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Abstract: This paper introduces a variational formulation of natural selection, paying special attention
to the nature of ‘things’ and the way that different ‘kinds’ of ‘things’ are individuated from—and
influence—each other. We use the Bayesian mechanics of particular partitions to understand how
slow phylogenetic processes constrain—and are constrained by—fast, phenotypic processes. The
main result is a formulation of adaptive fitness as a path integral of phenotypic fitness. Paths of
least action, at the phenotypic and phylogenetic scales, can then be read as inference and learning
processes, respectively. In this view, a phenotype actively infers the state of its econiche under a
generative model, whose parameters are learned via natural (Bayesian model) selection. The ensuing
variational synthesis features some unexpected aspects. Perhaps the most notable is that it is not
possible to describe or model a population of conspecifics per se. Rather, it is necessary to consider
populations of distinct natural kinds that influence each other. This paper is limited to a description
of the mathematical apparatus and accompanying ideas. Subsequent work will use these methods
for simulations and numerical analyses—and identify points of contact with related mathematical
formulations of evolution.

Keywords: self-organisation; nonequilibrium; variational inference; Bayesian; particular partition;
evolution; natural selection; Markov blanket; renormalisation group

Dedicated to the Memory of John O. Campbell.

1. Introduction

This paper is an attempt to show that some fundaments of theoretical evolution—and
(neuro)biology—emerge when applying the free energy principle to dynamical systems
with separation of temporal scales. It offers a technical and generic treatment with minimal
assumptions or commitments to specific biological processes. As such, it does not borrow
from established constructs in evolutionary theory; rather, it tries to show how some of
these constructs are emergent properties, when seen through the lens of the free energy
principle. In subsequent work, we will use the ensuing variational synthesis to consider
established—and current—evolutionary theories. Our aim in this paper is to introduce
a formalism that may be useful for addressing specific questions—about evolutionary or
developmental dynamics—using analytic or numerical recipes that have proven useful
when applying the free energy principle in other fields.
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A key phylogenetic process—underlying the development and diversification of
species in evolutionary time—is known as natural selection, regarded by some as the central
organizing principle of biology. While Darwin conceived of natural selection in terms of
heredity, variation, and selection [1,2], he only detailed selection, as the mechanisms of
heredity and variation would not be understood for some time [3,4]. The integration of
Mendelian genetics with natural selection in the early twentieth century was followed by
an integration with molecular genetics [5] in the mid-century to form Neo-Darwinism, or
the modern synthesis. The modern synthesis, along with the selfish gene hypothesis—put
forth in the 1970s [6]—provide a largely gene-centric view of Darwinian evolution that
dominates the current perspective.

This gene-centric view of evolutionary biology has remained largely disconnected
from phenotypic processes that impact organisms in developmental time [7,8]. Lewontin
characterised this disconnect—between genetic and phenotypic understanding—as the
major challenge facing the field [9]. While some progress has been made in the following
fifty years, biologists continue to highlight the gaps remaining for modelling biology as
a single integrated process over multiple scales [10–13]. By ‘gene-centric’, we refer not
just to theories of sequence evolution [14], but also to the central role genes (or summary
statistics of genes) play either explicitly or implicitly in accounts of phenotypic evolution.
For instance, the Price Equation [15] and the closely related replicator equation [16] of
evolutionary game theory express the relationship between the changes in (the average of)
some phenotypic trait over time. This gene-centric view relies upon a mapping between
that trait and the genetic material passed from generation to generation but focuses upon
the phenotypic effects of genes as opposed to the alleles themselves. Similarly, adaptive
dynamic approaches [17] typically focus upon ecological interactions at a phenotypic level.
The modern focus upon phenotypic traits reflects the importance of the interaction between
a phenotype and its environment in determining fitness. However, it is important to note
that such perspectives do not conflict with the central role of genetic inheritance, and
implicitly score the fitness of genotypes in terms of the phenotypes they imply.

An organism inherits a set of instructions for growth and development (i.e., an ex-
tended genotype) that is, in essence, a prediction about the niche environment (including
temperature, humidity, chemical composition, available resources, statistical patterns, etc.).
Interrogating the phrase ‘survival of the fittest’ leads to the understanding of ‘fittest’ as
organisms that are the best ‘fit’ to their niche environment [18]. For example, a bacterium
from thermal hot springs will fail to thrive in a cool pond because its genotype does not
accurately predict the niche environment. Therefore, ‘fitness’ is relative to the niche, where
slow phylogenetic processes have selected for an extended genotype that enhances the
growth and proliferation of organisms in the environment where the corresponding species
expects to find itself.

An organism can also ‘fit’ itself to the niche through adaptation (i.e., action, learning,
and development) during its lifetime. For example, a bacterium that normally subsists on
sulphur reduction—but can also survive through reducing oxygen—will outlast its sulphur-
dependent competitors in an environment that is devoid of sulphur. Such an organism can
adapt to its environment through learning and optimising for oxygen reduction, thereby
increasing its fit to the niche and, implicitly, its capacity to reproduce in a high-oxygen
environment. In this way, the phenotypic processes can enhance the fit of organisms to
their environment in developmental time, and through reproduction, phenotypic processes
can lead to the enhancement of fit in evolutionary time (i.e., across generations). As the
(extended) genotype of organisms produces phenotypes, phylogenetic processes over
evolutionary time also impact phenotypic (ontogenetic) processes in developmental time.

Here, we offer a synthesis of evolution and development through a mathematical
framework that unifies slow, multi-generational (phylogenetic) processes with single-
lifetime, phenotypic (developmental and behavioural) processes using the same principles,
as they apply to each temporal scale. The ensuing variational account of evolution focuses
on the coupling between phylogenetic processes at evolutionary timescales and ontogenetic



Entropy 2023, 25, 964 3 of 23

processes over phenotypic lifetimes. In principle, this abstract treatment is agnostic to
specific mechanisms, and could be applied to biological as well as non-biological systems
provided their ‘fitness’ depends upon events during a lifetime, and where this fitness
influences dynamics over a generational scale. This multiscale account foregrounds the
circular causality that arises from the implicit separation of timescales [19].

In brief, we consider slow phylogenetic processes (natural selection) as furnishing top-
down constraints (i.e., top-down causation) on fast phenotypic processes (action selection).
In turn, the active exchange of the phenotype with its environment provides evidence that
is assimilated by natural selection (i.e., bottom-up causation). This ontological account is
licensed by describing both phylogenetic and phenotypic processes as selecting (extended)
genotypes and (extended) phenotypes [7,20] with the greatest fitness, where fitness is
quantified with (free energy) functionals of probability density functions (a functional is a
function of a function).

