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Abstract: In the field of quantum information theory, the concept of quantum fidelity is employed to
quantify the similarity between two quantum states. It has been observed that the fidelity between
two states describing a bipartite quantum system A⊗ B is always less than or equal to the quantum
fidelity between the states in subsystem A alone. While this fidelity inequality is well understood,
determining the conditions under which the inequality becomes an equality remains an open ques-
tion. In this paper, we present the necessary and sufficient conditions for the equality of fidelities
between a bipartite system A⊗ B and subsystem A, considering pure quantum states. Moreover,
we provide explicit representations of quantum states that satisfy the fidelity equality, based on our
derived results.
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1. Introduction

Quantum fidelity [1,2] is a fundamental and indispensable tool in quantum infor-
mation theory for quantifying the closeness between two quantum states that describe a
quantum system. Among its various applications, quantum fidelity plays a crucial role in
evaluating the success of key quantum communication tasks within quantum Shannon
theory, including quantum teleportation [3], quantum state merging [4,5], and quantum
state redistribution [6,7]. To illustrate the importance of quantum fidelity, we focus on
the task of quantum state merging. In this task, two users, Alice and Bob, initially possess
separate parts A and B of a shared quantum state ρAB. By employing local operations and
classical communication assisted by shared entanglement, their objective is to merge Alice’s
quantum state with Bob’s, resulting in the target state ρB′B, where B′ corresponds to Bob’s
quantum system. Upon completion of the merging process, how can they ascertain the
closeness of the resulting state to the desired target state? Without the aid of the quantum
fidelity, it would be impossible to compare and assess the similarity between these states.

In this study, we consider the following inequality [8]:

F(ρAB, σAB) ≤ F(ρA, σA), (1)

where ρAB and σAB represent the quantum states of the bipartite system AB, and ρA and
σA represent the reduced states of ρAB and σAB corresponding to the quantum system
A. This inequality demonstrates that for any given pair of bipartite quantum states, the
quantum fidelity on the bipartite quantum system AB is always less than or equal to the
quantum fidelity on the local quantum systems A. To provide a simple illustration, let us
examine the scenario of two EPR pairs [9]:

∣∣φ±〉AB
=

1√
2
(|00〉AB ± |11〉AB), (2)
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where |0〉 and |1〉 are the computational basis of a two-dimensional quantum system. In
this context, the quantum fidelity between φ+ and φ− is found to be zero. However, when
we evaluate their fidelity on the local quantum system A, it becomes one. This intriguing
observation implies that the quantum states φ+ and φ− are indistinguishable on the local
quantum system A, indicating complete identity. However, on the bipartite quantum
system AB, they exhibit complete distinctness.

The inequality Equation (1) is easy to understand, as discussed earlier. However,
determining the conditions under which the fidelities in Equation (1) become equal is
difficult. This study focuses on overcoming this limitation by considering pure bipartite
quantum states |ψ〉AB and |φ〉AB. We aim to investigate the conditions for fidelity inequality
as stated in Equation (1) and provide explicit representations of pure bipartite quantum
states that satisfy these conditions.

The remainder of this paper is organized as follows: In Section 2, we introduce the
definitions of global and local fidelities, along with the assumptions and lemmas that form
the foundation of our main results. Section 3 presents a comprehensive calculation of
the global and local fidelities. In Section 4, we present the conditions that establish the
equivalence for fidelity equality. Section 5 is devoted to presenting specific forms of pure
bipartite quantum states that fulfill these equivalent conditions. Finally, in Section 6, we
discuss our findings, their implications, and outline potential avenues for future research.

2. Definitions, Assumptions, and Lemmas

In this section, we provide the definitions, assumptions, and lemmas that are employed
throughout this work.

To begin, we consider finite-dimensional Hilbert spaces H. The notationHX denotes
a Hilbert space representing a quantum system X. The tensor productHA ⊗HB signifies
a composite quantum system comprising two quantum systems A and B, which can be
denoted as A⊗ B or simply AB. The dimension of the Hilbert spaceHX , denoted as dimX,
corresponds to the dimension of the quantum system X.

