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Abstract: Federated learning (FL) represents a distributed machine learning approach that eliminates
the necessity of transmitting privacy-sensitive local training samples. However, within wireless
FL networks, resource heterogeneity introduces straggler clients, thereby decelerating the learning
process. Additionally, the learning process is further slowed due to the non-independent and
identically distributed (non-IID) nature of local training samples. Coupled with resource constraints
during the learning process, there arises an imperative need for optimizing client selection and
resource allocation strategies to mitigate these challenges. While numerous studies have made strides
in this regard, few have considered the joint optimization of client selection and computational
power (i.e., CPU frequency) for both clients and the edge server during each global iteration. In this
paper, we initially define a cost function encompassing learning latency and non-IID characteristics.
Subsequently, we pose a joint client selection and CPU frequency control problem that minimizes
the time-averaged cost function subject to long-term power constraints. By utilizing Lyapunov
optimization theory, the long-term optimization problem is transformed into a sequence of short-
term problems. Finally, an algorithm is proposed to determine the optimal client selection decision
and corresponding optimal CPU frequency for both the selected clients and the server. Theoretical
analysis provides performance guarantees and our simulation results substantiate that our proposed
algorithm outperforms comparative algorithms in terms of test accuracy while maintaining low

power consumption.
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Entropy 2023, 25, 1183. https:// As the rapid expansion of Internet of Things (IoT) communication unfolds, an im-
doi.org/10.3390/¢25081183 mense volume of data generated by massive machine-type devices circulates via wireless
access technology. This advancement instigates the pervasive utilization of machine-
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Published: 9 August 2023 however, potentially leads to privacy data leakage. Consequently, the exploration of ma-

chine learning mechanisms that protect user data privacy is of paramount significance. FL

was proposed as a solution to address the limitations of traditional centralized machine
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learning methods in ensuring user data privacy [1]. This approach permits each device
to partake in the collaborative training of a shared model, negating the need to share the
device’s proprietary data. Since its inception, federated learning has garnered considerable
interest from both academia and industry, finding broad applications in fields such as
mobile cloud computing [2], the industrial Internet of Things [3], and device-to-device
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of wireless resources, such as channel bandwidth, limit the number of clients capable of
participating in each learning iteration. Additionally, client selection for each iteration
needs to be guided by the real-time state of the channel. Secondly, the computational power
and power budget of devices and the edge server are finite, necessitating the optimization of
computational power and power allocation throughout the multi-iteration learning process
in FL, which is essential for both extending battery life and advancing green communication.
A third challenge arises from the latency incurred during the federated learning process,
which constrains its use in scenarios that are latency-sensitive. The latency is determined
by the time required for straggler clients to upload the local model during each learning
iteration, the time spent aggregating the model on the edge server, which is influenced by
the transmission power and CPU frequency in each learning iteration. Furthermore, the
heterogeneity of client behavior and the variable dynamics of wireless environments may
lead to the acquisition of non-independent and identically distributed (non-IID) training
data [5]. Some clients may hold data that significantly deviate from independent identically
distributed (IID) training data, making it challenging for the model to generalize effectively
across all clients.

1.1. Related Work

Ever since the proposition of federated learning, an extensive research effort has
been devoted to improving its performance in wireless networks. This advancement
primarily hinges on designing appropriate client selection schemes [6,7] or optimizing
resource allocation [8-10]. For instance, a client scheduling strategy based on channel and
learning qualities was proposed in [7]. Ref. [9] investigated both the CPU frequency and
transmission power control strategy of all IoT clients to minimize the energy consumption
under latency requirement. The studies presented in [11-13] focused on the optimization
of the client selection process and resource allocation simultaneously, with the objective
of improving federated learning performance. Specifically, Ref. [11] delved into a joint
client selection and resource allocation problem, seeking to optimize the trade-off between
the number of selected clients and the total energy consumption, while [12] focused on
minimizing training loss while adhering to the constraints of delay and energy consumption.
Additionally, Ref. [13] explored the process of client selection and resource allocation under
the condition of non-1ID data distributions.

