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Abstract: Relevant attribute selection in machine learning is a key aspect aimed at simplifying
the problem, reducing its dimensionality, and consequently accelerating computation. This paper
proposes new algorithms for selecting relevant features and evaluating and selecting a subset of
relevant objects in a dataset. Both algorithms are mainly based on the use of a fuzzy approach. The
research presented here yielded preliminary results of a new approach to the problem of selecting
relevant attributes and objects and selecting appropriate ranges of their values. Detailed results
obtained on the Sonar dataset show the positive effects of this approach. Moreover, the observed
results may suggest the effectiveness of the proposed method in terms of identifying a subset of truly
relevant attributes from among those identified by traditional feature selection methods.
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1. Introduction

One of the main challenges and goals of machine learning and data-mining methods
is to identify the relationships and connections between the features that describe an object
or example and the category or class to which that example belongs. In other words,
the relationships between the dependent variables and the independent variables. In
most real-world datasets, only a subset of the describing features actually have a specific
relationship with the dependent variable. This is the set of so-called relevant features,
i.e., those carrying information that allows us to identify the value of the dependent
variable (class). The rest of the features are referred to as non-relevant features, i.e., those
that do not affect the determination of the value of the dependent variable, and only
cause an increase in the dimensionality of the problem and, thus, the time complexity of
computational methods.

Historically, the relevance of variables has been defined in many different ways
that have not been consistent with each other, as demonstrated by Kohavi and John [1].
This happened because different researchers focused on different concepts that could be
associated with the term. They proposed using two degrees of relevance (strong and
weak) to cover all these concepts. In their approach, relevance is defined in absolute
terms, using an ideal Bayes classifier. Thus, a feature a € A is defined as strongly relevant
when removing a from the data always results in a degradation of the prediction accuracy
of the ideal Bayes classifier. A feature a2 € A is weakly relevant if it is not strongly
relevant and there is such a subset of features S where the performance of the ideal Bayes
classifier on S is worse than the performance on SU {a}. A feature is irrelevant if it is
neither strongly nor weakly relevant. Rudnicki and Mnich [2] showed that, in practical
applications, more detailed definitions of the weak and strong relevance of features may be
more appropriate. They proposed the introduction of two concepts, k-weak relevance and
k-strong relevance, which better reflect the limited ability to exhaustively test all possible
combinations of variables. Thus, feature a is k-weakly relevant if its relevance can be
determined by analyzing all (}) subsets of k features that contain feature 4. Similarly,
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variable a is k-strongly relevant if it is strongly relevant in all (}) subsets of k features that
contain variable a.

Many of the non-relevant features are difficult to identify a priori; they may have
little effect on the dependent variable, which is difficult to identify. Relevant features may
also be redundant and carry the same information, so to speak. In addition, they may be
dependent on each other, i.e., a particular feature may show relevance only in the presence
of another feature [2].

For the aforementioned reasons, many different feature selection methods, which are
more or less specialized, have been developed [3]:

e  Filter-based methods: These methods evaluate the relevance of features independently
of the specific machine learning task [4]. Examples include the analysis of variance
(ANOVA), Pearson correlation coefficient, informative chi-square coefficient, Gini
measure, etc. These methods are fast and model-independent, but may not take into
account relationships between features.

*  Wrapper-based methods: These methods use a specific machine learning model as
a black box, assessing the quality of features in the context of a given model [5].
Examples include recursive feature elimination, backward stepwise selection, forward
stepwise selection, etc. These methods can take into account dependencies between
features but are more computationally expensive.

¢  Embedded methods: These methods take into account feature selection in the model
learning process [6]. Examples include L1 regularization (Lasso), L2 regularization
(ridge), decision trees with feature selection, etc. These methods combine the process
of model learning and feature selection, which can be more effective, but limits the
possibility of model reuse without feature selection.

*  Methods based on principal component analysis (PCA) [7]: PCA is a dimensionality
reduction technique that projects data into new non-covariates so as to maximize
variance. By selecting the principal components, the dimensions of the data can be
reduced. PCA is not a direct feature selection method, but it can help extract relevant
information from the data.

*  Methods based on information metrics: These methods measure the informational
relationship between features and the target variable. An example is the information
gain factor, the expected amount of information (reduction of entropy), which is used
in decision trees. These methods help assess what features will contribute the most
information to the model. Other similar methods, like the fast correlation-based filter
(FCBF), are also entropy-based measures, which additionally identify redundancy due
to pairwise correlations between features [8].

Various hybrid feature selection methods and techniques that adapt to specific prob-
lems and data are also used in practice [9]. The choice of an appropriate feature selection
method depends on the specifics of the problem, the available data, and the requirements
for model efficiency and interpretability.