Let D(H) denote the set of density operators on a Hilbert space H. In other words,
D(H) = {ρ ∈ L(H) : ρ ≥ 0, Tr[ρ] = 1}, where L(H) denotes the set of all linear operators
onH. The elements within D(H) are referred to as quantum states. If a quantum state ρ
can be expressed as a rank-1 projector, i.e., it can be represented as

ψ := |ψ〉〈ψ|, (3)

where |ψ〉 is a normalized vector in the Hilbert space H, it is referred to as a pure state.
Here, the unit vector |ψ〉 is also considered a pure quantum state. Quantum states that are
not pure are referred to as mixed states, and they are denoted by ρ or σ in this paper.

The trace, Tr[ρ], of a quantum state ρ operating on a Hilbert spaceH is defined as

Tr[ρ] := ∑
j
〈j|ρ|j〉, (4)

where {|j〉} represents any orthonormal basis of the Hilbert space H. For a bipartite
quantum state ρAB on a Hilbert spaceHA ⊗HB, the partial trace over the Hilbert spaceHB

is defined as
TrB[ρ

AB] := ∑
j

(
IA ⊗ 〈j|B

)
ρAB

(
IA ⊗ |j〉B

)
, (5)

where IA denotes the identity matrix on the quantum system A, and {|j〉B} represents
any orthonormal basis of the Hilbert space HB. In this scenario, the quantum state
ρA := TrB[ρ

AB] obtained on the Hilbert space HA is referred to as the reduced quantum
state of ρAB.
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In this study, we focus on investigating the quantum fidelity [8] between two quantum
states ρ and σ that represent the same quantum system. The quantum fidelity is defined as

F(ρ, σ) =
∥∥√ρ
√

σ
∥∥2

1 =

(
Tr
√√

ρσ
√

ρ

)2
. (6)

In particular, when considering two pure quantum states |ψ〉 and |φ〉, the quantum fi-
delity can be straightforwardly calculated as F(ψ, φ) = |〈ψ|φ〉|2. We also investigate two
pure quantum states |ψ〉AB and |φ〉AB on the bipartite quantum system AB, and with the
assumption that dimA = 2 and dimB ≥ 2. For convenience, we use the notations

FAB := F(|ψ〉AB, |φ〉AB), (7)

FA := F(ρA
ψ , ρA

φ ), (8)

where ρA
ψ and ρA

φ represent the reduced quantum states of pure bipartite quantum states

|ψ〉AB and |φ〉AB, respectively. When referring to the given quantum states |ψ〉AB and |φ〉AB,
we use the terms FAB and FA to present the global fidelity and the local fidelity, respectively.
Thus, the fidelity inequality in Equation (1) can be expressed as

FAB ≤ FA. (9)

Finally, we introduce two lemmas that will be used in the subsequent sections.

Lemma 1. For any two complex numbers α and β, we have

Re(αβ∗) = |αβ| =⇒ β = kα, (10)

|α| − |β| = |α− β| ⇐⇒ β = pα, (11)

where β∗ denotes the complex conjugate of β, k is a real number, and p is a real and non-negative
value.

Proof. (i) Assume that Re(αβ∗) = |αβ| holds for any two complex numbers α and β. Given
that α and β are complex, they can be expressed as α = a + ib and β = c + id using some
real numbers a, b, c, and d. Notably,

Re(αβ∗) = Re((a + ib)(c− id)) = Re((ac + bd) + i(bc− ad)) = ac + bd, (12)

|αβ| = |(a + ib)(c + id)| = |(ac− bd) + i(bc + ad)| =
√
(ac− bd)2 + (bc + ad)2.(13)

Consequently, the assumption implies that (ad− bc)2 = 0; thus, ad = bc. Therefore,

β = c + id =
ad
b

+ id =
d
b
(a + ib) = kα, (14)

where k = d/b.
(ii) Assume that |α| − |β| = |α− β| holds for any two complex numbers α and β. AS