The aforementioned studies were formulated in the context of individual global it-
erations, overlooking the interdependence between different iterations. This neglects
the cumulative learning effect over multiple iterations, potentially yielding less effective
learning models and limiting overall system performance. Hence, the need for long-term
optimization that accounts for the interconnectedness of global iterations becomes evi-
dent. Numerous research efforts [14-18] have targeted long-term optimization in federated
learning, focusing on various aspects of the problem. For instance, Ref. [14] sought to
optimize the client selection process in each learning round with the aim of minimiz-
ing training latency under fairness constraints. The study presented in [15] introduced
a dynamic scheduling mechanism aimed at optimizing the federated learning process,
striking a balance between the enhancement of learning performance and the reduction of
training latency. Ref. [16] focused on the optimization of radio transmission parameters
and computation resources, attempting to minimize power consumption while upholding
learning performance and latency constraints. Refs. [17,18] focused on client selection and
bandwidth allocation under energy constraints in wireless FL networks. Specifically, the
study in [17] aimed to maximize the weighted sum of selected clients, whereas [18] focused
on minimizing the cost of time and accuracy. While the above works explored long-term
optimization in federated learning, the optimization of the latency and the impact of its
non-IID nature under the long-term power constraints of both clients and the server for FL
have not been considered.
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1.2. Contribution

In this paper, we consider a client selection and CPU frequency control problem in
wireless FL networks. Different from the extant literature, our approach concurrently
optimizes the selection of clients and CPU frequency for both clients and the edge server.
The objective of the proposed problem is to minimize a predefined cost function, which
incorporates latency and model robustness, under long-term power constraints. The main
contributions of our work are as follows:

(1) We develop a comprehensive framework for the long-term client selection and CPU
frequency control problem, taking into account the interdependence of different global
iterations and long-term power consumption constraints for both clients and the server.
The aim is to expedite the learning process by incorporating client and server latency,
as well as the effect of the non-IID distribution of local training samples.

(2) Leveraging Lyapunov optimization theory, we transform the long-term problem into
a set of per-iteration problems. We introduce an algorithm to tackle the per-iteration
problem, accompanied by a theoretical performance guarantee.

(3) We conduct extensive experiments, inclusive of several comparative experiments.
Simulation results demonstrate that our proposed algorithm can yield superior test
accuracy while maintaining low power consumption.

The remainder of this paper is structured as follows. Our proposed framework’s
system model, along with the optimization problem formulation, is elucidated in Section 2.
The solution via the Lyapunov optimization theory, is laid out in Section 3. Section 4
comprises the simulation results, showcasing the superiority of our proposed scheme.
Finally, Section 5 concludes and discusses the paper.

2. System Model and Problem Formulation

The proposed federated learning framework is shown in Figure 1, consisting of a set
of clients £ = {1, ...,K} and a server, with K indicating the total number of clients. Each
client k € K possesses a local dataset Dy = {(x;, yi)}?i 1» wherein x; and y; denote the i-th
sample and its associated ground-truth label of client k, respectively, and d} stands for the

dataset size originating from g label classes.

2.1. Learning Model

Assuming T global iterations, we adopt a}, = 1 to represent the selection of client k in
global iterationt = 0,...,T — 1, with af{ = 0 otherwise. The client selection decisions are
denoted by a' = (at,...,al). The server aims to construct a global model by minimizing
the following global loss function:

K
Y ldyfi(w)]
w* = arg min klei, 1)
¢ L di
k=1

where fi(w) is the local loss function at client k. For instance, the loss function for linear
regression is given by:

filw) = 5 (xTw — ). @

The goal of the training process is to find the optimal model w* though iteration. A
global iteration t consists of four steps:

(1) Each client shares its side’s information. Subsequently, the server selects a group of
clients and broadcasts the current global model w' to them.

(2) The selected clients execute a local iteration to update their local models w]tc based on
their respective datasets.

(8) The selected clients upload their newly updated local models to the server.
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(4) The server aggregates all the received local models to establish a new global model, as

K K
represented by w'™ = ¥ (alwt)/ ¥ al.
k=1

Server

(4)

— Global model broadcast

Global
Local model upload model

Local
model

Selected clients Unselected clients

Figure 1. Federated learning framework in wireless networks.

