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Abstract: Describing travel patterns and identifying significant locations is a crucial area of research
in transportation geography and social dynamics. Our study aims to contribute to this field by
analyzing taxi trip data from Chengdu and New York City. Specifically, we investigate the probability
density distribution of trip distance in each city, which enables us to construct long- and short-
distance trip networks. To identify critical nodes within these networks, we employ the PageRank
algorithm and categorize them using centrality and participation indices. Furthermore, we explore
the factors that contribute to their influence and observe a clear hierarchical multi-centre structure
in Chengdu’s trip networks, while no such phenomenon is evident in New York City’s. Our study
provides insight into the impact of trip distance on important nodes within trip networks in both
cities and serves as a reference for distinguishing between long and short taxi trips. Our findings
also reveal substantial differences in network structures between the two cities, highlighting the
nuanced relationship between network structure and socio-economic factors. Ultimately, our research
sheds light on the underlying mechanisms shaping transportation networks in urban areas and offers
valuable insights into urban planning and policy making.

Keywords: distance trip network; urban structure; travel pattern; centrality index; participation index

1. Introduction

Urban systems, which consist of a complex array of transportation infrastructure, such
as roads, railways, and bus routes, play a vital role in shaping the mobility patterns of urban
residents. They are abstracted into a series of complex (urban) networks. Understanding
the network structural properties of these systems is therefore of utmost importance for
policymakers and researchers [1–6].

In recent years, a significant body of research has been devoted to studying human
mobility. The movement of people in the physical space follows a distinct scaling law [7–14].
González et al. found that human trajectories display a high degree of spatial–temporal
regularity, which contrasts with the randomness predicted by prevalent models. Each
individual has a characteristic travel distance and a significant likelihood of returning to
a few frequently visited locations [9]. Despite using only two models and banknote flow
data, these findings remain significant and highlight the need for further investigation
into the mechanisms behind human mobility. Song et al. used empirical data on human
mobility, captured by mobile-phone traces to show that the predictions of the CTRW models
are in systematic conflict with the empirical results. They introduced two principles that
govern human trajectories, allowing us to build a statistically self-consistent microscopic
model for individual human mobility [15]. Zhou et al. introduced a trip competition
mechanism to empower a mobility model to estimate population fluxes in all spatial

Entropy 2023, 25, 958. https://doi.org/10.3390/e25060958 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25060958
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-2089-5150
https://orcid.org/0000-0001-9459-7984
https://doi.org/10.3390/e25060958
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25060958?type=check_update&version=1


Entropy 2023, 25, 958 2 of 14

ranges [16]. Ding et al. used a dataset of Chinese hospitals to analyze patient flow patterns
and investigate the effects of patient characteristics, hospital features, and geographical
location on patient mobility. The study found that patient mobility has strong regional and
geographic agglomeration tendencies that are related to patient characteristics such as age,
gender, and disease type, as well as hospital level, size, and speciality features [17].

Despite extensive research, there is still much to be learned about the patterns of
human mobility, particularly in the context of urban transportation. Investigating the
mobility patterns of individuals within cities, also known as urban human mobility, holds
significant implications for a wide range of disciplines, including path planning, urban
planning, congestion management, and disease transmission [18–23]. As such, further
exploration and analysis of this topic are of great importance in the academic community.

As an expeditious and practical mode of transportation, the taxi constitutes a funda-
mental constituent of urban transportation systems. It is noteworthy that the movements of
taxis are influenced by both passengers and drivers, and as such, it provides an accurate de-
piction of the mobility patterns of passengers within various urban hotspots and residential
areas. Additionally, taxi movements are also determined by drivers seeking to maximize
their profits. Consequently, taxi movements offer a comprehensive representation of the
mobility behaviours of both passengers and drivers. Previous studies have predominantly
focused on analyzing taxi movements through temporal and travel distance perspectives
to facilitate the comprehension and forecasting of passenger mobility [24–32]. Liang et al.
found that, in contrast to most models observed in human mobility data, the displacement
of taxis travelling in urban areas tends to follow an exponential rather than a power-law
distribution [25]. Xia et al. quantitatively explored the patterns of human mobility on
weekends and weekdays. Through logarithmic binning and data fitness, they calculated
the Bayesian weights to select the best fitting distributions [33]. Perlman et al. used the
Uber Movement dataset to explore travel patterns of people at different times, locations,
and modes of transportation and the impact of these patterns on the city’s transportation
system. The study found that people’s travel behaviour in the Miami metropolitan area
is influenced by many factors, including traffic congestion, time, weather, holidays, and
events [34].