α and β are complex, they can be represented as α = r1eiθ1 and β = r2eiθ2 based on some
non-negative real numbers r1,r2, θ1, and θ2. Without loss of generality, we may assume that
r2 ≤ r1. Observe that |α| = r1, |β| = r2, and

|α− β| = |r1eiθ1 − r2eiθ2 | = |eiθ1 ||r1 − r2ei(θ2−θ1)| = |(r1 − r2 cos(θ2 − θ1))− r2i sin(θ2 − θ1)|. (15)

Therefore, |α| − |β| = |α− β| implies that cos(θ2 − θ1) = 1; thus, θ2 = θ1. Consequently,
we have

β = r2eiθ2 =
r2

r1

(
r1eiθ1

)
= pα, (16)
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where p = r2/r1 ≥ 0. For the inverse direction, assume that β = pα holds for some
non-negative p. Since r2 ≤ r1, 1− p is non-negative. Thus, we have

|α− β| = |α− pα| = |(1− p)α| = |1− p||α| = (1− p)|α| = |α| − p|α| = |α| − |β|, (17)

which completes the proof.

Lemma 2. For any two vectors |η〉 and |ζ〉 represented as

|η〉 =
d−1

∑
j=0

c0j|j〉 and |ζ〉 =
d−1

∑
j=0

c1j|j〉, (18)

we have the equality

d−1

∑
j,l=0
j>l

∣∣c0jc1l − c0lc1j
∣∣2 =

(
d−1

∑
j=0
|c0j|2

)(
d−1

∑
j=0
|c1j|2

)
−
(

d−1

∑
j=0

c∗1jc0j

)(
d−1

∑
j=0

c∗0jc1j

)
, (19)

where cij are complex coefficients, and |j〉 indicates the computational basis of a d-dimensional
Hilbert space.

Proof. Consider the norm of the bipartite vector |η〉 ⊗ |ζ〉 − |ζ〉 ⊗ |η〉, which is as follows:

‖|η〉 ⊗ |ζ〉 − |ζ〉 ⊗ |η〉‖2 =

∥∥∥∥∥d−1

∑
j=0

d−1

∑
l=0

(c0jc1l − c1jc0l)|j〉 ⊗ |l〉
∥∥∥∥∥

2

(20)

=
d−1

∑
j=0

d−1

∑
l=0

∣∣c0jc1l − c1jc0l
∣∣2 (21)

=
d−1

∑
j,l=0
j>l

∣∣c0jc1l − c1jc0l
∣∣2 + d−1

∑
j=1

∣∣c0jc1j − c1jc0j
∣∣2 + d−1

∑
j,l=0
j<l

∣∣c0jc1l − c1jc0l
∣∣2 (22)

= 2
d−1

∑
j,l=0
j>l

∣∣c0jc1l − c1jc0l
∣∣2. (23)

In addition, the above quantity can be represented as

‖|η〉 ⊗ |ζ〉 − |ζ〉 ⊗ |η〉‖2 = (〈η| ⊗ 〈ζ| − 〈ζ| ⊗ 〈η|)(|η〉 ⊗ |ζ〉 − |ζ〉 ⊗ |η〉) (24)

= 〈η|η〉〈ζ|ζ〉 − 〈η|ζ〉〈ζ|η〉 − 〈ζ|η〉〈η|ζ〉+ 〈ζ|ζ〉〈η|η〉 (25)

= 2(〈η|η〉〈ζ|ζ〉 − 〈ζ|η〉〈η|ζ〉) (26)

= 2

[(
d−1

∑
j=0
|c0j|2

)(
d−1

∑
j=0
|c1j|2

)
−
(

d−1

∑
j=0

c∗1jc0j

)(
d−1

∑
j=0

c∗0jc1j

)]
. (27)

This completes the proof.

3. Calculation of Global and Local Fidelities

In this section, we present the calculation of the global fidelity FAB and the local
fidelity FA for any two pure quantum states |ψ〉AB and |φ〉AB. These calculations will be
used in the next section.

