ∞],

or, equivalently,
∑{

j∈Y|
uj
vj
≥x
} uj − ∑{

i∈X| pi
qi
≥x
} pi

≤ x

 ∑{
j∈Y|

uj
vj
≥x
} vj − ∑{

i∈X| pi
qi
≥x
} qi

, x ∈ [0, ∞]. (69)

It follows that it is enough to prove the equivalence of (68) and (69).
It is obvious that (69) implies (68).
Conversely, assume (68) is satisfied, and let cl+1 < x ≤ cl for some 1 ≤ l < k.
Then

∑{
j∈Y|

uj
vj
≥cl

} uj − ∑{
i∈X| pi

qi
≥cl

} pi + ∑{
j∈Y|

uj
vj
=cl+1

} uj − ∑{
i∈X| pi

qi
=cl+1

} pi
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= ∑{
j∈Y|

uj
vj
≥cl+1

} uj − ∑{
i∈X| pi

qi
≥cl+1

} pi

≤ cl+1

 ∑{
j∈Y|

uj
vj
≥cl+1

} vj − ∑{
i∈X| pi

qi
≥cl+1

} qi



= cl+1

 ∑{
j∈Y|

uj
vj
≥cl

} vj − ∑{
i∈X| pi

qi
≥cl

} qi



+cl+1

 ∑{
j∈Y|

uj
vj
=cl+1

} vj − ∑{
i∈X| pi

qi
=cl+1

} qi



= cl+1

 ∑{
j∈Y|

uj
vj
≥cl

} vj − ∑{
i∈X| pi

qi
≥cl

} qi


+ ∑{

j∈Y|
uj
vj
=cl+1

} uj − ∑{
i∈X| pi

qi
=cl+1

} pi,

and, therefore,

∑{
j∈Y|

uj
vj
≥cl

} uj − ∑{
i∈X| pi

qi
≥cl

} pi ≤ cl+1

 ∑{
j∈Y|

uj
vj
≥cl

} vj − ∑{
i∈X| pi

qi
≥cl

} qi

. (70)

It now follows from (68) and (70) that

∑{
j∈Y|

uj
vj
≥x
} uj − ∑{

i∈X| pi
qi
≥x
} pi = ∑{

j∈Y|
uj
vj
≥cl

} uj − ∑{
i∈X| pi

qi
≥cl

} pi

≤ cl

 ∑{
j∈Y|

uj
vj
≥cl

} vj − ∑{
i∈X| pi

qi
≥cl

} qi



= cl

 ∑{
j∈Y|

uj
vj
≥x
} vj − ∑{

i∈X| pi
qi
≥x
} qi


and

∑{
j∈Y|

uj
vj
≥x
} uj − ∑{

i∈X| pi
qi
≥x
} pi ≤ cl+1

 ∑{
j∈Y|

uj
vj
≥x
} vj − ∑{

i∈X| pi
qi
≥x
} qi


and these imply (69).
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The proof is complete.

Remark 9. We emphasize that the test for the inequalities in (68) is finite and easily verifiable.

6. Conclusions

In this paper, we studied majorization-type integral inequalities by using finite signed
measures. Necessary and sufficient conditions were given for the inequalities under
consideration to be satisfied. In order to achieve this goal, we generalized the statement on
the approximation of convex functions defined on compact intervals by piecewise linear
convex functions to arbitrary intervals. This in itself is an interesting and useful result.
To apply these results, we first dealt with Hermite-Hadamard–Fejér-type inequalities and
their refinements. Along with new results, we obtained unified and simple proofs of
some classical statements. Finally, we obtained a general method to refine both sides of
Hermite-Hadamard-Fejér-type inequalities. The results of many papers on the refinement
of the Hermite-Hadamard inequality, where proofs are based on different ideas, can be
treated in a uniform way by this method. The results obtained and the methods used can
be useful in many areas. Finally, we established a necessary and sufficient condition for
when a fundamental inequality of f -divergences can be refined by another f -divergence.
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5. Maligranda, L.; Pečarić, J.; Persson, L.E. Weighted Favard and Berwald inequalities. J. Math. Anal. Appl. 1995, 190, 248–262.

[CrossRef]
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