This formulation means that natural selection and action selection can be described as
updating probabilistic beliefs at phylogenetic and phenotypic scales, respectively: namely,
learning and inference [21–23]. This separation of scales affords an interpretation of natural
selection as Bayesian model selection [24–26], while action selection becomes planning as infer-
ence [27–30]—both (appearing to) optimise the same fitness functional: namely, Bayesian
model evidence or marginal likelihood. A narrative version of this account can be told
from the point of view of the genotype (from the bottom up) or the phenotype (from the
top down):

From the perspective of the genotype, we can consider evolution as belief-updating
over generations, where the belief in question corresponds to a probability density over
extended genotypes (henceforth, genotype). This belief-based model of allelic change
is analogous to treatments of evolution in terms of changes in allele frequencies from
generation to generation [15]. This belief updating can be described by the probability
of a genotype appearing in subsequent generations, in a way that depends lawfully on
the marginal likelihood of extended phenotypes (henceforth, phenotype) in the current
generation. The basic idea is that the genotype parameterises or encodes a generative model, which
the phenotype uses to infer and act on its environment. On this view, evolution can be regarded
as testing hypotheses—in the form of generative models—that this kind of phenotype can
persist in this environment. These hypotheses are tested by exposing the phenotype to
the environment and are rejected if the phenotype ‘strays from the path’ of a persistent
phenotype. In this way, the evolutionary process selects models or hypotheses about
persistent phenotypes for which it has the greatest evidence. In short, natural selection is
just Bayesian model selection [25,26,31,32].

From the perspective of a phenotype, each conspecific is equipped with a generative
model and initial conditions that underwrite its epigenetic, developmental and ethological
trajectories. The states of the phenotype trace out a path through state-space over its lifetime.
These phenotypic states encode or parameterise beliefs about environmental states—and
the way the phenotype acts. This parameterization leads to active inference and learning,
in which the phenotype tries to make sense of its world and—through a process of belief
updating—to realise the kind of creature it thinks it is. (We use the term ‘thinks’ in a
liberal sense here and do not mean to imply that all living entities have explicit existential
thoughts.) More precisely, what we mean is that these entities behave as if they hold a set of
beliefs about the sort of entity they are (e.g., the meta-Bayesian stance as considered in [33]).
In virtue of its genetic endowment, it thinks it is a persistent phenotype. If endowed with a
good generative model of its environment [34], it will persist and supply evidence of its ‘fit’
to the environment (i.e., ‘fitness’); namely, evidence (i.e., marginal likelihood) that has been
accumulated by the slow evolutionary process.

What follows is a formal version of this narrative that calls upon some standard results
from statistical physics. The resulting synthesis is both dense and delicate, because it
tries to account for coupling between a phenotype and its econiche—and the coupling
between phenotypic and phylogenetic processes—using the same principles. Specifically,
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we describe a variational synthesis that calls on the path integral formulation of stochastic
dynamics, the apparatus of the renormalisation group, and the Poincaré recurrence theo-
rem. The ensuing synthesis considers natural selection and action selection as emergent
properties of two random dynamical processes unfolding at slow (phylogenetic) and fast
(phenotypic) timescales. The key aspect of this synthesis is that both processes have an
attracting set (a.k.a., pullback attractor) or steady-state solution [35]. These solutions corre-
spond to an evolutionary stable state [36] and a nonequilibrium steady-state density [37] over
phylogenetic and phenotypic states, respectively. By describing these steady states in terms
of a phylogenetically encoded generative model—namely, a joint density over the paths of
the phenotype and its environment—one can recover an ontological description of how the
two processes inform, and are informed by, each other.

Some of the analysis presented in this paper follows that in [21–23], which also
appeals to the notion of a renormalisation group. These treatments are based upon the
emergence of separable timescales and the interpretation of the dynamics at each scale in
analogy with inference and learning processes. The key differences are as follows. The
renormalisation in [21] depends upon a reduction in the number of degrees of freedom
with learning, whereas our formulation depends upon a partitioning operation as part
of the renormalisation. The difference in timescales between variables in [21] emerges
from the structure of the neural network used, whereas it is a direct consequence of the
reduction operator implicit in our choice of renormalisation. Finally, we extend our analysis
to sentient phenotypes, whose dynamics can be interpreted explicitly in terms of Bayesian
belief-updating. We conclude with a numerical study, illustrating the basic ideas with
synaptic selection in the brain.

2. A Variational Formulation

We assume that evolution can be described with two random dynamical systems, de-
scribing phylogenetic (evolutionary) and phenotypic (particular) processes, respectively. The
idea is to couple these systems using the apparatus of the renormalisation group [38–40] to
map from fast phenotypic dynamics to slow phylogenetic dynamics in evolutionary time.

This mapping rests upon a dimension reduction and coarse graining or grouping
operator (RG for Renormalisation Group) that maps the path of a phenotype π̃ to relevant
variables at the evolutionary scale π = R ◦ π̃. On this view, bottom-up causation is simply
the application of a reduction operator, R ◦ π̃, to select variables that change very slowly.
Top-down causation entails a specification of fast phenotypic trajectories in terms of slow
genotypic variations, which are grouped into populations, G ◦π, according to the influences
they exert on each other. The implicit separation into fast and slow variables can be read
as an adiabatic approximation [41] or—in the sense of synergetics—into fast (dynamically
stable) and slow (dynamically unstable) modes, respectively [42]. This separation can also
be seen in terms of vectorial geometric formulations [43]. Please see [21], who deal carefully
with the separation of time scales by analogy with temporal dilation in physics. Intuitively,
this analogy rests upon the idea that time can be rescaled, depending upon whether we
take the perspective of things that move quickly or slowly.

The final move is to express the dynamics—at fast and slow levels—in terms of
functionals that have the same form. These functionals are functions of probability densities
that can be read as Bayesian beliefs. Expressing the dynamics in this way allows one
to interpret phenotypic dynamics as active inference and learning, under a generative
model that depends on the extended genotype. In other words, one can interpret the
phylogenetic state as inferring states of the environment over evolutionary time. Crucially,
the extended genotype accumulates evidence for its phenotype, thereby evincing a form of
Bayesian model selection or structure learning [25,44–48]. For an analogous thermodynamic
treatment, please see [22], who refine and extend the free energy formulation of [49]. In the
context of learning dynamics, a thermodynamic free energy was derived in [50]—using the
maximum entropy principle [51,52]—and later applied to study phenomenological models
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of evolution [22]. Please see [50,53,54] for further discussion in terms of neural networks
and information theory.

2.1. Particular Partitions

There are many moving parts in this formulation because it tries to account for the
behaviour of ‘things’ [55] and how this behaviour underwrites the emergence of ‘kinds’ (e.g.,
individuals and populations) at nested (i.e., developmental and evolutionary) timescales.

We will use [x(t)] ⊂ x̃ to denote the history or path of a time-varying state. These
paths are determined by state-dependent flow fx(x), with parameters x ⊂ x̃ that include
initial states x(0) = x0 ⊂ x. These parameters denote a (natural) kind.

Everything that follows rests upon a particular partition of states. A particular partition
is considered necessary to talk about ‘things’, such as a ‘phenotype’ or ‘population’. In
brief, a particular partition enables the (internal) states of some ‘thing’ to be separated
from the (external) states of every ‘thing’ else by (sensory and active) blanket states [56–60].
In the absence of this partition, there would be no way of distinguishing a phenotype
from its external milieu—or a population from the environment. In this setup, external
states can only influence themselves and sensory states, while internal states can only
influence themselves and active states. See Figure 1 for an influence diagram representing
the coupling among internal, external, and blanket states:

States: x = (η, s, a, µ). States comprise the external, sensory, active and internal states
of a phenotype. Sensory and active states constitute blanket states b = (s, a), while
phenotypic states comprise internal and blanket states, π = (b, µ) = (s, α). The
autonomous states of a phenotype α = (a, µ) are not influenced by external states:

i. External states respond to sensory and active states. These are the states of a
phenotype’s external milieu: e.g., econiche, body, or extracellular space, depending
upon the scale of analysis.

ii. Sensory states respond to fluctuations in external and active states: e.g., chemo-
reception, proprioception, interception.

iii. Active states respond to sensory and internal states and mediate action on the envi-
ronment, either directly or vicariously through sensory states: e.g., actin filaments,
motor action, autonomic reflexes.

iv. Internal states respond to sensory and active states: e.g., transcription, intracellular
concentrations, synaptic activity.