Let us first consider the Schmidt decomposition [8] of the quantum state |ψ〉AB, which
is given by

|ψ〉AB =
√

λ|00〉AB +
√

1− λ|11〉AB (28)
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for some λ ∈ [0, 1/2]. In this equation, {|0〉A, |1〉A} and {|0〉B, |1〉B, . . . , |d− 1〉B} are
orthonormal bases on the quantum systems A and B, respectively. Then, the quantum state
|φ〉AB can be represented as

|φ〉AB =
1

∑
i=0

d−1

∑
j=0

cij|ij〉AB, (29)

where cij are complex numbers satisfying

1

∑
i=0

d−1

∑
j=0
|cij|2 = 1. (30)

Given that |ψ〉AB and |φ〉AB are pure states, FAB can be calculated as

FAB =
∣∣∣〈ψ|AB|φ〉AB

∣∣∣2 (31)

=

∣∣∣∣∣(√λ〈00|AB +
√

1− λ〈11|AB
)( 1

∑
i=0

d−1

∑
j=0

cij|ij〉AB

)∣∣∣∣∣
2

(32)

=
∣∣∣√λc00 +

√
1− λc11

∣∣∣2, (33)

where the second equality arises from Equations (28) and (29). In addition, the reduced
states ρA

ψ and ρA
φ of the quantum states |ψ〉AB and |φ〉AB can be represented as

ρA
ψ = λ|0〉A〈0|A + (1− λ)|1〉A〈1|A, (34)

ρA
φ =

(
d−1

∑
j=0
|c0j|2

)
|0〉A〈0|A +

(
d−1

∑
j=0

c∗1jc0j

)
|0〉A〈1|A +

(
d−1

∑
j=0

c∗0jc1j

)
|1〉A〈0|A +

(
d−1

∑
j=0
|c1j|2

)
|1〉A〈1|A. (35)

Thus, the operator
√

ρA
ψ ρA

φ

√
ρA

ψ is represented as√
ρA

ψ ρA
φ

√
ρA

ψ =
(√

λ|0〉A〈0|A +
√

1− λ|1〉A〈1|A
)

ρA
φ

(√
λ|0〉A〈0|A +

√
1− λ|1〉A〈1|A

)
(36)

= λ〈0|AρA
φ |0〉

A|0〉A〈0|A +
√

λ(1− λ)〈0|AρA
φ |1〉

A|0〉A〈1|A (37)

+
√
(1− λ)λ〈1|AρA

φ |0〉
A|1〉A〈0|A + (1− λ)〈1|AρA

φ |1〉
A|1〉A〈1|A. (38)

Consider an operator L defined as

L = a00|0〉A〈0|A + a01|0〉A〈1|A + a10|1〉A〈0|A + a11|1〉A〈1|A, (39)

wherein the coefficients aij are

a00 = λ〈0|AρA
φ |0〉

A, (40)

a01 =
√

λ(1− λ)〈0|AρA
φ |1〉

A, (41)

a10 =
√
(1− λ)λ〈1|AρA

φ |0〉
A = a∗01, (42)

a11 = (1− λ)〈1|AρA
φ |1〉

A. (43)

In addition, let us consider an operator M defined as

M = b00|0〉A〈0|A + b01|0〉A〈1|A + b10|1〉A〈0|A + b11|1〉A〈1|A, (44)
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wherein the coefficients bij are

b00 =
a00

a00 + a11
, (45)

b01 =
a01

a00 + a11
, (46)

b10 =
a10

a00 + a11
= b∗01, (47)

b11 =
a11

a00 + a11
. (48)

Then, M is positive, Hermitian, and has trace 1. Note that L and M satisfy the equality
L = (a00 + a11)M.