Insufficient research has been conducted to establish a solid framework for distinguish-
ing long- and short-distance trips of taxis and to scrutinize the structural characteristics of
urban areas and human mobility patterns, based on important nodes within the networks
of long- and short-distance travel. In order to address this research gap, we conducted
a rigorous analysis of probability density distributions of travel distance using taxi track
data from both Chengdu and New York City. Subsequently, the long- and short-distance
trip networks were constructed for both cities using a threshold of 95%. We employed
the PageRank algorithm to identify the most important nodes within these networks. Our
study then delved into the impact of these nodes on travel distance and classified them
based on the centrality index and participation index. Furthermore, we investigated the
underlying factors that contributed to the importance of these nodes. Overall, our research
provides a comprehensive analysis of the structural and socio-economic factors that impact
transportation networks, thereby aiding policymakers in enhancing mobility and accessibil-
ity for urban residents. By identifying key drivers of transportation patterns, our findings
can inform the development of targeted policies that promote sustainable and equitable
urban transportation systems. This research contributes to a broader understanding of the
complex interplay between transportation, society and urban development, and provides
actionable insights for policymakers and urban planners.

2. Materials and Methods
2.1. Data Description

Our research team collaborated with the local government in Chengdu, China, to
address traffic congestion issues. As part of this effort, we obtained a dataset containing
the trajectories of 10,037 authorized taxis belonging to a specific taxi company in Chengdu.
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Each taxi’s recording interval in the original dataset was 10 s, with each data item containing
anonymized vehicle ID, timestamp, latitude, longitude, and occupancy flag (1 or 0). The
dataset covers a time period from 1 August to 30 August 2014, with latitude and longitude
recorded at meter-level accuracy. The occupancy flag, a Boolean variable, indicates whether
a taxi was occupied (with passengers) or unoccupied (without passengers) at the recorded
time. Furthermore, we gathered data of approximately 12 million taxi trajectories from
New York City, United States, spanning from 1 March to 30 March 2016. Each row of
the taxi trajectory data contains information on time, distance, latitude, and longitude.
Finally, we obtained the GIS data necessary to construct and analyze the Chengdu and
NYC administrative map.

2.2. The Administrative Map

Chengdu, situated in southwestern China, serves as the capital city of Sichuan
Province, spanning between longitude 102◦54′ E∼104◦53′ E and latitude 30◦05′ N∼31◦26′ N.
As of the end of 2022, Chengdu comprises 12 municipal districts, 3 counties, and 5 county-
level cities, encompassing a total area of 14,335 km2 and accommodating a resident pop-
ulation of 21.192 million. The areas under study, illustrated in Figure 1a, predominantly
pertain to the districts marked by numbers, which constitute the city centre, whereas the
remaining ones constitute the suburbs.

New York City (NYC), situated on the Atlantic coast in the southeastern region of
New York State, is the most populous city in the United States. As depicted in Figure 1b,
NYC comprises five boroughs: The Bronx, Brooklyn, Manhattan, Queens, and Staten
Island, encompassing a total area of 1214.4 km2, of which 425 km2 consists of water bodies
and 789 km2 of land. The resident population of NYC is estimated to be approximately
8.62 million. Our primary study area includes the aforementioned five boroughs.

(a) (b)

1

2

3

4

5

Figure 1. (a) The administrative map of Chengdu. It divides Chengdu into two regions: the central
and suburban areas. The former encompasses six districts, labelled with red numbers, which are 1:
Jinniu District; 2: Chenghua District; 3: Jinjiang District; 4: Gaoxin District; 5: Wuhou District; and 6:
Qingyang District. The latter includes the remaining districts. (b) The administrative map of NYC. It
divides NYC into five distinct regions, with the main area comprising five districts marked by black
numbers. These districts are 1: The Bronx; 2: Manhattan; 3: Queens; 4: Brooklyn; and 5: Staten Island.