The evolution of these sparsely coupled states can be expressed as a Langevin or
stochastic differential equation: namely, a high dimensional, nonlinear, state-dependent
flow plus independent random (Wiener) fluctuations, ω, with a variance of 2Γ:

.
x = fx(x) + ω =


.
η
.
s
.
a
.
µ

 =


fη(η, s, a)
fs(η, s, a)
fa(s, a, µ)
fµ(s, a, µ)

+


ωη

ωs
ωa
ωµ

 (1)

The flow per se can be expressed using the Helmholtz–Hodge decomposition [61] as follows:
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Note that our appeal to an equation of this form means we have implicitly stipulated that 
there is a steady-state density or potential function that remains constant (or at least 
changes very slowly) over the timescale we are interested in. Equation (2) expresses the 
flow as a mixture of a dissipative, gradient flow and a conservative, solenoidal flow [62–
64]. The gradient flow Γ∇ℑ  depends upon the amplitude of random fluctuations, while 
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Note that our appeal to an equation of this form means we have implicitly stipulated
that there is a steady-state density or potential function that remains constant (or at least
changes very slowly) over the timescale we are interested in. Equation (2) expresses the
flow as a mixture of a dissipative, gradient flow and a conservative, solenoidal flow [62–64].
The gradient flow Γ∇= depends upon the amplitude of random fluctuations, while the
solenoidal flow Q∇= circulates on the isocontours of the potential function called self-
information, =(x) = − ln p(x), where p(x) is called the nonequilibrium steady-state density or
NESS density [37,65–67].

The particular partition above rests on sparse coupling between dynamic variables,
c.f., [68,69], and evinces the notion of an ‘action-perception cycle’ between external and
internal states [70]. The terms ‘external’ and ‘internal’ offer useful intuitions, but it is worth
being cautious about overinterpreting these labels in spatial terms. For instance, it might
seem that some ‘external’ variables such as ambient temperature might directly influence
‘internal’ variables such as the temperature within a cell. However, this intuition would
not be an appropriate way of thinking about this system’s partition. Either we would
have to assume that there is an intervening variable (e.g., the temperature within the cell
membrane) or we would have to treat the internal temperature as a sensory variable, which
itself influences internal variables such as the rates of enzymatic reactions. There is now an
emerging literature asking about the appropriate ways to think of particular partitions in
biology, including what is internal to a neuronal network [71], or a spinal reflex arc [72].

Figure 1. Schematic (i.e., influence diagram) illustrating the sparse coupling among states that
constitute a particular partition at two scales.

2.2. Ensemble Dynamics and Paths of Least Action

To describe dynamics at the phenotypic or phylogenetic scale, we first need to rehearse
some standard results from statistical physics that furnish a probabilistic description of
trajectories or paths at any scale. This description calls on the self-information of states x(t),
generalised states

→
x = (x, x′, . . .), and paths, x̃ = [x(t)], where D

→
x = (x′, x′′ , . . .) denotes

generalised notion, and 2Γ is the covariance of generalised random fluctuations:

=(x) = − ln p(x)
L(→x ) = − ln p(

→
x
∣∣∣x0) =

1
2 [ln

∣∣∣Γ∣∣∣+(D
→
x − f (

→
x )) · 1

2Γ (D
→
x − f (

→
x )) +∇ · f ]

A(x̃) = − ln p(x̃
∣∣∣x0) =

∫
dtL(→x )

(3)
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The first measure, =(x), is the self-information or surprisal of a state, namely, the
implausibility of a state being occupied. When the state is an allele frequency and evolves
according to Wright–Fisher dynamics, this is sometimes referred to as an ‘adaptive land-
scape’ [73]. The second, L(→x ), is the Lagrangian, which is the surprisal of a generalised state,
namely, the instantaneous path associated with the motion from an initial state. In gener-
alised coordinates of motion, the state, velocity, acceleration, etc., are treated as separate
(generalised) states that are coupled through the flow [74,75]. Finally, the surprisal of a
path A(x̃) is called action, namely, the path integral of the Lagrangian.

Generalised states afford a convenient way of expressing the path of least action in
terms of the Lagrangian

∇→
x
L(→x ) + (

.
→
x −D

→
x ) = 0⇔

.
→
x −D

→
x = −∇→

x
L(→x )⇔

.
→
x (τ) = D

→
x −∇→

x
L(→x ) (4)

The first equality resembles a Lagrange equation of the first kind that ensures the
generalised motion of states is the state of generalised motion. Alternatively, it can be
read as a gradient descent on the Lagrangian, in a moving frame of reference (second
equality). When the Lagrangian is convex, solutions to this generalised gradient descent on
the Lagrangian (third equality) necessarily converge to the path of least action. Denoting
paths of least action with boldface:

.
→
x = D

→
x = f (

→
x )

⇔ ∇→
x
L(→x ) = 0⇔ →

x = argmin→
x
L(→x )

⇔ δx̃A(
~
x) = 0⇔ ~

x = argminx̃A(x̃)

(5)

Convergence is guaranteed by the quadratic form (i.e., convexity) of the Lagrangian,
which inherits from Gaussian assumptions about random fluctuations. This gradient
descent is sometimes described as convergence to the path of least action, in a frame of
reference that moves with the state of generalised motion [76].

We can also express the conditional independencies implied by a particular partition
using the Lagrangian of generalised states. Because there are no flows that depend on both
internal and external states, external and internal paths are independent, when conditioned
on blanket paths:

∂2 f
∂η∂µ

= 0⇒ ∂2L
∂
→
η ∂
→
µ

= 0⇔ L(→η ,
→
µ |→s ,

→
a ) = L(→η |→s ,

→
a ) + L(→µ |→s ,

→
a )⇔ (

→
η⊥→µ )|→s ,

→
a , x0 (6)

In other words, blanket paths furnish a Markov blanket over internal paths. We will
use this result later to disambiguate the role of active and sensory dynamics in sentient
behaviour—i.e., active inference—of a phenotype. First, we have to establish a formalism
for ensembles or populations of phenotypes. Here, we draw on the apparatus of the
renormalisation group.

