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Abstract: Security of quantum key distribution (QKD) protocols rely solely on quantum physics
laws, namely, on the impossibility to distinguish between non-orthogonal quantum states with
absolute certainty. Due to this, a potential eavesdropper cannot extract full information from the
states stored in their quantum memory after an attack despite knowing all the information disclosed
during classical post-processing stages of QKD. Here, we introduce the idea of encrypting classical
communication related to error-correction in order to decrease the amount of information available
to the eavesdropper and hence improve the performance of quantum key distribution protocols.
We analyze the applicability of the method in the context of additional assumptions concerning the
eavesdropper’s quantum memory coherence time and discuss the similarity of our proposition and
the quantum data locking (QDL) technique.

Keywords: quantum key distribution; quantum information; quantum superadditivity; quantum
data locking

1. Introduction

The main goal of quantum key distribution (QKD) [1–3] is to generate a secret key
between two remote users (Alice and Bob), with the security of the key not based on
computational assumptions on a potential eavesdropper (Eve). The first ever QKD protocol,
BB84, was proposed by Bennett and Brassard [4]. In the protocol, the legitimate sender,
Alice, encodes random bit string into polarization states of single photons and sends them
to the legitimate receiver, Bob. For the encoding purposes, Alice randomly chooses one
of two orthogonal polarization bases, while all the four states form a non-orthogonal
set. Bob uses a random basis guess when conducting his measurement. The bit values
corresponding to wrong guesses on Bob’s side are discarded after a round of classical
communication, which provides an advantage to the legitimate users.

The security of quantum key distribution is based on the indistiguishability of the
states available to the eavesdropper. For QKD protocols, any eavesdropping attempt leads
to a disturbance of the states at the receiver side, and the value of the disturbance in the
observed parameters allows the legitimate users to estimate the quantum states of Eve and
hence bound her information. When this information is below the information available to
the legitimate users, they can use classical post-processing methods to distill a secret key.

Along with QKD, an adjacent technology of quantum data locking (QDL) is of interest.
In the QDL scenario, a potential adversary does not have enough data to perform a correct
measurement of the available quantum states, while the total extractable information may
be relatively high. Hence, a relatively short amount of classical data can lock a large amount
of information. The first QDL protocol was proposed in [5] and resembles BB84, as the
same two bases are used. Now, there is a single pre-shared bit that specifies the basis choice
for each bit of Alice’s string and for Bob’s measurement at every position. As was shown
in [5], the eavesdropper who has intercepted N signals obtains no more than N/2 bits
of information; hence, the single secret bit is sufficient for “locking” N/2 bits of classical
information. Later, other QDL protocols based on different principles were introduced [6,7].
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Here, we propose a method that can increase the secret key rate in QKD by simple
additional actions of the legitimate users, namely the encryption of information that is
disclosed during error correction. Encryption of the postprocessing data was also used in [8]
to simplify the security proof, but here, we discuss its usage for a different purpose—for
a QDL-like technique that does not allow an eavesdropper to perform the best possible
measurement.

The paper is organized as follows. In Section 2, we recall the main stages of prepare-
and-measure QKD protocols and discuss various types of eavesdropping attacks. Section 3
is devoted to the condition sufficient for quantum accessible information additivity and its
application to QKD in a QDL scenario. Section 4 addresses the case of the most general
eavesdropping attacks and the limitations of the method we propose. Finally, we discuss
the results in Section 5.

2. Background

The detailed description of the stages for the typical QKD protocol can be found in
reviews, see, e.g., [1,2]. Here, we focus on the four stages that are the most significant for
our study:

1. The quantum states are sent via a quantum channel from Alice to Bob, with Bob
performing an appropriate measurement. Then, the legitimate users utilize a classical
authenticated channel to perform key sifting and/or basis reconciliation. After this
procedure, Alice and Bob have correlated but not yet coinciding classical bit sequences
also correlated with Eve.

2. The legitimate users estimate the intervention of Eve and the information available
to her based on the data observed at the receiver’s side. The most significant param-
eter is quantum bit error rate (QBER), but other parameters including the visibility,
attenuation, or gain of different classes of states can be utilized as well [9–11]. The
aforementioned estimate can be performed by disclosing a part of the signals, which
is then removed from the key as it is not secret any more.