2.3. Network Construction

We constructed a trip network by utilizing taxi rules and GIS data mentioned above.
Firstly, we divided the administrative maps of Chengdu and NYC into multiple small
square cells, representing the nodes of the trip network, using the ArcGIS API from En-
vironmental Systems Research Institute, Inc. (Redlands, CA, USA). Each small cell is
considered a grid with a size of 1 km2 [24,31,35]. To ensure the maximum size of each trip
network, we divided Chengdu’s and NYC’s trip networks into approximately 12,300 and
960 small cells, respectively.
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An example of constructing a trip network is provided in Figure 2. As illustrated in
Figure 2a, four cells are labelled by numbers. Our objective was to examine the impact of
different trip distances on nodal importance in the trip network. Accordingly, the onboard
trajectory data was used to construct the trip network. Finally, we extracted the departure
and arrival time, the latitude and longitude of the starting and ending location from each
loaded trajectory data. Based on the Euclidean distance, the travel distance of passengers
was calculated. However, trips with excessively long or short distances were considered
invalid data as they conflicted with passengers’ interests. According to people’s daily
experience, the valid travel distance was set within [0.5 km, 200 km] [36]. We noted that
the trips within proper travel distance accounted for 99.9% of the total trips.

In Figure 2b, the taxi trajectories have starting and ending positions located in different
cells according to their respective latitude and longitude. The directed edges in the network
represent the directions of the taxi trajectories. Figure 2c displays the resulting trip network,
where the weight of the edges between cells i and j is set to n× d if there are n trajectories
from cell i to cell j, with each edge having a length of d. Additionally, if the starting and
ending positions are located in the same cell, a self-loop will be created for that cell.

1 2

3 4

(a)

1 2

3 4

(b)

1

(c)

2

3 4

8
4

10 5

7
7

18

1

4

5

7

6

1

Figure 2. Schematic diagram of constructing the trip network. (a) The division of the administrative
map into cells. (b) The connections between cells according to taxi trajectories. (c) The resulting trip
network generated by taxi trajectories.

2.4. Important Node Indicators

In this subsection, we introduce our metrics for calculating nodal importance. The
metrics include the measurements of the hub node [17,37] and the participation index of
the hub node [38]. PageRank is a popular algorithm used to determine the importance
of nodes in a network graph. In urban transportation networks, this algorithm can be
used to identify which road segments or transportation hubs have the greatest impact on
the overall transportation network. Essentially, the PageRank algorithm determines node
weights by calculating the number of inbound links to a node and the relative weight of
those links. In urban transportation networks, nodes may represent intersections, bus stops,
subway stations, etc. By calculating the PageRank value of each node, we can determine
which nodes are most important and therefore need to be prioritized for maintenance
and improvement [39–43]. Consequently, we employ the PageRank algorithm to identify
important nodes in a trip network. Specifically, the top 5% of nodes identified through
the PageRank algorithm are regarded as important ones [44], collectively constituting the
cluster of the important nodes. Subsequently, we analyse this cluster, wherein the strength
of the connections between a node i and other nodes in its cluster is measured using the
variable Ii. Similarly, the variable Ei is used to measure the strength of connections between
node i and nodes outside the cluster that do not fall under the category of important nodes.
These measurements serve as critical indicators in evaluating the efficacy of the identified
clusters of the important nodes.



Entropy 2023, 25, 958 5 of 14

{
Ii =

ki−k
σk

Ei =
mi−m

σm

(1)

Equation (1) presents the internal and external cluster centrality indices, Ii and Ei,
respectively. These indices are defined in terms of ki, mi, k, σk, m, and σm. Specifically, ki
represents the total weight of links between node i and other nodes within the same cluster.
Similarly, mi denotes the total weight of links between node i and nodes outside the cluster.
Meanwhile, k and σk stand for the mean and standard deviation of the link weights of all
nodes inside the cluster, respectively; m and σm represent the mean and standard deviation
of the link weights of all nodes outside the cluster, respectively. It should be noted that in
this context, the weight of links is equivalent to edge weights.