2.2. Power Consumption Model

In each global iteration, the selected clients engage in training and uploading models
while the server aggregates these received models. This process contributes to power
consumption. We represent the overall CPU frequency control decisions of the clients as
= (..., fL), where f! indicates the CPU frequency of client k in the global iteration
t. Notably, if a; = 0, then f] also equals zero. The power computation of the training
model can be expressed as P,f’tr = 71(f})%a}, where 1 denotes the capacitance coefficient

of clients [18]. Let P,:’”p = ptal denote the power spent for uploading the model; thus, the
total power consumption of client k during the global iteration t is given by:

P = Pi'" + P 3)

On the other hand, the CPU frequency of the server during the global iteration ¢ is
represented by £/, and the server’s capacitance coefficient is denoted as 7y,. Consequently,
the power consumption of the server during the global iteration f can be formulated
as follows:

Pl = 1(f)3. @

2.3. Latency Model

Let m represent the number of local iterations in each global iteration, and ¢ stand for
the number of CPU cycles necessary to process a sample from client k. The local training
latency for selected client k in global iteration ¢ can then be calculated as T]f’t’ = meydiay/ fi,
which will linearly decrease as the allocated local computing power f} increases.

When the local training is finished, the selected clients upload their models to the
server via orthogonal frequency-division multiple access (OFDMA). The total available
bandwidth is denoted as B, and it is assumed that this bandwidth is equally allocated to
the selected clients during the global iteration . Consequently, the bandwidth allocated to
a selected client k in global iteration ¢ can be represented as

K
' =B/ Y al. (5)
k=1
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The model size is represented as s; therefore, the latency for model uploading is given by

t
t, sa
i ©

where &} denotes the channel gain between client k and the server during the global
iteration t, which is assumed to be available at the transmitter side. Ny denotes the power
spectral density of noise. The total latency of client k can be formulated as:

7l = T]: A4 tup. 7)

At the server side, let 7/ denote the latency of the server in global iteration ¢, which
can be written as:
K
L aj
t =1
T, = , (8)
B/
where ¢ is the quantity of processing cycles required to carry out a single summation
operation [16].
We assume that the server starts aggregating after receiving all the local models of
selected clients. Therefore, the learning latency of global iteration ¢ is bottlenecked by the
straggler clients and can be derived as:

t t t
T = T T 9
kinﬁ.’.‘K( i) T T 9

2.4. Cost Model

The non-IID nature of data introduces biases in the training process, which significantly
impacts the accuracy of FL. As noted in [13], a larger number of label classes might result in
a more robust trained model, and the non-IID nature could decrease when clients possess
more label classes. In this paper, we use label classes g; to quantify the non-IID nature
with an aim to minimize both the learning latency and accuracy degradation caused by it.
However, reducing the latter could potentially increase the learning latency. Therefore, we
propose a cost objective function U’ to balance the two goals during the global iteration t:

K
ut(a', ff, /)y =t —u Y (apqe), (10)
k=1

where yi is a price parameter, which turns the label classes into a cost form [19].

2.5. Problem Formulation

From the aforementioned discussion, we consider an optimization problem that minimizes the
time-averaged cost function through joint client selection and CPU frequency control as follows:

PL i 7 Zuf.fﬂ (11)
st fRin < g < pmax vy (12)
fmm < f < fmax Vt (13)

al € {o 1}, Vk,Vt, (14)

f ;) P{ < Py, Vk, (15)

Z (16)

i
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where G! = (a, ft, frt) is the optimization variables in global iteration t,t = 0,1,..., T — 1.
Constraint (12) and (13) specify the CPU frequency range of each client and the server,
respectively. Constraint (14) defines whether each client is selected or not. Constraint
(15) guarantees that the average power consumption of each client is limited by P, while
constraint (16) guarantees that the average power consumption of the server is limited by
Py. For clarity, in the following sections of this paper, we succinctly refer to the cost function
introduced in Equation (10) as U".

3. Problem Solution and Algorithm Design

A direct resolution of problem P1 is not viable due to the time-averaged optimization
objective and long-term power constraints. Therefore, in this paper, problem P1 is initially
transformed into a per-iteration problem by utilizing Lyapunov optimization theory. Sub-
sequently, this per-iteration problem is decomposed into two distinct subproblems: a CPU
frequency control problem, which assumes fixed client selection decisions, and a client
selection problem that operates under the optimal CPU frequency setting.