3. The legitimate users perform error correction, which provides them with coincid-
ing keys correlated with Eve. Classical error correction codes [12] or the Cascade
method [13] may be used. The legitimate users take into account that some secret data
are disclosed during error correction. The disclosed data actually specify the set of
codewords used by Alice, e.g., for linear codes, the syndrome specifies that “a string
of Alice is the one that produces the following syndrome”, while the check matrix of
the linear code may be fixed for many communication sessions. The Cascade method
uses the interactive exchange of parity bits, which also specify the set of possible bit
sequences used by Alice.

4. Finally, the privacy amplification stage follows. This results in a shorter key with very
low correlation with the eavesdropper. The length of the final key depends on the data
observed by the legitimate users and, correspondingly, their estimate of Eve’s and
their own information. In addition, the security proof, i.e., the proof of the statement
that the key obtained with this formula is secure according to the security parameter
(see, e.g., [14,15]), is the main theoretical element for the QKD protocol.

The classical or quantum data available to the participants after each of these stages
can be described by a quantum states in the joint Hilbert space of Alice–Bob–Eve, with
classical states of Alice and Bob being diagonal density matrices in some fixed basis. The
total state depends on the attack performed by the eavesdropper.

All the eavesdropping attacks on QKD protocols can be categorized into three nesting
groups. The most general type of attack entails conducting a joint unitary transformation
with ancilla on an arbitrary number of signal quantum states and subsequent collective mea-
surement of the ancillary system. This sequence of actions conducted by an eavesdropper is
called a coherent attack. If the eavesdropper is limited to conducting an individual unitary
transformation with an ancilla of every signal state followed by a collective measurement of
all the ancillary systems, then their intervention can be attributed to a narrower class of col-
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lective attacks. Finally, each attack including only individual unitary transformations and
individual measurements of ancillary systems belongs to the subset of individual attacks.

Full security analysis of any QKD protocol, i.e., proving its unconditional security,
requires considering Eve to be able to perform any action allowed by the laws of quantum
physics, i.e., operating in the set of coherent attacks. However, on the basis of the quantum
version of the de Finetti representation theorem [16,17], it was shown that coherent attacks
are not more powerful than collective ones and, thus, the considered set can be narrowed:
the only condition required for the statement to be true is that a given QKD protocol is
permutation-invariant, i.e., invariant under arbitrary permutations of quantum channel
uses [18]. The condition can be satisfied for the majority of standard QKD protocols
including BB84 [4], six-state [19], and B92 [20] by introducing an additional step to their
structure: legitimate users should publicly agree on a random permutation of raw key bits
right after the first stage [18,21].

The secret key generation rate of a QKD protocol is defined as the maximum speed
(per bit) at which a secret key can be distributed—here, secret means that the eavesdrop-
per’s knowledge about it is asymptotically small. In the case of classical key distribution
protocols, the secret key rate can be calculated according to the Sciszar and Korner’s
equation [22]:

rate = I(X, Y)− I(X, Z), (1)

where I is mutual information between two classical systems (X, Y, and Z stand for the ran-
dom variable describing Alice’s, Bob’s, and Eve’s systems, respectively):
I(X1, X2) = H(X1) + H(X2)− H(X1X2), with H being the Shannon entropy of a random
variable. The legitimate users are to estimate the range of attacks that can be feasibly con-
ducted by Eve (using the assumptions concerning her computational powers) and use the
value of mutual information I(X, Z) for the most effective one. The expression (1) should
be implemented in the case of direct reconciliation—when Alice’s bit string is considered to
be correct and Bob has to amend his string. Although, the equation can be easily modified
for the case of reverse reconciliation, which corresponds to Alice and Bob changing roles
and thus leads to switching X and Y in the equation.