Next, we utilize two participation indices, namely PIi and PEi , to depict the distri-
bution of node connectivity within and outside the cluster, respectively. We introduce a
participation vector Pi to compute participation indices [38]. Specifically, we construct
an intra-cluster participation vector PIi from the cluster perspective. The vector elements
denote the probability of connection between node i and other nodes within the cluster.
Additionally, we construct an out-of-cluster participation vector PEi from the perspective
of the entire trip network to portray the connection probability between node i and nodes
outside the cluster. For instance, if the connections of node i in a network are uniformly
distributed among the three nodes within its cluster, PIi will be represented as ( 1

3 , 1
3 , 1

3 ).
Ultimately, the participation index is defined as Equation (2),

Pi = 1− m√
m− 1

σ(Pi), (2)

where m indicates the number of nodes in the cluster (for PIi ) or the number of nodes
outside the cluster (for PEi ).

Nodes that possess centrality indices (Ei and Ii) greater than 2 are referred to as
hubs. These nodes are further divided into three categories based on the extent of their
connectivity within and outside of the cluster. Nodes having a participation index within
the range of (0, 0.3] are categorized as exclusive hubs, as they exhibit limited connectivity to
nodes both inside and outside of the cluster. Nodes possessing a participation index within
the range of (0.3, 0.6] are categorized as inclusive hubs due to their relatively extensive
connectivity. Finally, nodes possessing a participation index within the range of (0.6, 1] are
categorized as extensive hubs, owing to their wide-ranging connectivity [17].

3. Results

In this section, we aim to provide a rigorous analysis of trip networks by exploring
the distance probability density distributions. We also endeavour to comprehensively
examine the basic information pertaining to both long- and short-distance trip networks.
Additionally, we aim to investigate the impact of important nodes on the distance probabil-
ity distributions. We calculate important nodes’ centrality and participation indexes and
categorize the important nodes according to their influence. Finally, we have introduced
two distinct variables, namely demographic and economic factors, to characterize the
important nodes comprehensively.

3.1. Travelling Distance Distribution

In Figure 3a,b, we can observe the travelling distance probability density distributions
in Chengdu and NYC, respectively. Exponential distributions are a good approximation
of these distance probability density distributions of both cities. However, a stronger
heterogeneity of the travel distances exists in Chengdu compared to that of NYC. In
Figure 3c,d, the distance probability density distribution and the corresponding cumula-
tive distribution of both cities are presented. According to the Annual Report on Urban
Transport Development in China (2019), short-distance trips (less than 5 km) account for
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nearly 60% of total trips in Chinese cities. The modes of short-distance trips in the report
include shared bikes, taxis, buses, etc. Accordingly, it can be argued that the proportion
of taxi trips taken for short distances should be increased, as they fall within the scope
of this study. This assertion aligns with the focus and objectives of an academic research
article [9,45,46]. In Figure 3c, when Distance≥ 19 , P(Distance) remains largely constant and
P(Distance ≤ 19) > 95%; in Figure 3d, when Distance ≥ 11, P(Distance) remains largely
constant and P(Distance ≤ 11) > 95%. Therefore, Distance = 19 and Distance = 11 are
adopted as the dividing points of the long- and short-trip networks in Chengdu and NYC,
respectively. That is, in the Chengdu trip network, the trip trajectories with Distance ≤ 19
constitute the short-distance trip network, and the remaining trip trajectories constitute the
long-distance trip network.

(a) (b)

(c) (d)

Figure 3. (a,b) The linear–logarithmic plot of the distance probability density distribution of the
Chengdu and NYC trip network. The horizontal axis is the distance, and the vertical axis is the corre-
sponding probability. The red line indicates the results of fitting the probability density distribution.
(c,d) the linear–linear plots of the cumulative distribution for the Chengdu and NYC trip network.

3.2. Comparison of the Trip Network Parameters

In this subsection, we present a comparative analysis of the basic characteristics of the
Chengdu and NYC trip networks, as depicted in Table 1. We aim to highlight the salient
features of these networks and draw meaningful insights for transportation planning and
policy making.

Table 1. Comparison of the distance trip network parameters.