2.3. Different Kinds of Things

To deal with multiple ‘things’ (e.g., particles, phenotypes and populations), we first
introduce a grouping operator G that partitions the states at the i-th scale of analysis into
N particles on the basis of the sparse coupling implied by a particular partition. In other
words, we group states into an ensemble of particles, where each particle has its own
internal and blanket states. With a slight abuse of the set builder notation:
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At this point, we pause to consider that the states in the particular ensemble have to 
be the states of some ‘thing’: namely, the states of a particle at a lower scale. This means 
that states must be the states of particles (e.g., phenotypic states) that constitute the par-
ticular states at the next scale (e.g., phylogenetic states). This recursive truism can be 
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The grouping operator means the external states of a given particle are the (blanket)
states of remaining particles that influence it. See [55] for a worked example and numerical

analysis. This grouping expresses the dynamics of each particle in terms of its sensory
states—that depend upon the blanket states of other particles—and autonomous

states—that only depend upon the states of the particle in question:
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The grouping operator means the external states of a given particle are the (blanket) 
states of remaining particles that influence it. See [55] for a worked example and numerical 
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At this point, we pause to consider that the states in the particular ensemble have to 
be the states of some ‘thing’: namely, the states of a particle at a lower scale. This means 
that states must be the states of particles (e.g., phenotypic states) that constitute the par-
ticular states at the next scale (e.g., phylogenetic states). This recursive truism can be 

At this point, we pause to consider that the states in the particular ensemble have to be
the states of some ‘thing’: namely, the states of a particle at a lower scale. This means that
states must be the states of particles (e.g., phenotypic states) that constitute the particular
states at the next scale (e.g., phylogenetic states). This recursive truism can be expressed in
terms of grouping G operator—that creates particles—and a reduction R operator—that
picks out certain particular states for the next scale:

R→
{

x̃(i)l
}

G→
{

π̃
(i)
n

}
R→
{

x̃(i+1)
n

}
G→
{

π̃
(i+1)
m

}
R→ (9)

The composition of the two operators can be read as mapping from the states of
particles at one scale to the next or, equivalently, from particular states at one scale to the
next—in short, creating particles of particles, namely, populations. See Figure 2.
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Figure 2. Schematic showing the hierarchical relationship between particles at scales i and i + 1. For 
clarity, sensory and autonomous states are illustrated in blue and pink, respectively. Note that each 
variable is a (very large) vector state that itself is partitioned into multiple vector states. At scale i + 
1, each particle represents an ensemble (e.g., ( 1)i

mπ + is population m), the elements of which are par-

titioned into autonomous and sensory subsets (e.g., ( 1)
n

i
mα +  is the n-th autonomous genotype from 

population m). At scale i, each particle represents an element of an ensemble (e.g., ( )iπ   is the  -th 

The reduction operator R typically selects relevant variables whose slow fluctuations
contextualise dynamics at the scale below. Here, R simply recovers the states of a particle
that are time invariant or that vary slowly with time (i.e., the initial states and flow parame-
ters). This separation of timescales means that the lifetime of a particle (e.g., phenotype)
unfolds during an instant from the perspective of the next scale (e.g., evolution). The
separation of timescales could have been achieved without the grouping (partitioning)
operator. We could simply have projected onto the eigenvectors of a dynamical system’s
Jacobian, effectively taking linear (or nonlinear) mixtures of our system to arrive at fast
and slow coordinates. However, all we would be left with are fast and slow continuous
variables that have nothing of the character of the individuals, phenotypes, or populations
in a system. In short, the grouping operator is key in identifying fast and slow ‘things’—as
opposed to just fast and slow coordinates of a dynamical system.

In short, the renormalisation group operator creates particles of particles, retaining
only particular variables that change very slowly and then grouping them according to
their sparse coupling. This means that particles increase in their size from one scale to the
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next—in virtue of the grouping of particles at the lower scale—and change more slowly—in
virtue of the coarse graining afforded by temporal reduction.

In an evolutionary setting, the existence of steady-state solutions—implicit in the
Langevin formalism above—means that phenotypic dynamics possess a pullback attractor.
This means their paths will return to the neighbourhood of previously occupied states. In
other words, their ‘lifecycle’ will intersect with some Poincaré section in phenotypic state-
space (possibly many times). We will take this intersection to be a mathematical image of
persistence, which is underwritten by the flow parameters at any point in evolutionary time.

Figure 2. Schematic showing the hierarchical relationship between particles at scales i and i + 1. For
clarity, sensory and autonomous states are illustrated in blue and pink, respectively. Note that each
variable is a (very large) vector state that itself is partitioned into multiple vector states. At scale

i + 1, each particle represents an ensemble (e.g., π
(i+1)
m is population m), the elements of which are

partitioned into autonomous and sensory subsets (e.g., α
(i+1)
mn is the n-th autonomous genotype from

population m). At scale i, each particle represents an element of an ensemble (e.g., π
(i)
l is the l-th

phenotype), which is itself partitioned into sensory and autonomous subsets. The slow states of
each element (e.g., phenotype) are recovered by the reduction operator R, to furnish the states at
the ensemble level (e.g., genotype). A key feature of this construction is that it applies recursively
over scales.

At the phylogenetic scale, we have a partition into populations of phenotypes based
upon which phenotypes influence each other. At this slow scale, states can be read as
characterising the ‘kind’ of ‘thing’ that has particular states at the scale below. We will,
therefore, refer to states at this level as (natural) kinds, noting that the ‘kind of thing’ in
question does not change at the fast scale. We can now rehearse the particular partition
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at the phylogenetic scale, noting that for a population to exist, it must have a particular
partition. Here, a population corresponds to a set of particular kinds x(i+1) = (η, s, a, µ).
These include external, sensory, active, and internal kinds.

i. External kinds of particles are phenotypes outside the population that change as
a function of themselves and sensory and active kinds: c.f., the target of niche
construction, from a molecular through to a cultural level, depending upon the scale
of analysis [77,78].

ii. Sensory kinds mediate the effects of external kinds on the internal members of the
population in question: e.g., nutrients or prey.

iii. Active kinds mediate the effects of internal kinds on external kinds: e.g., agents
who mediate niche construction, from a molecular through to a cultural level,
depending upon the scale of analysis.

iv. Internal kinds influence themselves and respond to changes in sensory and ac-
tive kinds.

This concludes our formal setup. Next, we consider the coupling between fast pheno-
typic and slow phylogenetic dynamics. As in other applications of the free energy principle,
this coupling emerges as a property of any phylogenetics that possesses an evolutionary
steady state. In other words, the idea here is to identify the properties of a system that
exists, as opposed to identifying the properties that underwrite existence. We will see that
the emergent properties look very much like natural selection.

2.4. Natural Selection: A Variational Formulation

To specialise particular partitions to natural selection, we will associate autonomous
(active and internal) kinds with the (extended) genotypes that constitute a population of
agents, noting that there is no requirement for agents to belong to the same equivalence
class—they just interact, in virtue of the sparse coupling that defines their grouping into a
population. For example, some agents could be animals, and others could be plants.