In recent years, there have also been quite a few approaches to feature selection
using the fuzzy set theory. This approach has become the basis for the implementation
of several different algorithms incorporating fuzzy approaches. Fuzzy decision trees
(FDTs) are sources of information that allow the construction of new indicators to evaluate
the relevance of features and, on this basis, create their ranking [10]. They proposed
importance analysis for the evaluation of the induced classifier properties according to
reliability analysis. Similarly, the fuzzy forest approach [11] evaluates and builds a ranking
of features in classification and regression problems; this method is, in turn, an extension of
the random forest algorithm. Others [12] proposed a new measure of similarity between
two linguistic, intuitionistic fuzzy sets to formally define the correlation between attributes.
One can also distinguish the fuzzy backward feature elimination (FBFE) method [13],
which is based on combining the independent component analysis method, derived, as it
were, from the well-known principal component analysis method, with the fuzzy entropy
measure [14], in the process of eliminating irrelevant features. Still, another approach using
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fuzziness for feature selection is the fuzzy quick reduce algorithm based on the fuzzy-
rough set theory [15], a data-mining algorithm for decision-making based on incomplete,
inconsistent, imprecise, and vague data. The fuzzy-rough set theory is an extension of the
fuzzy conventional set theory that supports approximations in decision-making.

2. Materials and Methods

One of the key problems is to reduce the input data in such a way as to select only
relevant data for further operations. Three types of data reduction can be distinguished: the
selection of relevant attributes/features, the selection of relevant ranges of feature values,
and the selection of relevant objects from the data. The selection of relevant attributes is a
typical step in the process of analysis and machine learning. However, the other two types,
which are equally important, are the purpose of this research. Assessing the relevance of
value ranges has been the subject of previous research [16-18]. On the basis of such an
assessment, algorithms for the selection of both significant attributes and significant objects
in the data can be defined.

In a variety of machine learning applications, input data are arranged in a tabular
form that is called a decision table DT = (U, A, D), where

e U= {uy,up, uz, .., Uy} is the non-empty, finite set of m cases;

e A={ay,ay,a3,..,a,} is the non-empty, finite set of n descriptive (condition) attributes
that describe cases;

e D = {D} is the non-empty, finite set of decision attributes that classify cases from U
to decision classes.

For each attribute, the set of its values is determined. Thus, the algorithm for the fuzzy
selection of a subset of relevant features is presented in a pseudocode (see Algorithm 1
— fuzzy feature selection). The aforementioned DT decision table in which attributes have
continuous values is used as input. Several key stages can be distinguished in the algorithm,
as described in detail in Sections 2.2-2.4. First, the input data are discretized, resulting in a
set Aprsc of discrete values. Then, using the chosen fuzzification method, we determine
the membership function and, based on it, the set Ar;;z7 of fuzzy linguistic variables, LVs.
The next important step is the selection of significant linguistic variables from the set of
Aruzz using the selected feature selection method; the result is the set of Aryyzz,, - The ob-
tained selection results are used to convert the attribute set A into Ap;nary binary form,
representing the relevance of individual attribute values in a binary manner, considering
the Apyzz,,, set. The binary set is the basis for assessing the relevance and selection of rele-
vant attributes and relevant objects for the fuzzy object selection algorithm (see Algorithm 2).
To assess the relevance of a given attribute, it is necessary to determine how many relevant
intervals are in the binary set. For this purpose, a thresholdFFS is defined (see Equation (1)),
which is equal to the product of the m number of objects in the set and the EPS (epsilon)
parameter, which is the interval span.

thresholdFFS = EPS x m, @D

EPS has values ranging from 0 to 1. Using specific values of the EPS parameter, we
determine the value of the thresholdFFS, e.g., for a value of EPS = 0.01, the thresholdFFS
will be the smallest, so all relevant features (a) will remain in the selected set FS; if the EPS
parameter is 0.10, then the thresholdFFS is 0.1 x 208 = 20.80 (see the first table in Section 3).
ThresholdFES is a parameter that defines, so to speak, the space of important ranges of
the feature value. If ThresholdFFS is 20.80, then those features that have more than 20.80
important value ranges are considered relevant. In our case, 22 features meet this condition.
Such information is contained in the binary file Ag;nary. A visualization of a fragment
of this set is shown in the third figure in Section 2.4 . If the EPS parameter is 0.11, then
the thresholdFFS is 0.11 x 208 = 22.88. The set of features whose value number meets the
thresholdFFS is smaller and amounts to 19 features. As the value of EPS increases, the value
of the thresholdFFS increases, which causes the number of features (a) in the selected set
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to decrease. As EPS increases, the optimal thresholdFES value can be selected, which will
select the optimal subset of features with the best classification quality values.

The algorithm for the fuzzy selection of a subset of relevant objects works similarly
(Algorithm 2). It works horizontally, so to speak, i.e., we use the number of features n to
determine the thresholdFOS (see Equation (2)), and in a loop, each of the objects u from the
set U is checked. The result of the operation is a subset of relevant objects OS.

thresholdFOS = EPS x n, )

For example, if the EPS parameter is 0.06, then the thresholdFOS is 0.06 x 60 = 3.60 (the
second table in Section 3). The thresholdFOS value determines how many values of a given
learning object should be in the range marked as relevant. If, for example, thresholdFOS
is 3.60, then those that have more than 3.60 important value ranges are recognized as
relevant objects. In our case, 109 objects meet this condition. Such information is also in the
binary file Ap;nary. A visualization of a fragment of this set is shown in the third figure in
Section 2.4. If the EPS parameter is 0.07, then the thresholdFOS is 0.07 x 60 = 4.20. The set of
objects whose value number meets the thresholdFOS is smaller and amounts to 72 features.

Algorithm 1: Fuzzy feature selection.