Chengdu NYC

Type of Network Short Long Short Long

Number of Nodes 2394 2510 780 859
Number of Edges 169,372 12,966 38,454 24,642
Average Weighted Strength of Node 18,280.40 302.30 39,787.00 12,343.60
Average Shortest Path Length 17.93 49.79 12.38 23.47
Average Clustering Coefficient 7.0× 104 8.0× 106 6.0× 104 5.0× 104

Assortativity Coefficient −1.06 × 101 −4.20 ×102 4.00× 103 −8.50 × 10−2
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Our analysis reveals several commonalities between the trip networks of these two
cities. Firstly, both exhibit redundancy in the number of nodes and edges between the
long- and short-distance trip networks. Additionally, their average clustering coefficients
are considerably low, suggesting a lack of clustering or interconnectedness among nodes.
Finally, the average weighted strength of the nodes in the short-distance trip network is
higher, indicating a higher frequency of mundane trips than long-distance trips.

3.3. Impact of Important Nodes on Travelling Distance

In this subsection, we utilize the PageRank algorithm to identify important nodes in
the long- and short-distance trip networks of each city. Specifically, we consider the top
5% of nodes identified by the PageRank algorithm to be important ones [44]. Figure 4
depicts the impact of removing these important nodes from the network on the distance
probability density distribution. Blue circles denote the distribution after removing the
important nodes, while purple circles represent the original distribution before removal.
Results for both the long- and short-distance trip networks in Chengdu and NYC are shown
in Figure 4.

Figure 4. (a,b) The linear–logarithmic plots of the distance probability density distribution of the
Chengdu and NYC short-distance trip network, respectively. The horizontal axis is the trip distance.
The vertical axis is the corresponding probability. The results of fitting the probability density distribu-
tion are the colourful lines. (c,d) the logarithmic–logarithmic plots of the distance probability density
distribution of the Chengdu and NYC long-distance trip networks, respectively. The horizontal
axis is the trip distance. The vertical axis is the corresponding probability. The results of fitting the
probability density distribution are the coloured lines.

Our analysis reveals that the travelling distance probability density distribution of the
Chengdu short-distance trip network conforms to the exponential distribution, regardless
of whether the important nodes are removed or not (as evident from Figure 4a. However,
Figure 4b indicates that the distance probability density distribution of the NYC short-
distance trip network cannot be well modelled by the exponential form for the removal
of important nodes. Furthermore, we find that both the long-distance trip networks in
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Chengdu and NYC are well approximated by the power-law distribution, even after
removing the important nodes (as demonstrated in Figure 4c,d. It is noteworthy that
the heterogeneity of travel distances is reduced to a certain degree after removing the
important nodes. This highlights the significant impact of these nodes on urban travel.
Thus, policymakers can enhance the transportation conditions and living environment near
these critical nodes to improve the travel experience of city residents. Such efforts will
likely lead to increased happiness among residents and further promote the development
of these cities.

In summary, within long- and short-distance trip networks prior to the elimination
of important nodes, the short-distance trip conforms to an exponential distribution. In
contrast, the long-distance trip conforms to a power-law distribution [9,47,48]. This finding
further validates our utilization of a 95% threshold to distinguish between long- and
short-distance trip networks.

3.4. Classification of Important Nodes and Analysis of Influencing Factors

In this subsection, we present a calculation of the participation indices (PIi and PEi )
and cluster centre index (Ii and Ei) for the long- and short-distance trip networks in
NYC and Chengdu. To facilitate clear representation, we utilize the following notations:
NYC_Long_Zexlusive to refer to exclusive nodes identified in the NYC long-distance trip
network based on the cluster internal centre index Ii and the cluster internal participation
indices PIi , and NYC_Long_Bexlusive to refer to exclusive nodes identified in the same
network based on the cluster external centre index Ei and the cluster external participation
indices PEi .