Transitioning into the quantum cryptography framework implies that legitimate users
no longer use any assumptions related to the eavesdropper’s computational powers; they
rely only on the laws of quantum mechanics in order to determine the range of attacks
that could have been conducted. They have to determine the set Γ of all quantum states
ρAB that can be shared between them according to the set of observed data. For each state
ρAB describing the system shared between Alice and Bob, ρABE is defined as its arbitrary
purification and includes Eve. Then, after the measurements conducted on Bob’s and
Alice’s ends combined with the reconciliation procedure, the final state ρXYE describes
the system shared between Alice, Bob, and Eve right after stage 1 (conditioned on the
conclusive result, i.e., when the position survived key sifting):

ρXYE = ∑
x,y

pxy |x〉 〈x|A ⊗ |y〉 〈y|B ⊗ ρ
xy
E .

where pxy is the joint probability of Alice sending classical value x and Bob obtaining
the result y; |x〉A and |y〉B denote the classical states of the legitimate user’s systems
corresponding to the values. Then, Eve’s ensemble EE = {(px, ρx)}x of quantum states ρx
corresponding to different bit values on Alice’s side reads

EE =

{(
px ≡∑

y
pxy, ρx ≡∑

y
pxy · ρxy

E

)}
x

.

This knowledge is sufficient to upper bound the information available to Eve. The Holevo
bound [23] can be used for the purpose, as the Holevo quantity χ(EE) = S(∑x pxρx)−
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∑x pxS(ρx), where S(ρ) = Trρ log2 ρ is the von Neumann entropy, upper bounds the
accessible information

Iacc(EE) = sup
MZ←E

I(X, Z),

which can be extracted from the ensemble EE by performing the most optimal of all the
quantum measurementsMZ←E on the system E. The estimation allows transitioning from
the classical Equation (1) to the equation lower-bounding the secret key rate in QKD:

rate ≥ inf
ρAB∈Γ

(
I(X : Y)− χ(EE)

)
, (2)

which is the content for the seminal Devetak–Winter result [24]. Here, we described the
intuition behind this result based on Sciszar and Korner classical equation, while a complete
proof of (2) is much more complex.

3. The Method Description

We use Theorem 2 in [25], bounding the accessible information in new conditions,
which we want to achieve in quantum cryptography by simple actions of the legitimate
users.

Let us briefly describe this result of [25]. The above-mentioned theorem provides a
sufficient condition for the additivity of accessible information, which is the independent
use of all the states’ combinations. To put it in formal terms: if a multipartite ensemble

of quantum states EN =
{

ξN
i , ρN

i
}

i has a product form, i.e., if ξN
i = ξ

(1)
ii
· . . . · ξ(N)

iN
and

ρN
i = ρ

(1)
i1
⊗ . . .⊗ ρ

(N)
iN

, the quantum accessible information of the ensemble is additive:

Iacc

(
EN
)
= Iacc

(
E (1)

)
+ . . . + Iacc

(
E (N)

)
, (3)

where E (n) =
{(

ξ
(n)
in , ρ

(n)
in

)}
in

is the nth partial ensemble describing the nth system. Thus,
for such product-form ensembles, collective measurements do not provide any advantage
over a sequence of independent individual measurements in terms of extracted information.

If a given QKD protocol is permutation-invariant, the set of considered eavesdropping
attacks can be narrowed to collective ones. Thus, after N channel uses, Eve’s ensemble EN

E
satisfies the conditions of this theorem: the states of the ensemble have product form, as
well as the states’ probabilities, which are distributed according to the initial probability
distribution on the Alice side, as Alice sends the states independently in each position.
Hence, if Eve performs the measurement at this time, the mutual information between the
result of Eve’s measurement (contained in a classical system E) and the classical value sent
by Alice (system X) is bounded by additive accessible information:

IN(X, E) ≤ Iacc

(
EN

E

)
= NIacc(EE). (4)

Now, observe that when Alice and Bob perform the error correction step, they change
the probability distribution, as they disclose the set of possible codewords, and the new
probabilities do not have the product form. Hence, the estimate (4) do not hold any longer,
and Eve’s information may overcome NIacc(EE). This is the subject of the quantum coding
theorem [26,27]: if the sender and the receiver have fixed the set of the codewords, then the
receiver may perform a collective measurement which allows the Holevo capacity to be
achieved. The result of [25] therefore states that without coding (i.e., without a non-trivial
subset of all the possible bit strings to be the codewords), the users cannot achieve any
superadditive information, let alone the Holevo capacity. Within our framework, this means
that Eve, who plays the role of the receiver now, does not get the amount of information
characterized by the Holevo quantity and is limited by a more strict bound. Hence, using
the Holevo capacity as the estimate for Eve’s information becomes too pessimistic.
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Disclosing additional information may be regarded as implementing the QDL protocol
between Alice and Eve, who are now in the conditions of quantum coding theorem. Here,
as it happens in QDL, Eve cannot perform the proper measurement without additional
information but can do so after obtaining it, namely, after knowing the set of codewords to
perform a collective measurement (see Section 4 in [6]).