Any operator N, expressed as

N = a|0〉〈0|+ b|0〉〈1|+ b∗|1〉〈0|+ (1− a)|1〉〈1|, (49)

that is positive, Hermitian, and has trace 1, has eigenvalues λ± and eigenvectors |λ±〉 given
by

λ± =
1±

√
1− 4a + 4a2 + 4|b|2

2
, (50)

where a ∈ [0, 1], b ∈ C, and |0〉 and |1〉 are orthonormal vectors. Note that Tr[N] =
λ+ + λ− = 1 and Det[N] = λ+λ− = a(1− a)− |b|2.

Consequently, the eigenvalues λ1 and λ2 of M are calculated as

λ1 =
1 +

√
1− 4b00 + 4b2

00 + 4|b01|2

2
, (51)

λ2 =
1−

√
1− 4b00 + 4b2

00 + 4|b01|2

2
, (52)

and thus, the operator L has the eigenvalues (a00 + a11)λ1 and (a00 + a11)λ2. It follows that

Tr

√√
ρA

ψ ρA
φ

√
ρA

ψ =
√
(a00 + a11)λ1 +

√
(a00 + a11)λ2. (53)

Since the trace and determinant of operator M, i.e., Tr[M] = 1 and Det[M] = b00b11− |b01|2,
respectively, are known, we have

(
Tr

√√
ρA

ψ ρA
φ

√
ρA

ψ

)2

(54)

= (a00 + a11)(λ1 + λ2) + 2
√
(a00 + a11)2λ1λ2 (55)

= a00 + 2
√
(a00 + a11)2(b00b11 − |b01|2) + a11 (56)

= a00 + 2
√
(a00a11 − |a01|2) + a11 (57)

= λ〈0|AρA
φ |0〉

A + 2

√
λ(1− λ)

(
〈0|AρA

φ |0〉
A〈1|AρA

φ |1〉
A −

∣∣∣〈0|AρA
φ |1〉

A
∣∣∣2)+ (1− λ)〈1|AρA

φ |1〉
A (58)

= λ
d−1

∑
j=0
|c0j|2 + 2

√√√√√λ(1− λ)

d−1

∑
j=0
|c0j|2

d−1

∑
j=0
|c1j|2

−
d−1

∑
j=0

c∗1jc0j

d−1

∑
j=0

c∗0jc1j

+ (1− λ)
d−1

∑
j=0
|c1j|2 (59)

= λ
d−1

∑
j=0
|c0j|2 + 2

√
λ(1− λ)

√√√√√√ d−1

∑
j,l=0
j>l

∣∣∣c0jc1l − c0lc1j

∣∣∣2 + (1− λ)
d−1

∑
j=0
|c1j|2, (60)
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among which the last equality arises from Lemma 2 and the rest can be obtained from
the definitions of the coefficients aij and bij. Thus, the local fidelity FA is represented as

FA = λ
d−1

∑
j=0
|c0j|2 + 2

√
λ(1− λ)

√√√√√ d−1

∑
j,l=0
j>l

∣∣c0jc1l − c0lc1j
∣∣2 + (1− λ)

d−1

∑
j=0
|c1j|2. (61)

4. Necessary and Sufficient Conditions

In this section, we present our main result, which establishes the necessary and
sufficient conditions for the fidelity equality, i.e., FAB = FA.

Theorem 1 (necessary and sufficient conditions). Let |ψ〉AB and |φ〉AB be pure quantum states
on a bipartite quantum system AB such that dim A = 2 and dim B = d ≥ 2. The quantum states
|ψ〉AB and |φ〉AB satisfy the fidelity equality, i.e.,

FAB = FA, (62)

if and only if they satisfy the following four conditions:
√

λ|c01| =
√

1− λ|c10|, (63)

Re(c00c∗11) = |c00c11|, (64)

cij = 0, ∀j ≥ 2, (65)

c01c10 = pc00c11, (66)

wherein the notations used are the same as those used in Equations (28) and (29), k is real, and p is
real and non-negative.