3.1. Problem Transformation via Stochastic Optimization Theory

The resolution of problem P1 necessitates comprehensive information, such as channel
gain, pertaining to T global iterations. However, the unavailability of future information
in the present moment presents a formidable challenge. To circumvent this issue, P1 is
converted into a series of subproblems, the solutions for which do not rely on the knowledge
of future iterations. This transformation is achieved through the application of Lyapunov
optimization theory [20] and the introduction of virtual queue techniques. For each client,
a virtual power deficit queue Z} is established, with an initial condition of Zg =0, and
updated at the end of each global iteration as follows:

ZI = max{P{ — P, + Z},0}, (17)

where Z{ encapsulates the disparity between power consumption and the long-term power
constraint of client k over T iterations. A similar approach can be used to construct a virtual
power deficit queue Y for the server, as depicted:

Y = max{P! — P, + Y!,0}. (18)

To maintain the mean rate stability of the queues, we first establish a Lyapunov
function in the following form:

K

1Y (2% + (Y2, (19)

k=1

L(®") =

N —

where @' symbolizes all the virtual deficit queues. Then we formulate Lyapunov drift to
measure the expected increase as of L(@") as follows:

A(@®") = E[L(0'!) — L(0")|0]. (20)

With the objective of restricting the growth of virtual deficit queues and minimizing
the cost function, the objective function is integrated into the Lyapunov drift. Consequently,
the drift-plus-cost function is defined as follows:

A(@") + VE[U!|@'], (21)

where V serves as a control parameter that aids in balancing the trade-off between min-
imizing the objective function and adhering to the power constraints. An observation
of (21) indicates that it solely involves the current iteration ¢, signifying that the original
problem P1 can be transitioned into a real-time problem solved on a per-iteration basis. The
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application of Lyapunov optimization theory provides the following lemma regarding the
upper bound of the drift-plus-cost function:

Theorem 1. Assume P > P{ for each client k, and P > P} for the server in global iteration
t. The drift-plus-cost function satisfies:

K
A(@") + VE[U'|®'] < C1 + Y ZLE[P{ — P|®'] + Y/E[P} — P,|®'] + VE[U'|®'], (22)
k=1

K _ _
where Cy is a finite constant, which satisfies C; > 3 kZl (Pax — B + J(pmax _ p,)2,

Proof. The proof is given in Appendix A. O

By minimizing the upper bound in Equation (22), virtual deficit queue stability is
achieved concurrently with cost function minimization. Upon excluding all constants (i.e.,
C, PkZ,t(, bBY?h), problem P1 can be transformed into a per-iteration problem P2:

K
P2 min ) | (PZ;) + BY; + VU’ (23)
G k=1
s.t. (12)—(14).
3.2. Problem Solution
To simplify the complexity, U' in Equation (21) is substituted with an upper bound

Z T+t —p Z (alqt), derivable through the application of rqax () < E 7.

Consequently, the resolut10n of P2 can be reoriented towards the following problem

K
P3 min ) | (P Z;) + PY; + VU (24)
G k=1
s.t. (12)-(14).

Problem P3 manifests as a mixed-integer problem and poses a significant challenge
for direct resolution. However, given any a', the objective function of P3 transforms into a
convex function with respect to the CPU frequency of the selected clients and the server, i.e.,
f} and ff. Consequently, the optimal CPU frequencies for selected clients and the server
can be efficiently procured as

f]znin, Zf 4 Vmckdk fmm

3Z}t(’}’]
¢ Vmeid
(7 =4 g if o Vs . oo @5)
4 ‘g’gfkd" otherwise,

and

V¢Za’

min f 3Yf72 fmm
AL 4| V¢ Z at 2
( r) max Zf 3Yf72 > fmax (26)

,otherwise,
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respectively.
With the optimal CPU frequency established, the objective of problem P2 becomes a
function of a' and can consequently be transformed as follows:

K
. tot tyt t
P4 min k§:1 (PtZy) + PY; +vU (27)

st ff = (fi)*,Vk,
fi=0%
(14).