Our idea is that the legitimate users should not change the probabilities of the states
available to the eavesdropper. They can avoid doing this by encrypting the information
disclosed during error correction. When Eve gets no additional information, she is restricted
by (3), and her information obtained with the best possible measurement is still below
NIacc(EE).

A potential problem may appear due to the information disclosure taking place during
privacy amplification procedure, since it makes Eve’s states statistically dependent, and
thus her ensemble EN

E loses product form—see Section 4 for detail. However, in the case
when Eve is forced to measure the obtained quantum states before the legitimate users
begin privacy amplification routine, the method works well. Instead of disclosing the
H(X|Y) bits during the error correction stage, the legitimate users would consume a part of
the pre-distributed key in order to encrypt the classical communication using the one-time
pad. Here, H(X|Y) = H(XY)− H(Y) is the conditional entropy, which characterizes the
lack of knowledge about X when the full information about Y is provided [28]. At the same
time, after Eve’s measurement, when all the participants operate with classical data, the
legitimate users are able to substitute the value χ(EE) in the Devetak–Winter equation with
Iacc(EE), thus obtaining a higher key generation rate without compromising the security of
the whole scheme:

rate ≥ inf
ρAB∈Γ

(
I(X : Y)− Iacc(EE)

)
. (5)

Recall that the set Γ includes all the bipartite states that can be shared between the legitimate
users based on the statistics of their measurement results. Let us emphasize that no
hardware modification is required for this secret key rate boost.

In order to force Eve to measure her states at an early stage and use the bound (4),
legitimate users can employ some additional assumptions concerning Eve’s technical
abilities. The assumption about the upper-bound on the eavesdropper’s quantum memory
decoherence time is a natural one typically utilized in a quantum data locking scenario as
well as in a QKD scenario with a restricted Eve. This allows us to benefit from postponing
the privacy amplification for an amount of time sufficient for the eavesdropper’s quantum
memory to lose coherence or from encrypting all the classical communication necessary
for the stage with an asymmetrical cipher such as AES. In the latter case, the legitimate
users are to assume that Eve cannot break a chosen encryption during her quantum
memory coherence time. The tactic allows legitimate users to assume that an eavesdropper
is to conduct the measurement without any additional knowledge associated with the
information from privacy amplification.

In this scenario, the size of Eve’s quantum memory is not limited, and her ability to
conduct collective measurements is not restricted as well—this significantly distinguishes
the approach we propose from the bounded quantum storage model (BQSM), which is built
on the assumption concerning the maximal number of quantum states that an eavesdropper
can keep in their quantum memory [2,29,30]. Nevertheless, our approach makes collective
attacks no more efficient than individual ones and thus eliminates the necessity to consider
any eavesdropping relying on quantum memory capable of storing more than one quantum
state at a time. Moreover, Eve may know all the information concerning bit reconciliation
and post-selection procedures, as the availability of the data does not destroy the statistical
independence of separate signal states.

Thus, we propose a modification of the initial scheme presented in Section 2: the
first two stages may remain unchanged, while the subsequent stages are modified in the
following way:
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3’. Alice and Bob perform error correction in a standard manner, with the only difference
that now they utilize a private channel for the purpose, i.e., all the communication
conducted at this stage is encoded by one-time pad cipher using the pre-distributed
key. Thus, they deprive Eve of any information concerning codewords choice.

4’. The legitimate users perform privacy amplification with some delay sufficient for
Eve’s quantum memory to lose coherence or encrypt all the communication necessary
for the privacy amplification stage (in contrast to the previous step, an asymmetrical
cipher such as AES is to be utilized). The compression ratio depends on the legitimate
users’ assumptions concerning Eve. If the decoherence time of her quantum memory
is considered to be limited by some finite value, then privacy amplification goes
according to Equation (5) up to a minor value of the extra key needed for symmetric
encryption.