Figure 5 illustrates the distribution of hub nodes within the long- and short-distance
trip network of Chengdu. Specifically, as depicted in Figure 5a, only a small number
of nodes are tightly connected to the internal portion of the cluster. This is primarily
due to the majority of nodes within the cluster being distributed across the five central
districts of Chengdu and the long-distance trip network having a travel distance exceeding
19 km. Consequently, only a few nodes emerge as hub nodes that maintain relatively
close connections with the interior of the cluster. In contrast, Figure 5c demonstrates that
a substantial number of nodes serve as extensive hubs with robust connections to the
external portion of the cluster. This finding suggests that nodes within the important node
cluster of the long-distance trip network are more closely linked with nodes outside the
cluster. In other words, taxi passengers tend to choose to travel outside the important node
cluster (non-city centre) and inside the important node cluster (city centre) when travelling
long distances. The findings presented in this study are illustrated in Figure 5b,d, which
demonstrate that a significant number of nodes in the short-distance trip network serve
as extensive hubs with tightly interconnected nodes both inside and outside the cluster.
Specifically, this suggests that nodes within the cluster of important nodes, located in the
city centre, exhibit high levels of connectivity to internal and external nodes. Consequently,
it is reasonable to assume that when passengers opt for short-distance travel, they may
choose to travel inside the important node cluster (city centre) or choose to travel between
the important node cluster inside (city centre) and outside the cluster (non-city centre).

Figure 6 displays the distribution of hub nodes in the long- and short-distance trip
networks of NYC. As depicted in Figure 6a, a very limited number of nodes act as inclusive
hubs and extensive hubs in NYC’s long-distance trip network. These hubs are closely
linked to nodes located within important node clusters. In contrast to Chengdu, NYC’s
long-distance trip network contains extensive hubs, which suggests a higher level of
interconnectedness between nodes within important node clusters. Additionally, Figure 6c
shows that, similar to Chengdu, many nodes serve as extensive hubs that are closely
connected to nodes outside the cluster. This finding indicates that nodes within important
node clusters in the long-distance trip network exhibit a higher degree of connectivity to
nodes located outside the cluster. As illustrated in Figure 6b,c, a substantial number of
nodes serve as extensive hubs, possessing strong connections to nodes both inside and
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outside the important node cluster. These findings suggest that in short-distance trip
networks, taxi passengers tend to travel within the cluster of important nodes, as well as
between the important node cluster and areas outside it. Further analysis of Figure 6b–d
reveals that certain nodes within the Manhattan district exhibit remarkable stability and
serve as extensive hubs in both the short- and long-distance trip networks, indicating their
significant influence within the trip network.
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Figure 5. Distribution of hub nodes in Chengdu long- and short-distance trip network. (a) Dis-
tribution of internal inclusive hubs (Chengdu_long_Zinclusive) and internal exclusive hubs
(Chengdu_long_Zexclusive) in the Chengdu long-distance trip network. (b) Distribution of in-
ternal extensive hubs (Chengdu_short_Zextensive) in the Chengdu short-distance trip network.
(c) Distribution of external extensive hubs (Chengdu_long_Bextensive) in the Chengdu long-distance
trip network. (d) Distribution of external extensive hubs (Chengdu_short_Bextensive) in the Chengdu
short-distance trip network.

These results shed light on the underlying mechanisms of node clustering and connec-
tivity within the long- and short-distance trip network. To elucidate the characteristics of
important node cluster distributions, this study incorporated demographic and economic
factors into the analysis. Note that the demographic and economic data used in the multi-
variate linear analysis are the years corresponding to the travel data. The demographic data
utilized in our study were obtained from the WorldPop platform, which is an open statistics
site. The demographic data we used corresponds to the resolution of the trip network,
meaning that the WorldPop platform provides the number of people within each square
kilometer. The economic data was obtained from the Bureau of Statistics of Chengdu,
Sichuan Province, China and the U.S. Bureau of Statistics, respectively. Additionally, the
economic data utilized in our study were sourced from the GDP data of each district within
the city. Specifically, we employed multiple linear regression to examine the relationship
between the node participation index and population and economy. This approach allowed
for a more thorough investigation of the factors influencing the distribution of important
node clusters.
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Figure 6. Distribution of hub nodes in NYC long- and short-distance trip network.
(a) Distribution of internal inclusive hubs (NYC_long_Zinclusive) and internal extensive hubs
(NYC_long_Zextensive) in the NYC long-distance trip network. (b) Distribution of internal extensive
hubs (NYC_short_Zextensive) in the NYC short-distance trip network. (c) Distribution of external
extensive hubs (NYC_long_Bextensive) in the NYC long-distance trip network. (d) Distribution of
external extensive hubs (NYC_short_Bextensive) in the NYC short-distance trip network.