Input :DT—a decision table.
Output: FS—a selected feature subset.
Function FuzzyFeatureSelection(DT)
FS+ ¢
Apjsc < Discretization Algorithm(DT)
Aryzyz < FuzzificationAlgorithm(Apisc, A, D)
Aruzze, <+ FeatureSelectionAlgorithm(Apyzz, D)
ABINARY — COTlU@Vf(AFUZZSEL,A)
EPS < SetValue(EPS)
thresholdFFS = EPS xm
foreacha € A do
if numberO fImpValue(a, AgiNary) > thresholdFFS then
| FS« FSua
end
end
return FS

end

Algorithm 2: Fuzzy Object Selection

Input :DT—a decision table.
Output: OS—a selected object subset.
Function FuzzyObjectSelection(DT)
OS¢
Aprsc  Discretization Algorithm(DT)
Aruzz < FuzzificationAlgorithm(Apjsc, A, D)
Aruzzey, < FeatureSelectionAlgorithm(Arpyzz, D)
ABINARy < Convert(Aruzzg, , A)
EPS <« SetValue(EPS)
thresholdFOS = EPS xn
foreach u € U do
if numberO fImpValue(u, AgiNary) > thresholdFOS then
| 0S+ O0SuUu
end
end
return OS

end
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2.1. The Dataset Used

The classification quality of the presented feature and object selection algorithms was
obtained on a dataset called Sonar [19]. This dataset came from the UCI repository and was
added to the core collection by Terry Sejnowski (Salk Institute and University of California,
San Diego, CA, USA). The tested dataset contains 111 patterns obtained by reflecting
off a metal cylinder at different angles and under different conditions. The transmitted
sonar signal is frequency-modulated, with increasing frequency. The data include signals
obtained at different angles, 90 degrees for the cylinder and 180 degrees for the rock. Each
pattern in this dataset consists of a set of 60 numbers, ranging (V1-V60) from 0.0 to 1.0.
Each number expresses the energy in a specific frequency band, which is consolidated over
a specific time. The consolidation aperture for higher frequencies takes place later, as these
frequencies are sent later via the chirp. In addition, for each record, the data show whether
the object is a rock (R) or a mine (M), i.e., a metal cylinder. The provided operations will be
illustrated on the basis of the variable V9 from the Sonar set and the results of its processing.

Other experiments were conducted to compare the effectiveness of the fuzzy feature
selection with other methods on the Pima Indians diabetes database (Pima), the breast
cancer Wisconsin diagnostic (BCWD), climate model simulation crashes (Climate), and
single proton emission computed tomography (SPECTF) datasets from the UCI repository,
which is well-known in the field of machine learning.

2.2. Discretization Algorithm

To determine the ranges of descriptive attribute values underlying the fuzzification
process (DiscretizationAlgorithm), a supervised discretization that depends on local distin-
guishability heuristics [20] was used. This discretization gives us locally semi-optimal
cut sets that are consistent with the input decision table. The cuts divide entire ranges of
descriptive attribute values into disjoint sub-ranges that correspond to the linguistic values
assigned to these attributes. (see Table 1). In the fuzzification process, the centers of the
subintervals are determined and then the membership functions are defined. The local
strategy is implemented through a decision tree. This strategy is based on finding the best
cut and dividing the set of cases into two subsets of cases, repeating this processing for each
set of cases separately until it is satisfied. The quality of the cut depends on the number of
cases recognized by the cut, in the local strategy calculated locally on the subset of cases.

2.3. Fuzzification Algorithm

One of the methods used is fuzzification, so the idea of a fuzzy set should first be
mentioned.

Definition 1 ([21]). A fuzzy set Rin X # @ is
R ={(x,R(x))|x € X} ®)

where R : X — [0,1] and R(x) is the recognized grade of membership of the x to the R. The collec-
tion of all fuzzy sets in X will be denoted by FS(X).

To convert variables with continuous values into linguistic variables LV (Fuzzification-
Algorithm), the selected triangular membership function was used. Let [min, max| be the
entire range of values for a given attribute, attribute 4, of the dataset under study. In the
fuzzification process, three steps are performed:

1. For each descriptive attribute a, for each linguistic value [ assigned to 4, determine
the center of the interval corresponding to I (the means are calculated based on the
intervals on which the entire range of attribute values [min, max]| is divided).

2. For each descriptive attribute a, for each linguistic value / assigned to a, define a
membership function based on the means of the intervals determined earlier.
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3. For each descriptive attribute g, calculate the values of the fuzzy descriptive attributes
corresponding to 2 based on the membership functions defined previously.

Many different membership functions can be used to determine the linguistic values
of individual variables. In the present experiments, they are limited to a typical triangular
function, which becomes a trapezoidal function at the edges of the interval.

Table 1. The discretization intervals of the V9 variable, the corresponding linguistic variables, and
their minimum and maximum values.