Notably, the method relies on using a pre-distributed secret key for encoding a part
of classical communication. However, this does not change the common QKD paradigm,
as any quantum key distribution protocols begin with an authenticating classical channel
using a relatively short initial key (for this reason, key distribution protocols have an
alternative name: “key expansion protocols”). Our approach leads to the necessity of a
longer initial key for the very first round of key distribution, while no data on the raw key
are disclosed during the error correction stage, in contrast with the conventional scenario.
The key for encoding classical communication in each subsequent round is to be taken from
the secret string distributed in the preceding one.

The scheme works well in an asymptotic case, when the size of the distributed key
is large enough and post-processing procedures are asymptotically efficient. However, in
practice, the difficulties related to the finiteness of the key length lead us to the paradigm of
ε-secure data exchange [14,31]. Additional difficulties appear when a part of the generated
secret key is utilized in the following round of communication, resulting in the overall
security slightly degrading with the number of rounds. It worth noting that within our
framework, the security level decreases more quickly than in conventional QKD schemes,
since we propose using larger amounts of the previously distributed key for the next round.
Thus, an accurate analysis of our method beyond the asymptotic case is a perspective and
important area for future research.

In summary, the modified scheme involves encrypting classical communication (dur-
ing error correction and privacy amplification stages) and leaving a part of generated key
for the next round. Combined with the assumption concerning the upper bound on the
decoherence time of Eve’s quantum memory, this allows the legitimate users to come to
classical signals analysis and the equation analogous to the result of Sciszar and Korner (1),
where Eve’s information is bounded according to (5) operating with restricted accessible
information (4).

4. Beyond Memory-Restricted Scenario

If Eve is not forced to conduct her measurements right after the error-correction stage,
it is more beneficial for her to measure the states later—when she will be able to take
into account the information disclosed during the privacy amplification procedure. In
this case, an observable that was optimal when measuring the original states can become
non-optimal for measuring the states after information processing. In [32], an explicit
example was provided, which shows that the strategy yields gain for Eve, i.e., that classical
processing of states of a quantum ensemble changes the set of observables providing
accessible information.

The example is based on considering a quantum ensemble Einit obtained as the result
of a simple two-letter classical-quantum channel utilized twice (the lower index “init”
indicated that the ensemble is obtained before the classical information processing).

Einit =

{(
1
4

, σ0 ⊗ σ0

)
,
(

1
4

, σ0 ⊗ σ1

)
,
(

1
4

, σ1 ⊗ σ0

)
,
(

1
4

, σ1 ⊗ σ1

)}
,
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where the equiprobable letter states (described by density operators on two-dimensional
Hilbert spaceH) σ0 and σ1 are pure and can be represented as real vectors in some orthonor-
mal basis {|0〉 , |1〉} ⊂ H:

∀x ∈ {0, 1} : σx = |ψx〉 〈ψx| , |ψx〉 = cos α|0〉+ (−1)x sin α|1〉.

According to [25], an optimal strategy for extracting the maximal amount of information
from the quantum ensemble Einit consists in conducting two independent local measure-
ments (measurements in the Hadamard basis). Then, a simple classical data processing
corresponding to an XOR operation can be considered. It merges some states and trans-
forms Einit into an ensemble

E =

{(
1
2

,
1
2

σ0 ⊗ σ0 +
1
2

σ1 ⊗ σ1

)
,
(

1
2

,
1
2

σ0 ⊗ σ1 +
1
2

σ1 ⊗ σ0

)}
.

It was shown in [32] that there exists such a range of α values for which it is true that any
observable providing Iacc(E) has to include entangled operators. Moreover, the measure-
ment in the Bell basis is always the optimal measurement strategy for E . Thus, classical
information processing can significantly change the structure of the optimal observable.
However, the question of the existence of classical data processing operations preserving
an optimal observable remains, to our knowledge, open.

Privacy amplification in QKD is an important special case of classical data processing.
In particular, the considered XOR operation can be an element of some universal hash func-
tions family used for privacy amplification. This explains the significance of the example in
the context of our study: it proves that there exist privacy amplification procedures turning
the disclosure of privacy amplification-related information into QDL-type communication
between legitimate users and an eavesdropper.