At the phylogenetic scale, an agent is an autonomous kind from a particular population.
At the phenotypic scale, the agent has particular (phenotypic) states, whose dynamics or
paths depend upon its (genotypic) kind. For ease of notation, we will deal with a single
population where the phenotypic state of the n-th agent, α

(i+1)
n , will be denoted by π

(i)
l (i.e.,

dropping the m in Figure 2). With this formalism in place, we can formulate the coupling
between phenotypic and phylogenetic dynamics with the following lemma:

Lemma 1. (Variational fitness): If, at non-equilibrium evolutionary steady state, the likelihood of
an agent’s genotype α

(i+1)
n = R ◦ π̃

(i)
l is proportional to the likelihood of its phenotypic trajectory

π̃
(i)
l (where\denotes exclusion),

=(i+1)
n = =(α(i+1)

n

∣∣∣π(i+1)\α(i+1)
n )

= A(π̃(i)
l

∣∣∣x(i)l ⊂ π(i+1)) = A(i)
l

(11)

then the following holds:
An agent’s autonomous dynamics can be cast as a gradient descent on a Lagrangian,

whose path integral (i.e., action) corresponds to negative fitness. This Lagrangian depends
upon the flow parameters (and initial states) supplied by the genotype. The agent’s geno-
type can then be cast as a stochastic gradient descent on negative fitness. This formulation
emphasises the relationship between gradients on fitness (selection) and the stochastic
terms that are uncorrelated with selection (drift):
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Formally, the generalised gradient descent at the phenotypic scale corresponds to Bayes-
ian filtering or inference [76] that maximises the marginal likelihood of phenotypic paths. 
This is almost tautological, in that it says that deviations from the most likely develop-
mental trajectory, given some genotype, are unlikely. An additional subtlety here is that 
the Lagrangian, which plays the role of a Lyapunov function, is a function of sensory 
states. The implication is that the gradients are not static, but themselves change based 
upon the way in which the environment interacts with a creature during its development. 
The stochastic gradient descent at the phylogenetic scale corresponds to Bayesian learning 
via stochastic gradient Langevin dynamics [79], equipped with solenoidal mixing [80]. 

On this Bayesian reading, phenotypic dynamics infer their external dynamics, under 
a probabilistic model of how external dynamics generate phenotypic dynamics. Intergen-
erational genetic changes can be seen as learning the parameters of a generative model, 
given the Bayesian model evidence supplied by the scale below (e.g., extended pheno-
type). This reading rests upon the action (i.e., negative fitness) scoring the accumulated 

Formally, the generalised gradient descent at the phenotypic scale corresponds to
Bayesian filtering or inference [76] that maximises the marginal likelihood of phenotypic
paths. This is almost tautological, in that it says that deviations from the most likely
developmental trajectory, given some genotype, are unlikely. An additional subtlety here is
that the Lagrangian, which plays the role of a Lyapunov function, is a function of sensory
states. The implication is that the gradients are not static, but themselves change based
upon the way in which the environment interacts with a creature during its development.
The stochastic gradient descent at the phylogenetic scale corresponds to Bayesian learning
via stochastic gradient Langevin dynamics [79], equipped with solenoidal mixing [80].

On this Bayesian reading, phenotypic dynamics infer their external dynamics, under a
probabilistic model of how external dynamics generate phenotypic dynamics. Intergen-
erational genetic changes can be seen as learning the parameters of a generative model,
given the Bayesian model evidence supplied by the scale below (e.g., extended phenotype).
This reading rests upon the action (i.e., negative fitness) scoring the accumulated evidence
p(
→
π
∣∣∣x) for a phenotype’s generative model, p(

→
η ,
→
π
∣∣∣x) encoded by the extended genotype

x. This evidence is also known as a marginal likelihood because it marginalises over external
dynamics; i.e., other agents.

Proof. The condition in (11) means that the probability of finding an agent of a particular
kind is proportional to the likelihood of its phenotypic path, namely, the likelihood a
phenotype keeps to the ‘trodden path’, characteristic of the ‘kind’ of ‘things’ that persist. The
existence of a nonequilibrium evolutionary steady-state solution to the density dynamics (at
both scales) allows us to express the fast and slow dynamics of agents and their autonomous
states in terms of Helmholtz–Hodge decompositions. From (1) and (2), we have

.
α
(i)
l = (Q(i)

α − Γ(i)
α )∇

α
(i)
l
=(i)
l + ω

(i)
l

=(i)
l = =(π(i)

l

∣∣∣x(i)l ⊂ π(i+1))



.
α
(i+1)

= (Q(i+1)
α − Γ(i+1)

α )∇α(i+1)=(i+1) + ω(i+1)

=(i+1) = =(π(i+1))
(13)

The gradients of surprisal at the slow scale, with respect to any given agent’s ‘kind’ or
genotype, are the gradients of action by (11):

∇
α
(i+1)
n
=(i+1) = ∇

α
(i+1)
n
=(i+1)

n = ∇
α
(i+1)
n
A(i)
l (14)

Substituting (14) into (13) gives the slow, phylogenetic dynamics in (12) (ignoring
certain solenoidal terms). �

For the fast, phenotypic dynamics, we assume that random fluctuations vanish to
describe phenotypes that possess classical (i.e., Lagrangian) mechanics, i.e., that are dom-
inated by conservative or solenoidal dynamics. In the limit of small fluctuations, the
autonomous paths become the paths of least action, i.e., when the fluctuations take their
most likely value of zero. From (4), the autonomous paths of least action are as follows
(setting λ = 1):

.
→
α
(i)

l = D
→
α
(i)
l −∇→

α
(i)
l
L(→π

(i)
l

∣∣∣∣∣x(i)l ) (15)

Substituting (15) into (13) gives the fast dynamics in (12).
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Remark 1. Note that the extended genotype x(i)l =
{

η
(i)
l , π

(i)
l

}
⊂ π(i+1) includes the initial

states of the extended phenotype. In other words, the extended genotype covers both the genetic
and epigenetic specification of developmental trajectories and the initial conditions necessary to
realise those trajectories, including external states (e.g., conditions necessary for embryogenesis),
η(0)(i)l ⊂ η

(i)
l .

A useful intuition as to the biological role of the Lagrangian in Equation (11) is
that it specifies the states (or trajectories) of a system that has achieved homeostasis. The
function will return a small value when physiological measurements are within homeostatic
ranges, and increasingly large values as deviations from these ranges become larger. The
conditioning upon slow (genotypic) variables means that different sorts of homeostatic
ranges are allowable for different sorts of phenotypes. The relationship between the (fast)
action and (slow) Lagrangian in Equation (11) implies that phenotypic trajectories—in
which homeostasis is maintained—are associated with genotypes that are more likely to be
replicated. More precisely, the Lagrangian favours (i.e., its path integral is smaller for) those
trajectories in which opportunities for replication are attained—and successful maintenance
of homeostasis is only one aspect of this.

The suppression of random phenotypic fluctuations does not preclude itinerant trajec-
tories. Indeed, it foregrounds the loss of detailed balance and accompanying nonequilibria
that characterise phenotypic and population dynamics [81–83]: for example, biorhythms
and chaotic oscillations at the phenotypic scale [84–88] or Red Queen dynamics at the
phylogenetic scale [83,89,90]. A system that has the property of detailed balance is one in
which time reversal makes no qualitative difference to the dynamics of that system. The
implication is that systems in which the solenoidal flow is zero possess detailed balance,
while those with a non-zero solenoidal flow do not. The presence of solenoidal flow means
that time reversal also leads to a reversal in the direction of this flow. Please see [31] as a
relatively recent example of the Helmholtz–Hodge decomposition in Darwinian processes
and [80] for a generic treatment of stochastic chaos in this setting. Furthermore, there
is no requirement for the grouping operator to return the same partition at each instant
of its application. This follows because the grouping operator is determined by sparse
coupling among particles at the scale below, which itself may change as certain particles
become ‘shielded’ from others [91]: for example, during the self-assembly of particular
partitions associated with cell-division, multicellular organisation and development [57].
Mathematically, this permits wandering sets (i.e., partitions) at each scale, where fitness
gradients remain well-defined, because they inherit from the dynamics of the scale below.