V9 Intervals Linguistic Values
0.0075 name min max
0.0488 V9.LV1 0.0075 0.05525
0.0617 V9.LV2 0.02815 0.068525
0.07535 V9.LV3 0.05525 0.079025
0.0827 V9.Lv4 0.068525 0.092325
0.10195 V9.LV5 0.079025 0.109175
0.1164 V9.LV6 0.092325 0.1202
0.124 V9.LV7 0.109175 0.127875
0.13175 V9.LV8 0.1202 0.134775
0.1378 V9.LV9 0.127875 0.1436
0.1494 V9.LV10 0.134775 0.1541
0.1588 V9.LV11 0.1436 0.16075
0.1627 V9.LV12 0.1541 0.17025
0.1778 V9.LV13 0.16075 0.17865
0.1795 V9.LV14 0.17025 0.1908
0.2021 V9.LV15 0.17865 0.2168
0.2315 V9.LV16 0.1908 0.2502
0.2689 V9.LV17 0.2168 0.2794
0.2899 V9.LV18 0.2502 0.299525
0.30915 V9.LV19 0.2794 0.33355
0.35795 V9.LV20 0.299525 0.520375
0.6828 V9.LV21 0.33355 0.6828

Let {c1, 2, ..., ¢ } be the set of interval centers defined for the i-th descriptive attribute.

The triangular membership functions are defined according to Equations (4)—(6).
In fact, the first and last membership functions are trapezoidal:

Forj=1
1, ifx>aand x <,
pe;(x) = CC]/E:;, if x > ¢jand x < ¢jqq, @)
0, otherwise.
Forj>1landj <k
éﬁ, %f x> ¢jpand x <¢j,
pe;(x) = C;Jrl_cj’ if x > ¢jand x < ¢jiq, (5)

0, otherwise.
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Forj=k
;:i]]j , ifx>¢ipandx <,
pe;(x) =< 1, if x > cjand x <b, (6)
0, otherwise.

An example of a triangular membership function for the variable V9 from the Sonar dataset
is shown in Figure 1. Based on the corresponding linguistic variables and their values (see
Table 1).

0.6 0.8 1.0
| |
—
—

0.4
|

Degree of membership

T T T T T T T T
0.0 0.1 0.z 0.3 04 05 0.6 07

Range

Figure 1. An example of defining a triangular membership function of the value of variable V9 from
the Sonar dataset based on the designated discretization intervals. The colors correspond to the
different linguistic variables (LV) of the V9 attribute (see Table 1)

2.4. Feature Selection Algorithm

The obtained membership value for each created linguistic value constitutes a set,
which is subjected to the evaluation and selection of significant value intervals (FeatureSe-
lectionAlgorithm). For this purpose, a method based on the random forest paradigm [22]
was used. This method is a wrapper method and is a ranking method, i.e., in the process of
assessing the significance of features, a ranking of features is created based on a measure
of importance. This measure is calculated based on the created set of decision trees. Each
tree in such a set is created based on a random sample of data from the original set. In this
way, the correlation between dependent variables is minimized. In addition, divisions
within the tree are also created based on random subsets of attributes. The tree structure
created makes it possible to estimate the importance of an attribute based on decreasing
measures of accuracy when an attribute is removed from a node. Since attributes for nodes
are selected according to a criterion (in this case, the impurity of the Gini coefficient), we
can estimate how each attribute reduces the impurity of a given distribution. The attribute
with the largest decrease is placed in the node under consideration. Using this relationship,
we can assess the impact of each attribute on the quality of the distributions in the set of
trees and, thus, its significance.

Such a methodology is used in the Boruta package [23,24], which allows identifying
all relevant attributes from a dataset. It works on an extended dataset containing attributes
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with random values that have no correlation with the dependent variable. The maximum
MSA score among the random attributes (shadow attributes) is then determined, which is
taken as a threshold for evaluating the importance of features. Attributes whose impor-
tances are significantly higher than the MSA are placed in the essential attribute group
(confirmed features), while those whose importances are significantly lower than the MSA
are placed in the irrelevant attribute group (rejected features), see Figure 2. This procedure
is repeated until all attributes achieve the estimated importance or the algorithm reaches a
set limit of random forest runs. Information on the relevance of linguistic variables (LVs)
allows narrowing down and indicating the relevant subspace of feature values, see Figure 3.

SIS S NS R c\% P & \\\’N & & &V 84 & A\ & & < @N
NN N R IR QO’ Q% Qo) Ao, Q@ O \\o)\’Ao) Q% Qo) \\0) O Q%
2

10

8

Mean importance
o <)}

N

V9 Linguistic values

Figure 2. Graph of the average importance value of linguistic variables for the V9 attribute from the
Sonar dataset. Green variables are those that are confirmed relevant, while red variables are those
that are rejected.

The information about the relevance or irrelevance of the ranges is the basis for creating
a binary version of the decision table (see Figure 4). In this table, individual values of the
original data are checked for their presence in the relevant (green, value 1) or irrelevant
(red, value 0) range. For example, the value of the V9 attribute for object number 4 is
0.0598 in the original Sonar dataset. This value is within the range of the created linguistic
variable V9.LV3, whose minimum value is 0.05525 and maximum value is 0.079025 (see
Table 1). This variable was confirmed as an important feature in the feature selection step
(see Figure 2), so value 1 will appear in the binary table (see Figure 4). On the other hand,
the value of the V9 attribute for object number 5 is 0.3564. This value falls within the range
of the linguistic variable V9.LV20, whose minimum value is 0.299525 and maximum value
is 0.520375, and within the range of the linguistic variable V9.LV21 whose minimum value
is 0.33355 and maximum value is 0.6828 (see Table 1). The variables V9.LV20 and V9.LV21
were confirmed as irrelevant variables in the feature selection step (see Figure 2), so a value
of 0 will appear in the binary table.
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o o o o S o
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Figure 3. The range of values of the V9 original variable (red color) and the values after the selection
include linguistic variables (green color).
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Figure 4. Part of the binary table obtained for the Sonar dataset. The green fields (value 1) indicate
the value of an attribute that is in the relevant value range, the red fields (value 0), on the other hand,
are the values that are considered irrelevant.