Notably, if the opposite statement was true and any observable that was optimal
before classical data processing remained optimal after the operation, then it would not
have been important whether an eavesdropper conducted their measurement before or
after obtaining privacy amplification-related information (this would not influence the
efficiency of their attack). In this imaginary situation, we could have constructed a state-
ment about our method’s applicability while leaving privacy amplification data exchange
completely unencrypted.

To our knowledge, the problem of determining an exact upper bound on the informa-
tion available to Eve conducting her measurement after the privacy amplification stage
remains open due to the difficulty of calculating the accessible information for an ensemble
of states of a high-dimensional space [33]. At the moment, this fact limits the applicability
of the proposed method in the case of no assumptions made about the eavesdropper’s quan-
tum memory storage time. Nevertheless, future research may discover ways of calculating
the value that are sufficiently easy to be practically implemented. Currently, it is known that
the above-mentioned value is upper bounded by the Holevo quantity and lower bounded
by additive accessible information (which is much easier to calculate than the exact value of
information available to Eve due to a significantly lower dimensionality of the problem)—in
both cases, we are to take the influence of the privacy amplification into account, i.e., to
subtract the corresponding number of bits as if we worked with classical data.

Note that in contrast to the case of error-correction data encryption, using the one-
time pad for encrypting communication related to the privacy amplification procedure
would not necessarily guarantee a gain in the secret key generation rate, as it consumes a
relatively large additional amount of the pre-distributed key because of the large number
of hash functions in the family, e.g., a large bit string is needed to specify the Toeplitz
matrix [34].
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5. Discussion

In this paper, we proposed a method of increasing secret key distribution rates in
the existing QKD protocols by encrypting classical communication or delaying it in the
case of restrictions imposed on the eavesdropper’s quantum memory coherence time.
Notably, it is universal (its applicability does depend on the specific protocol; despite the
fact that in this work we consider only prepare-and-measure protocols, the method can be
applied to entanglement-based QKD as well) and can be implemented just by modifying
existing post-processing routines without introducing any changes to the hardware part of
QKD realization.

Under the assumption of limited coherence time of the eavesdropper’s quantum
memory, the method allows us to show that collective attacks become no more effective
than individual ones. If for a given QKD protocol coherent eavesdropping strategies have
no advantage over collective, then individual attacks are the only ones to consider, and the
key rate formula can be modified to operate with additive quantum accessible information.

Without any assumptions concerning the technical abilities of a potential eavesdropper,
the key rate formula can be modified as well. However, in such a case, the new bound for
superadditive accessible information is still, to our knowledge, an open question. Thus, we
emphasize that the paper does not claim to provide a full security proof for QKD protocols
in case of the method being implemented.

Note that the method inherits the disadvantages of quantum data locking: the dis-
closure of one bit of classical information that is meant to be secret (in this case, it is data
related to error correction and privacy amplification procedures) may lead to an eaves-
dropper obtaining more than one bit of additional information. This leads to increased
demands on the safekeeping of the classical data. Thus, the method does not provide
composable security [31] against an eavesdropper who has access to unbounded quantum
resources. Nevertheless, the method provides everlasting security [35] in a narrow sense:
if an eavesdropper does not have access to quantum memory with storage time being
sufficiently long at the moment of performing an attack (if the legitimate users have strong
arguments in favor of this assumption), then no future advances in quantum memory can
make an already distributed key less secure.

Author Contributions: Conceptualization, V.A.P. and D.A.K.; Investigation, V.A.P. and D.A.K.;
Writing—original draft, V.A.P.; Writing—review & editing, V.A.P. and D.A.K. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: D.A.K. is grateful to E.O. Kiktenko, A.S. Trushechkin, and A.S. Holevo for useful
discussions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AES Advanced encryption standard
BQSM Bounded quantum storage model
QBER Quantum bit error rate
QDL Quantum data locking
QKD Quantum key distribution



Entropy 2023, 25, 956 9 of 10

References
1. Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145–195. [CrossRef]
2. Pirandola, S.; Andersen, U.L.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.;

et al. Advances in quantum cryptography. Adv. Opt. Photonics 2020, 12, 1012–1236. [CrossRef]
3. Liu, R.; Rozenman, G.G.; Kundu, N.K.; Chandra, D.; De, D. Towards the industrialisation of quantum key distribution in

communication networks: A short survey. IET Quantum Commun. 2022, 3, 151–163. [CrossRef]
4. Bennett, C.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 1984, 560, 175–179.