In the context of the NYC long-distance trip network, our analysis reveals a significant
linear relationship between the internal participation index of node clusters and both
population and economy (R2 = 0.735, Prob (F-statistic) = 9.14× 10−5). Notably, the economy
exerts the greatest influence on this relationship (P > |t| = 0.002). Similarly, we observe
a more pronounced linear relationship between the external participation index of node
clusters and population and economy (R2 = 0.302, Prob (F-statistic) = 0.00186), with the
population having the strongest impact (P > |t| = 0.032).

Turning our attention to the NYC short-distance trip network, our findings indicate
a significant linear relationship between the internal participation index of node clusters
and both population and economy (R2 = 0.565, Prob (F-statistic) = 1.07 × 10−6), with the
population having the most significant effect (P > |t| = 0.001). However, in contrast to the
long-distance trip network, we do not observe a strong linear relationship between the
external participation index of node clusters and population and economy.

Finally, in Chengdu’s long-distance trip network, a noteworthy linear correlation was
observed between the internal participation index of node clusters and the population. The
coefficient of determination (R2) for this relationship is calculated to be 0.906, indicating a
high degree of explanatory power. Notably, the following nodes were identified as having
a significant impact on this relationship: Shuangliu Airport, Chengdu Airport Passenger
Terminal in Shuangliu District, Century City in Wuhou District, Chengdu East Station, and
Chengdu East Passenger Terminal. These findings provide valuable insights into the factors
that drive the formation and evolution of long-distance travel networks in urban areas.

4. Discussion and Conclusions

In this study, our first step was to conduct an analysis of the probability density
distributions for travel distances in Chengdu and NYC. Our findings revealed that the
exponential distribution provided a good fit for both cities, with Chengdu exhibiting
stronger heterogeneity. Subsequently, we utilized a threshold of 95% to divide the trip
network into long- and short-distance trip networks. By analyzing these networks, we
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discovered that the power-law distribution accurately described long travel distances
in both cities, while the exponential distribution provided a good fit for short travel
distances [9,25,45–48]. These results further confirm the validity of our approach in using a
95% threshold to divide trip networks.

Second, the PageRank algorithm was applied to extract significant nodes in the trip
networks of two cities, with a focus on academic research. Specifically, the top 5% of
PageRank algorithm results were identified as important nodes [44], and their impact on
the respective trip networks was analyzed. The findings suggest that the travel distance
distribution in Chengdu remained unaltered, even after the removal of important nodes.
In the context of the NYC short-distance trip network, the distribution of travel distances
was observed to deviate from the exponential distribution after the removal of important
nodes. Conversely, in the NYC long-distance trip network, travel distances were found to
adhere well to the power-law distribution, regardless of the removal of important nodes.
Additionally, in the short-distance trip network of the two cities, a noticeable reduction in
the heterogeneity of travel distances was observed upon the removal of important nodes.
These findings suggest that the impact of node removal on travel distance distribution
varies across different types of trip networks.

The last stage of this research entailed categorizing the notable nodes based on their
centrality and participation indices [17,37,38], and scrutinizing these classified nodes to
investigate their origins. Specifically, we compared the hub nodes in the long-distance trip
networks of the two cities and observed that the majority of the nodes in the important
node cluster exhibited fewer interconnections with one another. However, nodes within the
important node cluster were more closely linked with nodes outside the cluster. Conversely,
within the short-distance trip network, the nodes in the cluster demonstrated a high
level of connectivity, and the nodes within the cluster were also well-connected to those
outside of it. These findings shed light on the structural differences in the two types of
networks, and suggest that further exploration of the identified nodes may yield valuable
insights into the underlying mechanisms governing the formation and operation of these
networks [49–51]. In the final analysis, we incorporated demographic and economic
variables to evaluate the important nodes. Our findings indicate that in the long-distance
trip network of NYC, there exists a significant linear correlation between the participation
index of nodes and both the economy and population. Meanwhile, the economy emerges
as the dominant factor influencing the intra-cluster participation index of nodes. While
the population serves as the dominant factor influencing the extra-cluster participation
index of nodes. In contrast, within the NYC short-distance trip network, the intra-cluster
participation index of nodes exhibits a significant linear association with both economy and
population, with the population exerting the strongest influence. These results highlight
the nuanced relationships between the network structure and socio-economic factors, and
have implications for understanding the underlying mechanisms shaping transportation
networks in urban areas [52–55].