Implicit in the renormalisation group construction is the notion that variational selec-
tion could operate at multiple scales. In other words, although framed in terms of natural
selection and evolution, the variational formulation above does not commit to separation
of temporal scales apt for replication or reproduction. Any selective mechanism that fulfils
the fitness lemma (Lemma 1) will, in principle, be subject to the same selective mechanics.
Common examples could include the optimisation of weights in neural networks and their
structure learning [45,76,92]. In a biological setting, this selection process could correspond
to developmental stages that have well-defined (separation of) temporal scales. Finally,
we take a closer look at phenotypic dynamics and explain why they can be construed as
sentient behaviour.

3. The Sentient Phenotype

An ontological interpretation of phenotypic dynamics—in terms of sentient behaviour
or active inference—obtains by expressing the Lagrangian as a variational free energy. For
clarity, we will drop the sub- and superscripts (and condition on the extended genotype x)
to focus on the generalised states of a given phenotype.

Lemma 2. (Variational free energy): If the autonomous dynamics of a particle or phenotype evince
classical (Lagrangian) mechanics, then they can be expressed as minimising a variational free energy
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functional of Bayesian beliefs—about external states—encoded by their internal phenotypic states,
p→

µ
(
→
η ), under a generative model encoded by their (extended) genotype px(

→
η ,
→
π
∣∣∣x0) :
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This variational free energy can be rearranged in several ways. First, it can be ex-
pressed as an energy constraint minus the entropy of the variational density, which licences
the name free energy [93]. In this decomposition, minimising variational free energy
corresponds to the maximum entropy principle, under the constraint that the expected La-
grangian is minimised [51,94]. The energy constraint is a functional of the marginal density
over external and sensory states that plays the role of a generative model (i.e., parameterised
by the extended genotype), namely, a joint density over causes (external dynamics) and
their consequences (autonomous dynamics). Second—on a statistical reading—variational
free energy can be decomposed into the (negative) log likelihood of particular paths (i.e.,
accuracy) and the KL divergence between posterior and prior densities over external paths
(i.e., complexity). Finally, it can be written as the negative log evidence plus the KL divergence
between the variational and conditional (i.e., posterior) density. In variational Bayesian
inference [95], negative free energy is called an evidence lower bound or ELBO [96–98].

Proof. The sparse coupling—that underwrites a particular partition—means autonomous
paths (i.e., generalised states) depend only on sensory paths. This means there is a (deter-
ministic and injective) map from the most likely autonomous paths (of sufficiently high
order generalised motion) to the conditional density over external paths, where both are
conditioned on sensory paths. This injection means we can consider the conditional density
over external paths as being parameterised by internal paths. We will call this a variational
density (noting from (6) that internal paths are conditionally independent of external paths):
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µ
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→
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→
η
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→
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→
η
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→
a ,
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α
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→
α
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→
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µ
Lx(

→
µ
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→
a )

→
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a
Lx(

→
a
∣∣∣→s ,
→
µ)

(17)

This definition means that the Lagrangian and variational free energy share the same
minima, where their gradients vanish:
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If autonomous dynamics are conservative, their trajectory is a path of least action and we 
can replace the Lagrangian gradients in (12) with variational free energy gradients to give 
(16). □ 
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fitness can be read as self-evidencing [99]: namely, actively soliciting evidence for generative models 
endowed by evolution. In short, autonomous dynamics (appear to) actively infer external states 
under a generative model, whose parameters are (apparently) learned by minimising a path integral 
of variational free energy. 

If autonomous dynamics are conservative, their trajectory is a path of least action and
we can replace the Lagrangian gradients in (12) with variational free energy gradients to
give (16). �

Remark 2. The free energy lemma (Lemma 2) associates negative fitness with variational free
energy, such that phenotypic behaviour will appear to pursue paths of least free energy or greatest
fitness. Because variational free energy is an upper bound on log evidence, the pursuit of maximum
fitness can be read as self-evidencing [99]: namely, actively soliciting evidence for generative models
endowed by evolution. In short, autonomous dynamics (appear to) actively infer external states
under a generative model, whose parameters are (apparently) learned by minimising a path integral
of variational free energy.

The functional form of variational free energy licences a teleological interpretation
of autonomous dynamics; the internal paths can be read as the sufficient statistics or
parameters of (approximate) Bayesian beliefs about external states, while active paths will
(appear to) change the posterior over external states to ‘fit’ internal (Bayesian) beliefs. In
other words, active dynamics will look as if they are trying to fulfil the predictions of
internal representations. A complementary interpretation inherits from the decomposition
of variational free energy into complexity and accuracy. Minimising complexity means that
generalised internal states encode Bayesian beliefs about external states that are as close as
possible to prior beliefs, while generalised active states will look as if they are changing
sensory states to realise those beliefs. These interpretations—in terms of perception and
action—furnish an elementary but fairly expressive formulation of active inference. For
example, the free energy formulations above have been used to emulate many kinds of
sentient behaviour, ranging from morphogenesis [100], through action observation [101],
to birdsong [102].

Although not developed here, the renormalisation group construction means that we
can apply the same arguments to autonomous kinds—i.e., agents—at the slow scale. In
other words, on average, the extended genotype of internal kinds comes to encode Bayesian
beliefs about external kinds, while active kinds will look as if they are trying to realise those
beliefs, via niche construction [77,103–105]. In virtue of the minimisation of variational free
energy, we have an implicit maximum entropy principle, which brings us back to [21,22]
via [49].

4. Variational Recipes

Effectively, we are describing the evolutionary developmental process with the follow-
ing protocol:

i. First, generate an ensemble of particles (i.e., extended phenotypes) by sampling
their flow parameters and initial states (i.e., extended genotypes) from some initial
density.

ii. For each particle, find the path of least action using a generalised Bayesian filter
(i.e., active inference).

iii. After a suitable period of time, evaluate the path integral of variational free energy
(i.e., action) to supply a fitness functional.

iv. Update the flow parameters and initial states, using a stochastic gradient descent
on the action (i.e., Darwinian evolution).
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If this protocol were repeated for a sufficiently long period of time, it would converge
to an attracting set, assuming this pullback attractor exists [32]. In statistical mechanics, this
would be a nonequilibrium steady state, while in theoretical biology, it would correspond
to an evolutionary steady state, at a certain timescale.

The notion of a steady state is clearly an idealization, as it assumes an unchanging
environment. The local environments of all organisms are, however, moving targets, largely
due to the activities of other organisms. Even if all of Life is considered a single population,
it faces a changing local (i.e., biospheric) environment due to its—Life’s—own activities, as
well as to bolide impacts and other abiotic causes. Hence, we can expect evolution to remain
always ‘in process’ even for large, diverse populations. The assumption of an asymptotic
evolutionary steady state is, therefore, effectively an assumption of a local (in time) steady
state that has a lifetime long enough for evolutionary processes to be significant but short
enough that the local environment of the evolving system can be considered approximately
fixed. We now conclude with a simple application of the above protocol to a special case of
selection in neurobiology.