[CrossRef]
5. DiVincenzo, D.P.; Horodecki, M.; Leung, D.W.; Smolin, J.A.; Terhal, B.M. Locking classical correlations in quantum states. Phys.

Rev. Lett. 2004, 92, 067902. [CrossRef]
6. Boixo, S.; Aolita, L.; Cavalcanti, D.; Modi, K.; Winter, A. Quantum locking of classical correlations and quantum discord of

classical-quantum states. Int. J. Quantum Inf. 2011, 9, 1643–1651. [CrossRef]
7. Lupo, C.; Wilde, M.M.; Lloyd, S. Robust quantum data locking from phase modulation. Phys. Rev. A 2014, 90, 022326. [CrossRef]
8. Koashi, M.; Preskill, J. Secure quantum key distribution with an uncharacterized source. Phys. Rev. Lett. 2003, 90, 057902.

[CrossRef]
9. Lo, H.K.; Ma, X.; Chen, K. Decoy State Quantum Key Distribution. Phys. Rev. Lett. 2005, 94, 230504. [CrossRef]
10. Ma, X.; Qi, B.; Zhao, Y.; Lo, H.K. Practical decoy state for quantum key distribution. Phys. Rev. A 2005, 72, 012326. [CrossRef]
11. Stucki, D.; Brunner, N.; Gisin, N.; Scarani, V.; Zbinden, H. Fast and simple one-way quantum key distribution. Appl. Phys. Lett.

2005, 87, 194108. [CrossRef]
12. Kiktenko, E.O.; Trushechkin, A.S.; Lim, C.C.W.; Kurochkin, Y.V.; Fedorov, A.K. Symmetric blind information reconciliation for

quantum key distribution. Phys. Rev. A 2017, 8, 044017. [CrossRef]
13. Brassard, G.; Salvail, L. Secret-key reconciliation by public discussion. In Proceedings of the International Conference on the

Theory and Application of Cryptographic Techniques, Wollongong, NSW, Australia, 28 November–1 December 1994.
14. Trushechkin, A.S. On the operational meaning and practical aspects of using the security parameter in quantum key distribution.

Quantum Electron. 2020, 50, 426–439. [CrossRef]
15. Sun, S.; Huang, A. A review of security evaluation of practical quantum key distribution system. Entropy 2022, 24, 260. [CrossRef]
16. Hudson, R.L.; Moody, G.R. Locally normal symmetric states and an analogue of de Finetti’s theorem. Z. Wahrscheinlichkeitstheorie

Verwandte Geb. 1976, 33, 343–351. [CrossRef]
17. Caves, C.M.; Fuchs, C.A.; Schack, R. Unknown quantum states: The quantum de Finetti representation. J. Math. Phys. 2002,

43, 4537–4559. [CrossRef]
18. Renner, R. Security of Quantum Key Distribution. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland , 2005. Available online:

http://arxiv.org/abs/quant-ph/0512258 (accessed on 8 April 2023).
19. Bechmann-Pasquinucci, H.; Gisin, N. Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography.

Phys. Rev. A 1999, 59, 4238–4248. [CrossRef]
20. Bennett, C.H. Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 1992, 68, 3121–3124. [CrossRef]
21. Renner, R.; Gisin, N.; Kraus, B. Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A 2005,

72, 012332. [CrossRef]
22. Csiszár, I.; Körner, J. Information Theory: Coding Theorems for Discrete Memoryless Systems; Cambridge University Press: Cambridge,

UK, 2011.
23. Holevo, A.S. Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Peredachi Inf.

1973, 9, 3–11.
24. Devetak, I.; Winter, A. Distillation of secret key and entanglement from quantum states. Proc. R. Soc. A 2005, 461, 207–235.