Overall, taxis play a crucial role in complementing other modes of public transporta-
tion in Chengdu and NYC. While buses and metros have fixed stops, taxi flows can
effectively identify areas where traffic demand exceeds current service levels. By modifying
bus routes and extending metro lines, particularly to local centres, future traffic demands
can be met, and accessibility can be improved. Our study provides valuable insights into
the travel patterns of these two cities and highlights the usefulness of statistical models
in analyzing such patterns. Furthermore, this research sheds light on the underlying
mechanisms that shape transportation networks in urban areas, which has important im-
plications for urban planning and policy making. By understanding the structural and
socio-economic factors that influence transportation networks, policymakers can work to
improve mobility and accessibility for urban residents. These observations have important
implications for transportation planning in these cities. For instance, policymakers could
focus on incentivizing long-distance travel to promote tourism and economic growth.
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We contend that the present study and its methodology hold promise for investigating
other facets of transportation networks. However, it is important to acknowledge the
limitations of using taxi data as a representative sample. Firstly, taxi trips can only provide
insights into a portion of intra-urban travel. Secondly, the temporal coverage of the dataset
is relatively limited, which may lead to some degree of bias in the results obtained. Clearly,
different transportation modes and varying characteristics of human mobility may reveal
diverse aspects of urban structure. As such, future research could benefit from utilizing a
dataset that encompasses several transportation modes and spans a longer time period, in
order to gain a more comprehensive understanding of important nodes in urban areas and
the factors that contribute to their emergence.
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NYC New York City
NYC_Long_Zexlusive The internal exclusive hubs in NYC’s long-distance trip network
NYC_Long_Zinlusive The internal inclusive hubs in NYC’s long-distance trip network
NYC_Long_Zextensive The internal extensive hubs in NYC’s long-distance trip network
NYC_Long_Bexlusive The external exclusive hubs in NYC’s long-distance trip network
NYC_Long_Binlusive The external inclusive hubs in NYC’s long-distance trip network
NYC_Long_Bextensive The external extensive hubs in NYC’s long-distance trip network
NYC_Short_Zexlusive The internal exclusive hubs in NYC’s short-distance trip network
NYC_Short_Zinlusive The internal inclusive hubs in NYC’s short-distance trip network
NYC_Short_Zextensive The internal extensive hubs in NYC’s short-distance trip network
NYC_Short_Bexlusive The external exclusive hubs in NYC’s short-distance trip network
NYC_Short_Binlusive The external inclusive hubs in NYC’s short-distance trip network
NYC_Short_Bextensive The external extensive hubs in NYC’s short-distance trip network
CD_Long_Zexlusive The internal exclusive hubs in Chengdu’s long-distance trip network
CD_Long_Zinlusive The internal inclusive hubs in Chengdu’s long-distance trip network
CD_Long_Zextensive The internal extensive hubs in Chengdu’s long-distance trip network
CD_Long_Bexlusive The external exclusive hubs in Chengdu’s long-distance trip network
CD_Long_Binlusive The external inclusive hubs in Chengdu’s long-distance trip network
CD_Long_Bextensive The external extensive hubs in Chengdu’s long-distance trip network
CD_Short_Zexlusive The internal exclusive hubs in Chengdu’s short-distance trip network
CD_Short_Zinlusive The internal inclusive hubs in Chengdu’s short-distance trip network
CD_Short_Zextensive The internal extensive hubs in Chengdu’s short-distance trip network
CD_Short_Bexlusive The external exclusive hubs in Chengdu’s short-distance trip network
CD_Short_Binlusive The external inclusive hubs in Chengdu’s short-distance trip network
CD_Short_Bextensive The external extensive hubs in Chengdu’s short-distance trip network
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