A straightforward strategy to resolve P4 involves traversing all possible client selection
scenarios and then selecting the scheme that minimizes the objective function. However, the
complexity of this approach escalates rapidly with an increase in the total number of clients.
Therefore, we introduce an efficient algorithm designed to address P4 in Algorithm 1.
In this proposed algorithm, during each global iteration, clients with I} = P{Z — Vug}
lower than 0 are included into the initial set X6. Thereafter, considering that learning
latency is determined by straggler clients, these | X}| clients are incorporated one by one
into the auxiliary selection set X! in ascending order according to their total latency T/,
thereby generating |X/| auxiliary selection sets. Here | - | signifies the count of elements
within the set. These |X}| auxiliary selection sets are subsequently accumulated in the
client selection set X'!. We then compute the value of the objective function of P4 for each
auxiliary selection set within X! and select the optimal auxiliary selection set (X!)* that
minimizes the objective function of P4. Utilizing our proposed algorithm, throughout each
global iteration, only | X} | computations of the objective function are required to attain the
optimal solution. Consequently, this represents a significantly lower complexity compared
to the exhaustive traversal method.

Algorithm 1 Client Selection Algorithm

: Input: Z{ =0,Vk, Y} =0
(SetX{ =0, Xl=0,X' =02
: fork € K do
Calculate If = PLZL — Vg,
if Il < 0then
X§ = X{ U {k}
end if
end for

: Rank the clients in X{ according to their 7/. Therefore we have 7} < 7} < ... < T‘tX,‘
0

O X NN A

10: forx € X} do

11:  Update X! = X! U {x}

12: Add X! to Xt,ie., Xt = XU {X'}

13 Caleulate [(X]) = ¥ (PlZi)+ PiY) +vU!
kext

14: end for

15: Find (X!)* = argmianeXt(](X;))

16: Return (a')*, where (a})* = 1{k € (X})*},Vk

3.3. Analysis of the Proposed Optimization Scheme’s Optimality

Given the trade-off between minimizing the time-averaged cost and reducing power
consumption violations, the analysis of the proposed optimization strategy’s optimality is
provided herein.
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Theorem 2. The average cost function satisfies:

1 T=1 C,
Y E[U|@'] < = + ¢, (28)
t=0 14

~

K _ _
where C; > C1 + L. Z/™ max(PM — Py) + Y™ max(P™ — P,), and ¢* is the optimal
k=1
solution of problem P1.

Proof. The proof is given in Appendix B. [
Theorem 3. Assume E[U!|®!] > @™, The power consumption of each client k and the server

are bounded by TPy + \/2TCy + 2TV ¢* — 2TV o™it and TP, + \/2TCy + 2TV ¢* — 2TV p™in,
respectively.

Proof. The proof is given in Appendix C. [

Theorem 2 elucidates that the discrepancy between the objective value yielded by the
proposed algorithm and the original optimal value is less than or equal to O(1/V). This
suggests that the cost determined by the proposed optimization scheme can approximate
the original optimal value to an arbitrary degree through the augmentation of the control
parameter V. In accordance with Theorem 3, the energy deficit queues of all clients and
the server adhere to an upper limit of O(v/V) at any iteration, a limit that escalates in
accordance with the control parameter V. Nonetheless, an excessively large value of V may
result in an unduly large upper boundary for the virtual power deficit queue backlog, which
could lead to power consumption surpassing the power budget. In summary, the proposed
algorithm delivers a [O(1/V), O(v/V)] trade-off between cost and power consumption, a
balance that can be managed by adjusting the parameter V.

Theorem 4. Virtual queue of each client k and the server satisfies:

zr YT
lim =& =0, lim -~ =0. (29)
T—oo T T— o0

Proof. The proof is given in Appendix D. O

Theorem 4 indicates that the virtual power deficit queue backlog is bounded as the
global iteration approaches infinity, i.e., all virtual queues remain mean rate stable across
the FL iteration.

4. Experiment Result and Analysis
4.1. Experiment Settings

In the conducted experiment, FL. was implemented using PyTorch, considering a
system setup in which K clients are randomly positioned within a circular area of a 500 m
radius with a central server. The path loss model is defined as 128.1 + 37.6log; i + ¢, where
i represents the distance between a client and the server in kilometers, while 1p is a Gaussian
random variable exhibiting a variance of 8 dB. The total bandwidth, B, is set to 100 MHz,
with the noise power spectral density Nyg = —174 dBm/Hz.