[CrossRef]
25. Sasaki, M.; Kato, K.; Izutsu, M.; Hirota, O. Quantum channels showing superadditivity in classical capacity. Phys. Rev. A 1998,

58, 146–158. [CrossRef]
26. Holevo, A.S. The capacity of the quantum channel with general signal states. IEEE Trans. Inf. Theory 1998, 44, 269–273. [CrossRef]
27. Schumacher, B.; Westmoreland, M.D. Sending classical information via noisy quantum channels. Phys. Rev. A 1997, 56, 131–138.

[CrossRef]
28. Cover, T.M.; Thomas, J.A. Wiley Series in Telecommunications and Signal Processing. In Elements of Information Theory; Wiley-

Interscience: Hoboken, NJ, USA, 2006.
29. Pironio, S.; Masanes, L.; Leverrier, A.; Acín, A. Security of device-independent quantum key distribution in the bounded-

quantum-storage model. Phys. Rev. X 2013, 3, 031007. [CrossRef]
30. Damgård, I.; Fehr, S.; Salvail, L.; Schaffner, C. Cryptography in the bounded quantum-storage model. SIAM J. Comput. 2008,

37, 1865–1890. [CrossRef]
31. Portmann, C.; Renner, R. Security in quantum cryptography. Rev. Mod. Phys. 2022, 94, 025008. [CrossRef]
32. Pastushenko, V.A.; Kronberg, D.A. On classical data processing which affects additivity of quantum accessible information.

Lobachevskii J. Math. 2023, 44, 2157–2165.
33. Suzuki, J.; Assad, S.M.; Englert, B.G. Accessible information about quantum states: An open optimization problem. In Mathematics

of Quantum Computation and Quantum Technology; Chapman and Hall/CRC: Boca Raton, FL, USA, 2007; pp. 327–366.

http://doi.org/10.1103/RevModPhys.74.145
http://dx.doi.org/10.1364/AOP.361502
http://dx.doi.org/10.1049/qtc2.12044
http://dx.doi.org/10.1016/j.tcs.2014.05.025
http://dx.doi.org/10.1103/PhysRevLett.92.067902
http://dx.doi.org/10.1142/S0219749911008301
http://dx.doi.org/10.1103/PhysRevA.90.022326
http://dx.doi.org/10.1103/PhysRevLett.90.057902
http://dx.doi.org/10.1103/PhysRevLett.94.230504
http://dx.doi.org/10.1103/PhysRevA.72.012326
http://dx.doi.org/10.1063/1.2126792
http://dx.doi.org/10.1103/PhysRevApplied.8.044017
http://dx.doi.org/10.1070/QEL17283
http://dx.doi.org/10.3390/e24020260
http://dx.doi.org/10.1007/BF00534784
http://dx.doi.org/10.1063/1.1494475
http://arxiv.org/abs/quant-ph/0512258
http://dx.doi.org/10.1103/PhysRevA.59.4238
http://dx.doi.org/10.1103/PhysRevLett.68.3121
http://dx.doi.org/10.1103/PhysRevA.72.012332
http://dx.doi.org/10.1098/rspa.2004.1372
http://dx.doi.org/10.1103/PhysRevA.58.146
http://dx.doi.org/10.1109/18.651037
http://dx.doi.org/10.1103/PhysRevA.56.131
http://dx.doi.org/10.1103/PhysRevX.3.031007
http://dx.doi.org/10.1137/060651343
http://dx.doi.org/10.1103/RevModPhys.94.025008


Entropy 2023, 25, 956 10 of 10

34. Kiktenko, E.; Trushechkin, A.; Kurochkin, Y.; Fedorov, A. Post-processing procedure for industrial quantum key distribution
systems. In Journal of Physics: Conference Series, Proceedings of the 3rd International School and Conference on Optoelectronics, Photonics,
Engineering and Nanostructures (Saint Petersburg OPEN 2016), St. Petersburg, Russia, 28–30 March 2016 ; IOP Publishing: Bristol, UK,
2016; Volume 741, p. 012081.

35. Renner, R.; Wolf, R. Quantum advantage in cryptography. AIAA J. 2023, 61, 1895–1910. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2514/1.J062267

	Introduction
	Background
	The Method Description
	Beyond Memory-Restricted Scenario
	Discussion
	References