3. Results

In accordance with the earlier description of the various algorithms and procedures,
computational experiments were planned and carried out using the described Sonar dataset
and four other well-known datasets.

The detailed results of the analysis of the Sonar dataset are used to present the idea
of the operation of the developed algorithms. Table 2 and Figure 5 contain the aggregate
results of the fuzzy feature selection algorithm, while Table 3 and Figure 6 contain the aggre-
gate results of the fuzzy object selection algorithm. In both experiments, the leave-one-out
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cross-validation approach was applied in the context of splitting into learning and test sets.
Decision tree models and Quinlan’s C5.0 algorithm [25] were used to evaluate the quality
of classification. Accuracy (ACC), sensitivity (true positive rate, TPR), specificity (true
negative rate, TNR), precision (positive predictive value, PPV), the Matthews correlation
coefficient (MCC), and the F1 score (F1) were used as measures of classification quality.
The calculation formulas for each parameter are presented as follows:

Accuracy = TP+ TN (7)
YT TP+ TN +FP+EN

. TP
Sensitivity = TP+ EN 8)

e TN
Specificity = TPATN )

.. TP
Precision = TP+ EP (10)
MCC — TP«TN — FPxFN (11)

/(TP + EP)(TP + EN)(IN + EP)(IN + EN)
2% TP

F1 = 12
2«xTP+FP+FN (12)

where: TP is the number of results that correctly indicate the presence of a condition or
characteristic, TN is the number of results that correctly indicate the absence of a condition
or characteristic, FP is the number of results that wrongly indicate that a particular condition
or attribute is present, and FN is the number of results that wrongly indicate that a particular
condition or attribute is absent.

The analysis of the obtained results of the FFS algorithm identifies a full subset of all
relevant attributes, which includes 24 features (Table 2). Such a subset allows us to obtain
an ACC of 0.75 and other parameters at a better level than the original set of 60 features
(Figure 5), which allows us to obtain an ACC of 0.64. With an increase in the EPS coefficient
and, consequently, the threshold, we observe an improvement in the classification evaluation
parameters up to a subset of 16 features, which appears to be the optimal subset. From
Table 2 and Figure 5, we can see that equally good results can be obtained using a subset of
9,12, and 19 relevant features.

On the other hand, the analysis of the obtained results of the FOS algorithm allows us
to identify a full subset of all relevant features, which includes 204 objects (Table 3). Such a
subset allows us to obtain an ACC of 0.7 and other parameters at a level similar to that of
the original set of 208 objects (Figure 6), which allows us to obtain an ACC of 0.73. With the
increase in the EPS coefficient and, consequently, the threshold, we observe an improvement
in the classification evaluation parameters, up to a subset of 145 learning objects, which
appears to be the optimal subset. Moreover, from both Table 3 and Figure 6, it can be seen
that equally good results can be obtained using a subset of 109 relevant objects.
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Figure 5. The results of the fuzzy feature selection algorithm obtained using the Sonar dataset for differ-
ent values of the EPS parameter, along with parameters for assessing the quality of the classification
of the model built on the subset. The red color indicates the results of the original set.

220 1
200 09
180
160
140

120

0.4
I I .2
0 0

ORIG 0.01 0.02 0.03 0.06 0.1 0.11
EPS value

1

o
]

#of objects
o
wv
Parameter value

®
o

@

=]
o
w

N
o
o

N

=]
o
=

= fof objects ACC =mmmTPR e TNR e PPV

Figure 6. The results of the fuzzy object selection algorithm obtained using the Sonar dataset for
different values of the EPS parameter, along with the parameters for assessing the classification
quality of the model built on the subset. The results of the original set are marked in red.
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Table 2. The results of the fuzzy feature selection algorithm obtained using the Sonar dataset for different
values of the EPS parameter, along with parameters for assessing the quality of the classification of
the model built on the subset. The best results are in bold.