Proof. From Equation (11) of Lemma 1, it suffices to demonstrate that the fidelity equality
FAB = FA holds if and only if the two quantum states |ψ〉AB and |φ〉AB meet Equa-
tions (63), (64), and (65) and the following condition:

|c00c11| − |c01c10| = |c00c11 − c01c10|. (67)

(i) Assume that the equality FAB = FA holds. Then, Equations (33) and (61) imply the
following equation:

∣∣∣√λc00 +
√

1− λc11

∣∣∣2 = λ
d−1

∑
j=0
|c0j|2 + 2

√
λ(1− λ)

√√√√√ d−1

∑
j,l=0
j>l

∣∣c0jc1l − c0lc1j
∣∣2 + (1− λ)

d−1

∑
j=0
|c1j|2. (68)

By applying the triangle inequality to the LHS, we obtain the following inequality:

2
√

λ(1− λ)|c00c11| ≥ λ|c01|2 + 2
√

λ(1− λ)||c00c11| − |c01c10||+ (1− λ)|c10|2. (69)

If |c00c11| < |c01c10| holds, then the inequality in Equation (69) becomes

4
√

λ(1− λ)|c00c11| ≥ λ|c01|2 + 2
√

λ(1− λ)|c01c10|+ (1− λ)|c10|2. (70)

By applying the inequality |c00c11| < |c01c10| to Equation (70), we obtain(√
λ|c01| −

√
1− λ|c10|

)2
< 0, (71)



Entropy 2023, 25, 1093 8 of 12

which is a contradiction. Consequently, we have the inequality

|c00c11| ≥ |c01c10|. (72)

By applying this inequality to Equation (69), we obtain the inequality(√
λ|c01| −

√
1− λ|c10|

)2
≤ 0. (73)

Thus, we have demonstrated that the equality
√

λ|c01| =
√

1− λ|c10| holds, which is the
same as the first sufficient condition given as Equation (63).

Second, we note that the LHS of Equation (68) becomes

|
√

λc00 +
√

1− λc11|2 =
(√

λc00 +
√

1− λc11

)(√
λc∗00 +

√
1− λc∗11

)
(74)

= λ|c00|2 +
√

λ(1− λ)((c00c∗11)
∗ + c00c∗11) + (1− λ)|c11|2 (75)

= λ|c00|2 + 2
√

λ(1− λ)Re(c00c∗11) + (1− λ)|c11|2. (76)

Therefore, the equality in Equation (68) becomes

2
√

λ(1− λ)Re(c00c∗11) (77)

= λ ∑
j 6=0
|c0j|2 + 2

√
λ(1− λ)

√√√√√ d−1

∑
j,l=0
j>l

∣∣c0jc1l − c0lc1j
∣∣2 + (1− λ) ∑

j 6=1
|c1j|2 (78)

≥ λ|c01|2 + 2
√

λ(1− λ)|c00c11 − c01c10|+ (1− λ)|c10|2 (79)

≥ λ|c01|2 + 2
√

λ(1− λ)||c00c11| − |c01c10||+ (1− λ)|c10|2 (80)

= 2
√

λ(1− λ)|c00c11|. (81)

Here, the first inequality is obtained by eliminating a few of the non-negative terms,
the second inequality arises from the reverse triangle inequality, and the last equality is
obtained from the inequality in Equation (72) and the first sufficient condition Equation (63).
This implies that Re(c00c∗11) ≥ |c00c11| holds. Because any complex number z satisfies the
inequality Re(z) ≤ |z|, we establish the second sufficient condition presented in Theorem 1.

To obtain the third sufficient condition, presented as Equation (65), we use Equation (78)
as follows:

2
√

λ(1− λ)Re(c00c∗11) (82)

= λ ∑
j 6=0
|c0j|2 + 2

√
λ(1− λ)

√√√√√ d−1

∑
j,l=0
j>l

∣∣c0jc1l − c0lc1j
∣∣2 + (1− λ) ∑

j 6=1
|c1j|2 (83)

≥ λ ∑
j 6=0
|c0j|2 + 2

√
λ(1− λ)||c00c11| − |c01c10||+ (1− λ) ∑

j 6=1
|c1j|2 (84)