The power used for uploading the local model is arbitrarily assigned between 10 and
20 dBm. The model size s is set as 1 Mbit. For all clients, the number of local iterations in
each global iteration m is set to 1. The number of CPU cycles necessary for processing a
sample per client is randomly distributed within the range of [1,3] x 10* cycles/sample.
Average power constraints are established at P, = 100 mW and P, = 500 mW. The
decision parameter V is assigned the value of 10, with a justification provided later. The
CPU frequency range of the clients and the central server, f} and f/, span from 0.1 GHz
to 2.5 GHz and from 0.1 GHz to 3.3 GHz, respectively. Furthermore, the capacitance
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coefficients for the clients and the server, the price parameter of the cost function, and the
number of CPU cycles needed to perform a single summation are set to y; = 7, = 10728,
#=16x1073 and ¢ = 10°.

The MNIST dataset [21] was employed for the experiment, consisting of 60,000 training
samples and 10,000 test samples with 10 label classes from 0 to 9. Each client’s local dataset
was assembled by randomly selecting one or two label classes from the MNIST dataset
with dy = 100 samples. A multi-layer perceptron (MLP) model with a single hidden layer
containing 64 nodes was utilized, with ReLU as the activation function. The learning rate
was set to 0.01, and the batch size was 10.

To demonstrate the advantage of our proposed algorithm, we introduce the following
three algorithms as comparison benchmarks:

*  Selected All: In this algorithm, all the clients are selected in each global iteration. The
CPU frequency for both the clients and the central server is consistently set at their
maximum values in every global iteration.

*  Greedy: For a rational comparison with our proposed algorithm, the long-term av-
erage number of client selected per round is tuned to be consistent with that of our
proposed algorithm in this comparative algorithm. As such, we establish a client
selection latency threshold. Clients are subsequently chosen one by one in ascending
order based on their individual total latency 7/ until the learning latency 7’ surpasses
the preset client-selection latency threshold. Furthermore, with the prerequisite of ad-
hering to the CPU frequency constraint, all participating clients and servers maintain
a constant power level, identical to the long-term power constraint.

¢ Random: In this comparative algorithm, clients are randomly selected in each round.
The number of clients selected is maintained at a constant value, which is equal to the
average number per round in our proposed algorithm. Aside from this variation, all
other configurations align with those of the Greedy algorithm.

4.2. Analysis of Experimental Results

Conceptually, reducing the time required for each global iteration and minimizing the
impact of the non-IID nature on the model convergence speed enables the training model to
reach a specific accuracy more rapidly within a given learning time. Figure 2 demonstrates
how the test accuracy of our proposed algorithm and comparative algorithms varies with
the learning time under the number of clients K = 100. It is apparent that the proposed
algorithm exhibits a performance almost equivalent to the Selected All algorithm in terms
of convergence speed. Even though all the clients participate in each global iteration,
fostering a swift convergence speed, the effects of the non-IID nature stemming from each
client’s dataset cannot be negated, thereby undermining its performance. Conversely, in
our proposed model, clients with more label classes in their dataset may inherently have
a higher selection priority. Simultaneously, the mean rate stable properties of the virtual
queue in the proposed algorithm ensure fairness for clients with fewer label classes. Our
proposed model significantly outperforms both the Greedy and Random algorithms. In the
Greedy algorithm, while the impact of straggler clients is mitigated, it does not address
the influence of the non-IID nature. Since the presence of the non-IID nature and straggler
clients are not taken into account, the convergence speed of the Random algorithm is
impeded.
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Figure 2. Test accuracy versus learning latency with the number of clients K = 100.

Figure 3 demonstrates the corresponding average power consumption of the client side
and the server side in each global iteration. The Selected All algorithm, when compared to
other methods, exhibits substantially larger power consumption, primarily because it lacks
a power constraint. However, due to the mean rate stable characteristic of the virtual queue,
as demonstrated by Theorem 4, the power consumption under our proposed algorithm
adheres to the long-term power constraint. Notably, the average power consumption

under our proposed algorithm is approximately similar to that observed in the Greedy and
Random algorithms.
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To further validate the proposed optimization scheme, its performance is examined
under a varying total number of clients K, as depicted in Figure 4 and Table 1. In the con-
ducted experiment, we take into account the average test accuracy during the concluding
half second when the learning time spans 30 seconds. Accompanying the increase in the
total number of clients, the average number of clients selected per iteration also escalates,
which, under normal circumstances, should enhance test accuracy. Nonetheless, the in-
crease in the number of clients may cause a corresponding increment in each iteration’s
training duration. As a consequence, the total iterations that can be carried out within a
fixed time duration may decrease, thereby potentially reducing accuracy. Hence, the test
accuracy does not bear a linear relationship with the total number of clients, which can
be observed from Figure 4. Nevertheless, our proposed algorithm continues to surpass
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comparative algorithms, as it adeptly manages non-IID characteristics and straggler clients.
Furthermore, our proposed algorithm exhibits a consistent ability to maintain low power
consumption as the total number of clients increases. This finding aligns with our previous
analysis, demonstrating that the virtual power deficit queues are mean rate stable in our
proposed algorithm.