A Numerical Study of Synaptic Selection

Figure 3 shows the results of a numerical study of selection processes, using the
variational procedures above. This example illustrates the interplay between minimising
variational free energy over somatic lifetimes and its use in selecting phenotypes at a slow,
transgenerational, timescale. This example considers a relatively straightforward selection
process in neurobiology, namely, synaptic selection in neurobiology, which illustrates
the nested scales over which free energy minimising processes evolve. Specifically, we
simulated a single neuron (i.e., nerve cell) immersed in an environment constituted by
potential pre-synaptic inputs in the surrounding neuropil. Unbeknown to the neuron (or
more specifically, its dendritic tree), these presynaptic inputs fluctuated systematically
with spatially structured waves of activation. These waves could only be detected by
deploying postsynaptic specialisations (i.e., sensory states) in an ordered sequence along
the dendrite. The details of this simulation are not important, and can be found in [106]. The
key point here is that the cell’s adaptive fitness—read as negative variational free energy—
depends upon predicting its synaptic inputs through internal, intracellular dynamics that
recapitulate the external, extracellular or environmental generation of sensory (synaptic)
inputs. However, to do this, the dendrite has to have the right morphology, parameterised
by the location of synapses on the dendritic surface.

To model learning and inference, the synapses were rendered more or less sensitive
to their presynaptic inputs by optimising their sensitivity (a.k.a., precision) with respect
to variational free energy in a biologically plausible fashion (i.e., using electrochemical
equations of motion that performed a gradient flow on variational free energy). This
meant that as the cell accumulated evidence from its presynaptic environment, its free
energy decreased, and it became better at predicting its presynaptic inputs. However, this
ability to predict depends upon selecting synapses that are located in the right order, along
the dendrite.

To simulate synaptic selection, we used Bayesian model selection to compare the evi-
dence for a cell’s model with and without a particular synaptic connection. If the free energy
increased, the postsynaptic specialisation was moved to another location at random. This
process was repeated to simulate slow (Bayesian model) synaptic selection, until the pheno-
typic morphology of the dendrite was apt for accurately modelling (i.e., fitting) the waves
of pre-synaptic input. In this example, the Bayesian model selection used Bayesian model
reduction [107], based upon the optimised sensitivity (i.e., precision) of each synapse: very
much along the lines of synaptic regression and implicit homeostasis [108–110]. Figure 3
shows the progressive reduction in free energy at a slow timescale as the synapses that enable
the cell to predict or fit its environment are selected.
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Figure 3. Synaptic selection. This figure reports the results of numerical studies using fast free-energy
minimising processes to model phenotypic dynamics and slow free-energy minimising processes
to select phenotypic configurations or morphologies that, implicitly, have the greatest adaptive
fitness or adapt to fit their environment. In this example, we focus on the selection of synapses
of a brain cell (i.e., neuron) that samples presynaptic inputs from its neuropil (i.e., environment).
The details of the generative model—used to simulate intracellular dynamics as a gradient flow on
variational free energy—can be found in [107]. The key thing about these simulations is that—after a
period of time—certain synapses were eliminated if Bayesian model selection suggested that their
removal increased Bayesian model evidence (i.e., decreased variational free energy). (A): Findings
in [111] suggest that neurons are sensitive to the pattern of synaptic input patterns. The image
shows a pyramidal cell (blue) sampling potential presynaptic inputs from other cells (yellow) with
postsynaptic specialisations (red). (B): In this model, pools of presynaptic neurons fire at specific
times, thereby establishing a hidden sequence of inputs. The dendritic branch of the postsynaptic
neuron comprises a series of segments, where each segment contains a number of synapses (here:
five segments with four synapses each). Each of the 20 synapses connects to an axon of a specific
presynaptic pool. These provide presynaptic (sensory) inputs at specific times over the length of a
dendrite. If each of the 20 synapses were deployed in an orderly fashion across the five segments—as
in the connectivity matrix—an orderly sequence of postsynaptic activations would be detected, and,
implicitly. (C): The lower panels show the deployment of synaptic connections over 64 ‘generations’
(i.e., cycles), in which the precision (a.k.a. sensitivity) of synapses was used to eliminate synapses if
they did not contribute to model evidence. Each ‘lifetime’ of the cell was 120 (arbitrary) time units,
during which time two waves of activation were detectable. The upper panels score the ensuing
increase in marginal likelihood or adaptive fitness (negative free energy) over the 64 generations.
The left panel shows the accompanying increase in the sensitivity (i.e., log-precision) of the 20
synapses as they find the collective arrangement that maximises adaptive fit or model evidence for
this (neuronal) environment.
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5. Discussion

One insight from the above analysis is that populations are not necessarily quotient sets of
equivalence classes. Put simply, there is no assumption that any given particle shares phenotypic
or genotypic characteristics with any other particle. This observation is interesting on two counts.
First, it suggests that treating a population as an equivalence class of conspecifics may not be
sufficient, in the sense that the population includes all of the (natural) kinds that interact to
maintain their particular partition. The fact that all ‘individual’ multicellular eukaryotes appear
to be holobionts—effectively, complex, multispecies ecosystems—bears this out [95,96]. The
‘genotype’ of such a system is a probability distribution of probability distributions, each of
the latter over one of the component ‘species’ composing the holobiont. The phenotype of the
holobiont, including its reproductive success and hence ‘fitness’ in the narrow reading, is a
function of this bilevel probability distribution. Differential rates of genetic change between
component genomes—and the fact that actions at the phenotypic level can alter the genotype as
a probability distribution (e.g., humans can take anti- or probiotics)—complicate the difference
in characteristic times assumed in Lemma 1, as discussed further below. Second, even if some
agents share the same genotype, their phenotypes can specialise in distinct ways to minimise
their joint variational free energies. This is obvious in the case of multicellular eukaryotes, all of
which exhibit differentiation of cellular phenotypes during morphogenesis; see [89] for a worked
example specifically employing the FEP formalism, and [97] for simulations demonstrating
that multicellularity with differentiation provides a generic means of minimising VFE from
the environment. These considerations together mandate a quintessentially co-evolutionary
perspective that emphasises co-dependencies and co-creation [16,98–100].

However, the emergence of equivalence classes—e.g., ‘species’ of holobionts—begs expla-
nation. A potential answer is the generalised synchrony between particles, as they find their
joint variational free energy minima—and become mutually predictable; e.g., [52,91]. In an evo-
lutionary setting, one can imagine the search for joint variational free energy minima leading to
convergent evolution or speciation (Luc Ciompi, personal communication; [101]). Reproduction
is, in all extant organisms, a matter of cell division, and closely related cells reap a free-energy
advantage by working together [97]. An effective—though metabolically, morphologically, and
behaviourally expensive—mechanism to protect this advantage is sex. The proliferation of
species-specific morphological and behavioural specializations, together with the suppression
of stem-cell pluripotency required to render sex obligate [102] in ‘higher’ eukaryotes, attests to
the success of this strategy. From the present perspective, sex is a particularly elaborate feedback
pathway—from the phenotypic to the genotypic scale—that preserves the integrity of the latter.
It is, in other words, a mechanism that decreases VFE for the genome at the expense of increased
VFE for the phenotype.