No. of

EPS thresholdFFS ACC TPR TNR PPV MCC F1
Features
24 0.01 2.08 0.75 0.74 0.76 0.78 0.5 0.76
24 0.02 4.16 0.75 0.74 0.76 0.78 0.5 0.76
24 0.03 6.24 0.75 0.74 0.76 0.78 0.5 0.76
24 0.04 8.32 0.75 0.74 0.76 0.78 0.5 0.76
24 0.05 10.40 0.75 0.74 0.76 0.78 0.5 0.76
24 0.06 12.48 0.75 0.74 0.76 0.78 0.5 0.76
24 0.07 14.56 0.75 0.74 0.76 0.78 0.5 0.76
23 0.08 16.64 0.76 0.78 0.73 0.77 0.52 0.78
23 0.09 18.72 0.76 0.78 0.73 0.77 0.52 0.78
22 0.1 20.80 0.77 0.79 0.74 0.78 0.54 0.79
19 0.11 22.88 0.78 0.79 0.76 0.79 0.56 0.79
16 0.12 24.96 0.78 0.81 0.74 0.78 0.55 0.8
12 0.13 27.04 0.78 0.8 0.75 0.79 0.56 0.79
9 0.14 29.12 0.76 0.76 0.77 0.79 0.53 0.77
9 0.15 31.20 0.76 0.76 0.77 0.79 0.53 0.77
5 0.16 33.28 0.71 0.8 0.6 0.7 041 0.74
4 0.17 35.36 0.67 0.76 0.58 0.67 0.34 0.71
4 0.18 37.44 0.67 0.76 0.58 0.67 0.34 0.71
4 0.19 39.52 0.67 0.76 0.58 0.67 0.34 0.71
4 0.2 41.60 0.67 0.76 0.58 0.67 0.34 0.71
4 0.21 43.68 0.67 0.76 0.58 0.67 0.34 0.71
3 0.22 45.76 0.7 0.83 0.56 0.68 0.4 0.75
2 0.23 47.84 0.64 0.79 0.46 0.63 0.27 0.7
2 0.24 49.92 0.64 0.79 0.46 0.63 0.27 0.7
2 0.25 52.00 0.64 0.79 0.46 0.63 0.27 0.7
2 0.26 54.08 0.64 0.79 0.46 0.63 0.27 0.7
2 0.27 56.16 0.64 0.79 0.46 0.63 0.27 0.7
2 0.28 58.24 0.64 0.79 0.46 0.63 0.27 0.7
2 0.29 60.32 0.64 0.79 0.46 0.63 0.27 0.7
original set - - 0.64 0.79 0.46 0.63 0.27 0.7
Table 3. The results of the fuzzy object selection algorithm obtained using the Sonar dataset for different
values of the EPS parameter, along with parameters for assessing the quality of the classification of
the model built on the subset. The best results are in bold.
No. of
. EPS thresholdFOS ACC TPR TNR PPV MCC F1
Objects
204 0.01 0.6 0.7 0.76 0.64 0.7 0.4 0.73
187 0.02 1.2 0.73 0.69 0.76 0.75 0.46 0.72
187 0.03 1.8 0.73 0.69 0.76 0.75 0.46 0.72
145 0.04 24 0.77 0.72 0.8 0.72 0.52 0.72
109 0.05 3 0.77 0.68 0.82 0.66 0.49 0.67
109 0.06 3.6 0.77 0.68 0.82 0.66 0.49 0.67
72 0.07 4.2 0.69 0.48 0.8 0.52 0.28 0.5
72 0.08 4.8 0.69 0.48 0.8 0.52 0.28 0.5
37 0.09 5.4 0.76 0.14 0.9 0.25 0.05 0.18
37 0.1 6 0.76 0.14 0.9 0.25 0.05 0.18
21 0.11 6.6 0.81 0 0.94 0 -0.09 -

original set - - 0.73 0.73 0.72 0.75 0.45 0.74
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The experimental results presented here allow us to identify a subset of relevant
descriptive attributes and a subset of relevant objects in the dataset. This raises the idea of
combining these results to identify sub-tables with dimensions suggested by the selected
subsets. So, based on the results, four suggested dimensions were selected and classification
was performed by determining similar parameters (see Table 4). The results obtained clearly
show that the most optimal combination is 187 objects and 19 describing attributes. For this
combination, almost all parameters were better than the original dataset. Classification
accuracy increased to a value of 0.83 from a value of 0.73 for the original dataset.

Table 4. Classification results obtained for the selected combinations of the number of relevant objects
and features. The best results are in bold.

No. of No. of
Objects Features ACC TPR TNR PPV MCC F1
187 9 0.8 0.84 0.77 0.78 0.61 0.81
187 19 0.83 0.87 0.8 0.81 0.67 0.84
145 9 0.81 0.86 0.73 0.82 0.6 0.84
145 19 0.81 0.85 0.75 0.83 0.6 0.84
original set 60 0.73 0.73 0.72 0.75 0.45 0.74

Additional analysis of the classification quality was also carried out using subsets
of relevant features indicated by standard measures of feature rankings: Information gain,
i.e., the expected amount of information (reduction of entropy), gain ratio, a ratio of the
information gain, and the attribute’s intrinsic information, which reduces the bias toward
multi-valued features that occur in information gain, the Gini index, which is the inequality
among values of a frequency distribution, and the fast correlation-based filter (FCBF), which is
the entropy-based measure, which also identifies redundancy due to pairwise correlations
between features. The results of the evaluation of the features of the considered set are
shown in Figure 7. The figure includes a ranking of the relevant individual features, con-
sidering the mentioned measures. Feature items in the figure are sorted by the information
gain ranking values. Each feature, V1 to V60, has its own ranking. In addition, the last
column contains 24 features, which are all relevant, where the FFS algorithm is indicated.
It can be seen that 16 of the 24 features are also indicated at the top of the ranking (gray
highlighting), while the remaining 8 are in lower positions. In addition, classification with
the same model using a subset of the 24 highest-ranked features from the ranking yields
an accuracy of 0.76, which is slightly better than the results obtained for the 24 features
indicated by the FFS algorithm (see Table 2), where accuracy is 0.75. A similar subset of
features can be selected using gain ratio or Gini index measures (see Figure 7 ). In contrast,
the FCBF method identifies only five relevant features: V12, V9, V49, V5, and V27. Restrict-
ing the dataset to these features yields an accuracy of 0.73, which is lower than the other
subsets and significantly lower than the identified subset of 19 features and 187 objects
(Table 4) for which the best performance in this accuracy of 0.83 is obtained.
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Information gain Gain ratio Gini index FCBF Feature FFS
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sHE ] cos T ] 0.049 0.065 0.000 V47 V23
sl ] 0.08c I ] 0.043 0.058 0.000 V52 Va9