0.94 -

e

=

0o
.

0.90 +

e

00

I
A

Average of Test Accuracy

—*— Proposed
—e— Selected All

Greedy
0.86 Random
70 80 90 100 110 120 130
Total Number of Clients

Figure 4. Average of test accuracy versus total number of clients.

Table 1. Average power consumption of clients and the server versus total number of clients.

Average Power Consumption Total Number of Clients Proposed Selected All Greedy Random
70 701621 mW  113,212.66 mW  5616.25 mW  5600.00 mW
80 8020.03 mW  129,386.61 mW  6401.84 mW  6400.00 mW
90 9033.43 mW 14555947 mW  7229.53 mW  7200.01 mW
clients 100 10,036.40 mW  161,733.26 mW  7743.76 mW  7800.00 mW
110 11,030.69 mW  177,907.72mW  8439.06 mW  8400.01 mW
120 12,053.63 mW  194,080.37 mW  9336.41 mW  9300.01 mW
130 13,047.53 mW  210,254.14 mW  9940.70 mW  9900.01 mW
70 499.86 mW 3593.70 mW 500.00 mW  500.00 mW
80 499.94 mW 3593.70 mW 500.00 mW  500.00 mW
90 499.94 mW 3593.70 mW 500.00mW  500.00 mW
server 100 499.99 mW 3593.70 mW 500.00 mW  500.00 mW
110 500.03 mW 3593.70 mW 500.00 mW  500.00 mW
120 500.04 mW 3593.70 mW 500.00mW  500.00 mW
130 500.24 mW 3593.70 mW 500.00 mW  500.00 mW

Figure 5 depicts the variation in the average power consumption and the average cost
in correlation with the control parameter V within our proposed optimization scheme. A
clear observation is that the average cost experiences a decrease, while the average power
consumption undergoes an increase with an escalating control parameter V. This aligns
with the [O(1/V), 0(v/V)] cost-power trade-off indicated by Theorems 2 and 3. Figure 6
illustrates the variation in the optimal average number of selected clients per iteration
with the control parameter V. As previously stated, a control parameter value of V = 10
was selected for the experiment. This choice was made because it yields an appropriate
average number of selected clients to effectively address the accuracy degradation incited
by non-IID characteristics, along with the low average cost and power consumption.
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Figure 5. The impact of V. (a) Average power consumption of clients and average cost versus
control parameter V. (b) Average power consumption of the server and average cost versus control

parameter V.
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Figure 6. Average number of selected clients versus control parameter V.

5. Discussion

In this paper, we explored a problem involving the selection of clients and the con-
current control of the CPU frequency for both the selected clients and the server within
wireless FL networks. Lyapunov optimization theory was applied to transform the original
problem into a per-iteration problem, which facilitated the design of an algorithm for
problem resolution. Theoretical analysis offers performance guarantees, wherein control-
ling the parameter V empowers us to reduce cost while minimizing power consumption.
Simulation results demonstrated that the proposed algorithm outperforms benchmark
algorithms in terms of test accuracy by mitigating the impact of non-IID characteristics
and straggler clients. By managing the virtual queues, the proposed algorithm was able to
adhere to long-term power constraints. Furthermore, the simulation results verified that
our proposed algorithm successfully realized the [O(1/V),0(+/V)] cost-power trade-off.