= λ|c01|2 + (1− λ)|c10|2 + λ ∑
j≥2
|c0j|2 + 2

√
λ(1− λ)||c00c11| − |c01c10||+ (1− λ) ∑

j≥2
|c1j|2 (85)

= 2
√

λ(1− λ)|c01c01|+ λ ∑
j≥2
|c0j|2 + 2

√
λ(1− λ)||c00c11| − |c01c10||+ (1− λ) ∑

j≥2
|c1j|2, (86)
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where the inequality is obtained by eliminating a few of the non-negative terms and
applying the reverse triangle inequality and the last equality arises from the first sufficient
condition given as Equation (63). From Equations (72) and (64), we have

0 ≥ λ ∑
j≥2
|c0j|2 + (1− λ) ∑

j≥2
|c1j|2, (87)

which yields the third sufficient condition given as Equation (65).
By applying the first three conditions to the equality in Equation (68), we deduce the

last condition given as Equation (67). This condition is equivalent to the fourth sufficient
condition stated in Theorem 1, based on Equation (11) of Lemma 1.

(ii) We assume the aforementioned four conditions to prove the converse of Theorem 1.
Note that

FA = λ
(
|c00|2 + |c01|2

)
+ 2
√

λ(1− λ)|c00c11 − c01c10|+ (1− λ)
(
|c10|2 + |c11|2

)
(88)

= λ|c00|2 + 2
√

λ(1− λ)|c00c11|+ (1− λ)|c11|2 (89)

= λ|c00|2 + 2
√

λ(1− λ)Re(c00c∗11) + (1− λ)|c11|2 (90)

=
∣∣∣√λc00 +

√
1− λc11

∣∣∣2 (91)

= FAB, (92)

where the first equality is obtained by applying the third necessary condition given as
Equation (65) to the local fidelity FA given by Equation (61), the first and fourth conditions
stated in Equations (63) and (67) lead to the second equality, and the third and fourth
equalities arise from the second condition given as Equation (64) and from Equation (76),
respectively.

Theorem 1 implies the following corollary, which is nothing but the contrapositive of
Theorem 1.

Corollary 1. Let |ψ〉AB and |φ〉AB be pure quantum states on a bipartite quantum system AB
such that dim A = 2 and dim B = d ≥ 2. The quantum states |ψ〉AB and |φ〉AB satisfy the
fidelity inequality

FAB < FA (93)

if and only if they fail to satisfy at least one of four necessary and sufficient conditions outlined in
Theorem 1, where FAB and FA are defined in Equations (28) and (29), respectively.

By employing Theorem 1 or Corollary 1, one can readily verify whether a pair of pure
quantum states |ψ〉AB and |φ〉AB satisfies the fidelity equality FAB = FA. As a special case
of Theorem 1, if the quantum state |ψ〉AB is separable, then the four equivalence conditions
are reduced to a single condition, as follows.

Corollary 2. If |ψ〉AB is separable, then the fidelity equality FAB = FA holds if and only if the
following condition holds:

c1j = 0, ∀j 6= 1, (94)

where cij is defined in Equation (29).

Proof. In Equation (28), if |ψ〉AB is separable, then λ = 0, and thus, we have |ψ〉AB =

|11〉AB. Assuming that FAB = FA holds, the first necessary and sufficient condition in
Theorem 1 implies that c10 = 0. Furthermore, from the third necessary and sufficient
condition in Theorem 1, we have that c1j = 0 for any j 6= 1.
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For the inverse, let us assume that c1j = 0 holds for any j 6= 1. Note that for |ψ〉AB =

|11〉AB, the global fidelity FAB and the local fidelity FA are given by

FAB = |c11|2, (95)

FA =
d−1

∑
j=0
|c1j|2, (96)

which implies that FAB = FA because c1j = 0 for any j 6= 1.

5. Representations for Fidelity Equality

Based on the primary results presented in Section 4, we provide specific forms of the
quantum state |φ〉AB when the quantum states |ψ〉AB and |φ〉AB satisfy FAB = FA.