10l ] 0.084 T 0.042 0.056 0.000 V51 V5
11 ] 0.081 ] 0.040 0.054 0.000 V46 V36
sbd | 0.076 I 0.038 0.051 0.000 V21 V52
13 0.064 ] 0.032 0.042 0.000 V45 V27
14 T 0.064 ] 0.032 0.043 0.000 V36 V21
15 I 0.063 ] 0.032 0.043 ] 0.044 V5 V28
16 ] 0.057 ] 0.029 0.038 0.000 V28 Va4
17 T 0.054 ] 0.027 0.036 0.000 V4 V16
18 T 0.054 ] 0.027 0.036 0.000 V20 V20
19 T 0.050 ] 0.025 0.034 0.000 V44 V54
20 ] 0.050 ] 0.025 0.034 0.000 V8 Vi3
21 I 0.049 ] 0.024 0.033 0.000 V14 V31
py) 0.048 ] 0.024 0.032 0.000 V1 V50
23] 0.046 ] 0.023 0.031 0.000 V43 V26
24 ] 0.042 ] 0.021 0.028 0.000 V35 va3
25 ] 0.040 ] 0.020 0.027 0.000 V50

26 ] 0.037 ] 0.019 0.025 0.000 V37

27 Il 0.037 ] 0.018 0.025 1 0.025 V27

28 Il 0.036 ] 0.018 0.025 0.000 V23

29 Il 0.036 ] 0.018 0.025 0.000 V6

30 ] 0.036 ] 0.018 0.025 0.000 V55

31 Il 0.030 ] 0.015 0.021 0.000 V17

32 Il 0.028 ] 0.014 0.019 0.000 V33

33 ] 0.027 ] 0.014 0.019 0.000 V58

34 Il 0.025 ] 0.013 0.017 0.000 V22

ELY 0.024 ] 0.012 0.017 0.000 V2

36 Il 0.024 ] 0.012 0.016 0.000 V15

37 Il 0.024 ] 0.012 0.016 0.000 V3

38 Il 0.023 ] 0.012 0.016 0.000 V39

39 Il 0.023 ] 0.012 0.016 0.000 V31

40 T 0.023 ] 0.011 0.016 0.000 V19

41 Il 0.022 ] 0.011 0.015 0.000 V29

42 [l 0.021 IE1 0.011 0.015 0.000 V32

43 [l 0.020 ] 0.010 0.014 0.000 V42

44 Il 0.020 I 0.010 0.013 0.000 V16

45 [l 0.018 II] 0.009 0.013 0.000 V34

46 Il 0.017 I 0.008 0.012 0.000 V59

47 0 0.016 IEl 0.008 0.011 0.000 V54

a8 I 0.015 ] 0.008 0.010 0.000 V7

49 | 0.015 ] 0.008 0.010 0.000 V53

50 I 0.014 1 0.007 0.010 0.000 V60

51 0 0.011 0.006 0.008 0.000 V56

52 0.010 £ 0.005 0.007 0.000 V30

530 0.008 I 0.004 0.006 0.000 V41

54 1 0.007 I 0.004 0.005 0.000 V25

550 0.007 I 0.004 0.005 0.000 V26

56 | 0.003 | 0.001 0.002 0.000 V18

571 0.002 | 0.001 0.002 0.000 V38

581 0.002 | 0.001 0.002 0.000 V24

59 | 0.001 | 0.001 0.001 0.000 V57

601 0.0001 0.000 0.000 0.000 V40

Figure 7. Feature ranking obtained using four parameters, information gain, gain ratio, Gini index, and
the fast correlation-based filter. The FFS column contains all relevant features in the subset indicated by
the fuzzy feature selection algorithm.
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Related Results

A comparison of the results obtained with other studies is possible within a certain
range. In the studies, the authors use various evaluation parameters, like ROC AUC or
the balanced classification rate, so we limit the comparison to the classification accuracy (ACC)
parameter. The authors also use different algorithms for learning models (logistic regression
(LR), decision tree (DT), random forest (RF), support vector machine (SVM), etc.), and
different implementations of them, which may cause difficulties in comparing the results.
The results presented meet similar assumptions of the evaluation and model construction.
Table 5 shows the compiled results of relevant feature selection and classification accuracy
(ACC) obtained for five datasets known in the field of machine learning: Sonar, Pima
Indians diabetes database (Pima), breast cancer Wisconsin diagnostic (BCWD), climate model
simulation crashes (Climate), and single proton emission computed tomography (SPECTF). These
datasets contain only numerical features and have been studied in many publications.
The table includes the results obtained for the original set (ORIG), for the fuzzy feature
selection (FFS) set, and the results obtained in other studies using other approaches (Other).
The results show that the proposed fuzzy feature selection algorithm achieves comparable
results with other methods. For example, as in Table 5, for the BCWD dataset, the original
dataset contains 30 descriptive features to obtain a classification accuracy of 0.95. Using
the FFS algorithm, the number of features can be reduced to 16, with an accuracy of
0.96. Alickovic and Subasi [26], using feature selection based on genetic algorithms [27],
obtained 14 relevant features and a classification quality of 0.94. Lopez et al. [28] proposed
a framework of the ensemble feature selection (F-EFS), which identified 10 relevant features
and a classification quality of 0.92. Neumann et al. [29] proposed their own method of the
ensemble feature selection, which integrates eight different feature selection methods and
normalizes all individual outputs to a common scale, with an interval from 0 to 1. For the
BCWD dataset, they obtained 10 relevant features and a classification accuracy of 0.99 using
a logistic regression (LR) model. A similar discussion of the results can be made for the
other investigated datasets.