It is noteworthy that this study is currently confined to a simple star network topology.
Expanding our analysis to encompass more intricate network structures such as hierarchical
networks and multi-base station networks would undoubtedly enhance its applicability.
Additionally, in practical wireless networks, client participation in learning can be affected
by factors such as mobility, network congestion, or power availability fluctuations, poten-
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tially leading to client dropouts from the FL process and thereby impacting overall learning
performance. Hence, the implications of client dropouts merit further investigation.
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Abbreviations

The following abbreviations are used in this manuscript:

FL Federated learning

IoT Internet of Things

non-IID  Non-independent and identically distributed
1D Independent identically distributed

OFDMA  Orthogonal frequency-division multiple access
MLP Multi-layer perceptron

ReLU Rectified Linear Unit

Appendix A

Since A(@") plays a crucial role in the proof, we first bound A(®"). Plugging (17)-(19)
into A(@"), we have:

LE[Y (212 4 (12— % (20— (1)@

k=1 k=1

fmax{P{ — P+ 24,04} — 1. (7% + {max{P} — B, + Y., 01} - (¥})*/@

k=1 (A1)

- » K 2 - 2 2
(PE—=Pe+Zp)" = ¥ (Z)" + (Pl =D+ Y})" = (Y})"|@']

K _ _
< Ci+ ¥ Z{E[P{ — B|@'] + Y}E[P] — P,|@'],
k=1

where the first inequality is due to {max{a,0}}? < a?. Thus, we have:

K
A(@") + VE[U'|®] < C1 + ) ZLE[P{ — P|©'] + Y/E[P} — P;|®'] + VE[U'|®'], (A2)
k=1

This concludes the proof.

Appendix B
According to Appendix A, we have:
A(O) —i-;/E[Ut\@t]
<Gt X 2™ max(E[PP™ — P|@']) + Y™™ max(E[P™ — B,|@]) + Vg™ (A3)
=1
<G+ V(p*
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Summing (A3) over T global iterations, we obtain:

T-1 T—1
VE[U'|@'] < TC, + TVg* — ) A(O"). (A4)
t=0 t=0

Next we sum A(@") over T global iterations. The following formula can be derived
from (20):
T-1
Y A(@") =L(6T) - L(e°). (A5)
t=0

Plugging (A5) into (A4), we have:
T-1
Y VE[U'|®'] < TC, + TV¢* — L(0") + L(@°). (A6)
t=0

Dividing by TV, using the fact that L(®T) > 0, L(©°) = 0, we have:

1 T-1 ; ; C2 .
- Y EUe] < 24 g. (A7)
t=0

This concludes the proof.
Appendix C
Rearranging (A6), we obtain:
T-1
L(®") - L(0°) < TG, +TVe* — Y VE[U'|®']. (A8)
t=0
Substituting E[U*|@] > ¢™" into (A8), we have:
L(®T) < TC, + TVg* — TV™n, (A9)
Due to (19), we obtain:
K ) .
ZD?+ ()2 < Y (ZD)" + (Y2 <2TC +2TVe" —2TVe™™.  (A10)
k=1
Thus, we have:
(ZL)? <2TC, +2TVe* —2TVe™™, (Y])? < 2TC, +2TVe* — 2TV ™, (A11)
Next we bound the virtual power deficit queues. From (17) and (18), we have:
zit =zt —min{P, — P, ZL}, Y™ = Y/ — min{P, — P!, Y}}. (A12)
Rearranging terms and summing both sides over t global iterations, we have:

t t—1 t—1

—1 —

Zt —7)=—Y min{P— P}, z} > Y (Pf — P,) = Y_ Pf —tP, (A13)

=0 =0 =0

t—1 B t—1 B t—1 B

Yi—Y?=—Y min{P — P, Y/} > Y (PF—P,)= ) Pf—tP. (A14)
=0 =0

=0
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Thus, we have:

T-1 T-1
zZl > Y Pf—TP, Y} > Y Pf—TP. (A15)

=0 =0

Thus far, we have bounded the virtual power deficit queues. Plugging (A15) into

(A11), we have:
T-1 B -
Y BT < TP + \/ZTC2 +2TVg* — 2TV gmin, (A16)
=0
T-1 B -
Y PF < TP, +/2TC; +2TVg* — 2TV gmin, (A17)
=0

This concludes the proof.

Appendix D
Rearranging terms of (A1l), we have:

7l < \/ZTCZ +2TVg* —2TVgmin, YT < \/2Tc2 +2TVg* — 2TV gmin, (A18)

Dividing by T and taking limits of both sides, we have:

ZT T
lim =X =0, lim o (A19)
T—ooo T T—00

This concludes the proof.
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