The synthesis of biological evolution and development on offer here is an example of
a generalised synthesis: applicable, under the free energy principle, to all kinds of things.
This synthesis can be read as generative models autopoietically generating entities and then
using the ‘fit’ of the model to the niche as evidence for updating the model, in a cyclical
process summarised in Figure 4.

Figure 4. Phylogeny and ontogeny as bottom-up and top-down causation.
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6. Limitations

As with most applications of the free energy principle, the variational account alone
does not supply a process theory. Rather, it starts from the assumption that a nonequilib-
rium (evolutionary) steady state exists and then describes the dynamics that the system
must exhibit. Thus, the variational account enables various process theories to be proposed
as specific hypotheses about biological systems. For example, the genetic variation in the
above formulation follows from the Helmholtz decomposition or fundamental theorem
of vector calculus. However, the ensuing stochastic gradient Langevin dynamics does
not specify the particular processes that give rise to this kind of dynamics, e.g., [103].
There are many candidates one could consider: for example, simple rejection sampling or
more involved genetic algorithms that provide a plausible account of bisexual reproduc-
tion [104,105]. A computationally expedient way of evaluating the requisite gradients—for
example those for simulating artificial evolution—could call upon Bayesian model reduc-
tion [45,112]. Irrespective of the replication or reproduction process, it must, on the present
analysis, conform to a stochastic gradient flow on ‘fitness’ with solenoidal mixing [72,78,79].

This openness to multiple process theories is an advantage of the current approach,
both in convergence situations in which diverse genomes produce very similar pheno-
types [112] and in the complementary situations in which a single genome supports diverse
phenotypes. Neither situation is rare: genomes as different as those of Amoeba proteus and
Homo sapiens can produce amoeboid cells, and the differentiated cells of any multicellular
organism illustrate phenotypic diversity at the cellular level. While the general theory out-
lined here merely requires that some process exists, we can realistically expect one-to-many
process mapping in both directions when dealing with real biological systems.

The primary offering of this variational formulation of natural selection—from an
empirical perspective—is that one can hypothesise alternative forms for the Lagrangian.
Each choice of Lagrangian will have consequences not only for the dynamics over physio-
logical and developmental timescales but will also allow for predictions as to evolution over
phylogenetic timescales. It is also worth noting that the account of natural selection set out
here, in which genotypic evolution depends upon the action of phenotypic paths, applies
to systems that satisfy the variational fitness lemma (Lemma 1): namely, the likelihood
of an agent’s genotype corresponds to the likelihood of its phenotypic trajectory. While
a plausible assumption—that is intuitively consistent with Darwinian evolution—we did
not examine the conditions under which this assumption holds. This means there is an
opportunity to further the ideas set out in this paper by examining the sorts of stochastic
systems in which the variational fitness lemma (Lemma 1) holds. It could be argued that
Lemma 1 must hold at least in those systems where the genotype transforms into the
phenotype retaining an equivalence within stochastic limits. For example, gene expression
is the most fundamental level at which the genotype gives rise to the phenotype, and this
mapping from genotype to phenotype is the subject of the many process theories studied
by developmental biology. On a teleological view, one might further argue that active
inference is necessary to maintain a high degree of equivalence during the course of this
transformation and to preserve a correspondence between genotype and phenotype.

Available edge cases are, however, informative. Single mutations can induce saltatory
changes in phenotype; a canonical example is the four-winged Drosophila melanogaster fly
produced by combining three mutations, abx, bx3, and pbx of the bithorax complex in a
single animal [113]. In complementary fashion, the planarian Dugesia japonica reproduces
by fission followed by regeneration and has a heterogeneous, mixoploid genome with no
known heritable mutants [114]; the phenotype of this animal has, however, remained stable
for many thousands of generations in laboratories, and in all likelihood for millions of
years in the wild. The phenotype can, moreover, be perturbed in saltatory fashion from
one-headed to two-headed by an externally imposed bioelectric change; this altered pheno-
type is bioelectrically reversible but otherwise apparently permanent [115]. Engineering
methods can create even more radically diverse phenotypes without genetic modifications,
as demonstrated by the ‘xenobots’ prepared from Xenopus laevis skin cells, which adopt



Entropy 2023, 25, 964 19 of 23

morphologies and behaviours completely unlike those that skin cells manifest when in the
frog [116,117].

The availability of experimentally tractable edge cases of Lemma 1 provides an oppor-
tunity to further the ideas set out in this paper by examining the sorts of stochastic systems
in which the variational fitness lemma (Lemma 1) holds. The kinds of edge cases mentioned
above suggest, however, that Lemma 1 could be weakened to holding ‘up to’ saltatory
events, including abiotic events such as bolide impacts, affecting genotype, phenotype, or
both without substantially affecting the theory. Any systems that survive such events—any
systems whose Markov blankets remain intact—simply carry on, undergoing learning,
variation, and selection as if the saltatory event had never occurred.

One could suggest that Lemma 1, and the broader scope of the formalisms described
here, may be applicable to systems where a population of entities engages in intergenerational
replication (modelled here using the renormalisation operations), and where those entities at a
faster timescale engage in rapid adaptation (e.g., development, learning, behaviour, modelled
with active inference) during their lifetime. These two levels could, for example, model how
genome-based intergenerational evolution sets initial conditions for organismal molecular and
behavioural developments. For the faster intra-generational scale, the external states model the
material basis of what the phenotype is a generative model of. For the slower inter-generational
scale, the external states are updated through time as a process of renormalisation (reduction
and grouping) of the extended genotype-phenotype.

7. Conclusions

This work attempts to unify the slow, multi-generational phylogenetic process of
natural selection with the single-lifetime, phenotypic process of development (equations
and notation summarized in Supplementary Materials). In this perspective, a bidirectional
flow of information occurs as evolution imposes top-down constraints on phenotypic
processes, and action selection provides evidence that is selected for by the environment
(i.e., bottom-up causation). In this account, learning and inference occur through updating
probabilistic beliefs via Bayesian model selection in evolutionary time and active inference
in developmental time. The fitness of (extended) genotypes and (extended) phenotypes is
selected for through the minimisation of the same free energy functional: Bayesian model
evidence or marginal likelihood.

Further studies using both simulations and laboratory experiments are clearly needed
to test this framework in the context of particular process theories that propose explicit
functional connections between genotype and phenotype. While Lemma 1 is prima facie
plausible in the case of idealised ‘central dogma’ organisms in which phenotype is largely
determined by genotype within a tightly constrained, essentially static niche, the relation
between genotype and phenotype in holobionts inhabiting realistic niches can be expected
to be substantially more complex. ‘Egalitarian’ organisms, e.g., obligate symbionts or
holobionts, comprising cells with different genotypes [118] and engineered systems—that
offer cells radically different environments than they have experienced in phylogenetic
evolution to date [119]—may be of particular interest for such studies.

Supplementary Materials: A tabular glossary of mathematical expressions and technical terms used
in this paper can be found at https://www.activeinference.org/research/resources/variational-
evolution (accessed on 19 March 2023), hosted by the Active Inference Institute.
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