If |ψ〉AB is a separable state, denoted as |ψ〉AB = |11〉AB, Corollary 2 implies that the
other quantum state |φ〉AB is represented as follows:

|φ〉AB = c11|ψ〉AB +
d−1

∑
j=0

c0j|0j〉AB, (97)

where c1j = 0 for any j 6= 1. This representation shows that |φ〉AB is the linear combination
of the orthogonal states |ψ〉AB and |0j〉AB. Furthermore, these states are also orthogonal to
each other in subsystem A. Specifically, when we consider subsystem A, |ψ〉AB and |0j〉AB

become |1〉A and |0〉A, respectively. Therefore, in this case, the quantum states |0j〉AB have
no effects on the global and local fidelities, while |ψ〉AB and its coefficient c11 determine
them, i.e., FAB = |c11| = FA.

On the contrary, let us consider the case that |ψ〉AB is entangled, i.e., λ ∈ (0, 1/2] in
Equation (28). Then, the third necessary and sufficient condition of Theorem 1 implies that

|φ〉AB = c00|00〉AB + c01|01〉AB + c10|10〉AB + c11|11〉AB, (98)

where |c00|2 + |c01|2 + |c10|2 + |c11|2 = 1. From the first, second, and fourth conditions in
Theorem 1, along with Lemma 1, the coefficients cij have the following relations:

c11 = kc00, (99)

c01 = r01eiθ01 , (100)

c10 =

√
λ√

1− λ
r10eiθ10 , (101)

c00 = r01

√ √
λ√

1− λ

1
pk

ei(θ01+θ10)/2, (102)

where k, θ01, and θ10 are real numbers, and p, r01, and r10 are non-negative real numbers.
Thus, the quantum state |φ〉AB in Equation (98) becomes

|φ〉AB = c00

|00〉AB +

√√
1− λ√

λ
pkα|01〉AB +

√ √
λ√

1− λ
pkα∗|10〉AB + k|11〉AB

, (103)

where the coefficient α is a complex number defined as ei(θ01−θ10)/2.

Remark 1. The coefficient p in the representation of the quantum state |φ〉AB in Equation (103)
determines its entanglement properties. Specifically, |φ〉AB given by Equation (98) is separable if
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and only if c00c11 = c01c10 holds. Therefore, |φ〉AB of Equation (103) is separable if and only if
p = 1. Consequently, for the case of p = 1, the representation in Equation (103) simplifies to

|φ〉AB = c00

|0〉A +

√ √
λ√

1− λ
kα∗|1〉A

⊗
|0〉B +

√√
1− λ√

λ
kα|1〉B

. (104)

6. Conclusions

In this study, we have explored quantum fidelity and its fundamental properties.
Specifically, we have focused on bipartite pure quantum states |ψ〉AB and |φ〉AB, where the
dimension of quantum system A is two and the dimension of system B is arbitrary. We
have introduced the global fidelity FAB and the local fidelity FA for these quantum states
in Section 2. We have established the inequality FAB ≤ FA but the conditions under which
these fidelities are equal remained unknown. In Section 4, we have provided the necessary
and sufficient conditions for the fidelity equality FAB = FA. Additionally, in Section 5,
we have presented specific representations of the quantum state |φ〉AB when FAB = FA is
satisfied by |ψ〉AB and |φ〉AB.

In this study, our analysis was based on the assumption that the bipartite quantum
states for calculating quantum fidelities are pure, and we have considered a fixed dimension
of two for subsystem A. However, for future research, we propose investigating the neces-
sary and sufficient conditions for fidelity equality in general bipartite states. Moreover, it
would be valuable to explore the relationships between the amount of entanglement and
fidelity equality, as quantum entanglement plays a crucial role in quantum communication
tasks, although our current work does not focus on it. To the best of our knowledge,
there is a lack of research addressing the connection between entanglement and fidelity
equality. Therefore, elucidating these relationships would contribute significantly to the
field. Additionally, we suggest examining a specific scenario in which one of our target
states corresponds to the the isotropic state [10] or the Werner state [11].
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