Detailed results of the analysis of the four mentioned datasets are presented in
Figures 8-15. The graphs contain the results of the ACC, TPR, TNR, and PPV classifi-
cation parameters for a given set, combined with the number of features in a given set at a
specific value of the EPS parameter.

Table 5. Classification accuracy obtained for the selected number of relevant features using five
different datasets.

Dataset Parameters ORIG FFS Other

Sonar No. of features 60 12 10 [28], 24 [29], 49 [30]
0.74 (DT) [28], 0.86 (LR) [29],

(60 features, 208 objects) ACC 0.73 0.78 0.77 (RF) [30]
Pima No. of features 8 4 3[31], 8 [30]
(8 features, 768 objects) ACC 0.73  0.77 0.73(DT) [31], 0.72 (RF) [30]
BCWD No. of features 30 16 14 [26], 10 [28], 10 [29]
. 0.94 (DT) [26], 0.92 (DT) [28],
(30 features, 569 objects) ACC 0.95 0.96 0.99 (LR) [29]
Climate No. of features 18 5 8[32],7 [30]
(18 features, 540 objects) ACC 0.93 0.93 0.97 (SVM) [32], 0.92 (RF) [30]
SPECTF No. of features 44 18 10 [28], 19 [29]

(44 features, 349 objects) ACC 086 0.87 0.75(DT)[28], 0.86 (LR) [29]
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of the classification of the model built on the subset. The red color indicates the results for the
original set.
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Figure 10. The results of the fuzzy feature selection algorithm obtained using the breast cancer Wiscon-
sin diagnostic dataset for different values of the EPS parameter, along with parameters for assessing
the quality of the classification of the model built on the subset. The red color indicates the results for
the original set.
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Figure 15. The results of the fuzzy object selection algorithm obtained using the single proton emission
computed tomography (SPECTF) dataset for different values of the EPS parameter, along with
parameters for assessing the quality of the classification of the model built on the subset. The red
color indicates the results for the original set.
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4. Discussion

The research presented here yielded preliminary results of a new approach to the
problem of selecting relevant attributes and appropriate ranges of their values. In addition,
a method for evaluating and selecting a subset of significant objects from the dataset was
proposed. These methods are based on evaluating the relevance of ranges of attribute values
by applying fuzzy logic. Detailed results obtained on the Sonar dataset show the positive
effects of this approach. Out of 208 objects, the algorithm identifies subsets of about 145 and
187 relevant cases, and out of 60 features, it identifies about 9, 12, or 19 relevant features,
significantly reducing the dimensionality of the problem and simplifying measurements.
As shown in the Results section, the combination of 187 objects and 19 selected important
features yields the highest classification quality parameters. All parameters (Table 4) reach
a value of about 10% higher than for the full Sonar set.

The classification results obtained for the other datasets used (Table 5), resulting from
the computational experiments shown in Figures 5-15, allow us to assess the effectiveness
of the proposed approach at a level equal to or better than the methods proposed in
the literature.

By taking into account the discretization operation and feature value fuzzification,
the proposed method seems to be more precise in assessing the significance of features.
These operations make it possible to assess the relevance of individual value ranges due to
linguistic variables, separately. The relevance is a measure of assessing the relevance of the
entire attribute. The effectiveness of both the feature and object selection was confirmed
by a 10% increase in classification quality parameters. This method has also shown the
phenomenon of the more precise identification of relevant features in previous studies.
Reference [18] showed that 6 features from the breast cancer Wisconsin diagnostic dataset,
selected by the selection algorithm in the traditional way, were rejected after analysis with
the proposed fuzzy approach, as none of the ranges of the values proved to be significant.
It may suggest the effectiveness of the proposed method in the context of identifying a
subset of truly relevant attributes among those identified by traditional feature selection
methods. The novelty of the proposed approach involves the simultaneous selection of
features and objects and horizontal and vertical data-dimensionality reduction.

This approach may find application in the analysis of datasets, where there is a need
to identify specific ranges of continuous attribute values. Such datasets exist in the area
of medical data, where only selected, narrow ranges of values of diagnostic test results
have a significant impact on determining a disease diagnosis. Another example of such
an area may be the field of spectrometry [33], where only certain ranges of wavelengths
have significant relationships with the dependent variable. In general, such FTIR and
Raman spectrometry experiments make it possible to check the absorption of wavelengths
of different wavelengths penetrating the biological-chemical sample and tissue under
study. The absorption of specific wavelengths can distinguish between different samples,
for example, and identify diseases [34]. Application areas can be found in abundance,
especially where the data are continuous in nature. The presented method works on
such data.
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