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Abstract: Quantum physics through the lens of Bayesian statistics considers probability to be a degree
of belief and subjective. A Bayesian derivation of the probability density function in phase space is
presented. Then, a Kullback–Liebler divergence in phase space is introduced to define interference
and entanglement. Comparisons between each of these two quantities and the entropy are made.
A brief presentation of entanglement in phase space to the spin degree of freedom and an extension
to mixed states completes the work.
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1. Introduction

This journal issue celebrates Claude Shannon’s 1948 formulation of “lost information”
in phone-line signals [1]. It is curious that when von Neumann asked Shannon how he was
getting on with their information theory, Shannon replied (according to [2]) “The theory
was in excellent shape, except that he needed a good name for “missing information”. “Why
don’t you call it entropy”, von Neumann suggested. “In the first place, a mathematical
development very much like yours already exists in Boltzmann’s statistical mechanics, and
in the second place, no one understands entropy very well, so in any discussion you will
be in a position of advantage”.

A quantification of entanglement and interference in quantum phase space for pure
states is proposed through Shannon entropy and related concepts (see Appendix B for a
brief review). In order to arrive there a phase space probability density must be derived
and leads to the next topic that has captivated much of quantum physics discussions since
its first days, namely the role of measurement in physics. Measurements are associated
with events in statistics, since through measurements full knowledge of a physical variable
is acquired. The role of knowledge in quantum physics is then visited.

1.1. Bayesian Knowledge in Quantum Physics

In the field of statistics two views offered by the Bayesian [3] and the frequentist [4,5]
divide the experts. Bayesian thinking is based on the idea that probabilities are degrees
of belief about the events while the frequentist approach is based on the idea that the
probability of an event occurring is equal to the long-run frequency with which that
event occurs.

1.2. Measurements and Knowledge

A measurement in a statistical theory is modeled as an event, since full knowledge of
the variable being measured is acquired.

In quantum physics the outcome of a measurement is associated with eigenvalues of a
chosen Hermitian operator. For example, if one measures the position or the spin along the
z-direction of a state, such a position or spin value becomes an event and the state becomes
the eigenstate associated with the measured eigenvalue.

In both classical probability and quantum physics, there are scenarios where it is
possible to infer full knowledge of a variable without the direct measurement of such a
variable. A simple example in classical probability starts with two balls in a bag, one is red
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and the other is white. By randomly drawing one of them and upon the knowledge of the
outcome, one can infer the other ball color immediately without any further measurement.
The prior knowledge that there were two different color balls in the bag is combined with
the evidence from the observation to give certainty, immediately, on the other ball’s color.
This knowledge acquired about the other ball is not causal since if another player is only
told the color of the ball that was left in the bag, the player would immediately infer the
color of the ball that was drawn. Reasoning with knowledge in this case is invariant with
respect to the time of occurrence. In quantum physics entangled states offer an analogous
scenario. In teleportation experiments [6–9] with entangled fermions, the spin z-direction
of one fermion can immediately be inferred by measuring the spin z-direction component
of the other fermion. The prior knowledge that both fermions must have opposite spin
combined with the observation allows for such inference. However, such knowledge is not
causal, it is acquired by combining the prior knowledge with an observation, like in the
classical probability example.

The Bayesian view of quantum physics also says that knowledge associated with a
state is subjective to the observer. For example, two observers conducting an experiment of
quantum teleportation, even if they have the same prior knowledge of the set up, will have
different knowledge about the experiment according to when and where a measurement is
obtained. According to the special theory of relativity, information or knowledge cannot be
transferred instantaneously and so observers of an entangled pair will possess different
knowledge of the variables at the time one of them is measured and so their predictions
about the outcome of the other variable will differ, e.g., see [10,11]. These experiments
with the entangled pair traveling at long distances suggest that quantum physics is best
described as a Bayesian theory. It is worth stressing that a theory of knowledge is not
necessarily a theory of cause and consequence.

One may wonder, is there a causal explanation for the quantum phenomena? Revis-
iting the Bohr vs. Einstein debate, e.g., see [12,13] and references, the view put forward
here follows the epistemological view of Bohr: quantum theory is today the best model
for predictions. The view put forward here also resonates with the ontological concern
of Einstein adding the question: “Is there a causal theory that accounts for the quanta
phenomena?” The quest here is for a better understanding of quantum theory as a Bayesian
theory and the use of Shannon entropy and related concepts to characterize interference
and entanglement. The quest for a causal model is left open.

Here, knowledge and information are meant to be the same thing. There is much work
in information in quantum physics, e.g., [14–17] and references, but they use von Neumann
mixed states entropy as a starting point which attributes zero information content for all
pure states. In contrast, the starting point and focus here is pure states, the core of quantum
physics theory. Mixed states do follow from pure states. The emphasis in using the term
knowledge or degree of belief for the probabilities instead of information is that it is the
language used in Bayesian theory and it stresses that it is subjective. Yet, the Bayesian view
provides all the predictions quantum theory can make today and perhaps one can expand
it as discussed next.

1.3. Phase Space

From a statistical perspective, randomness associated with a quantum state cannot be
fully captured by one operator, afterwards an eigenstate of any one operator will seem to
contain no randomness, a measurement by this operator will result with certainty in the
eigenvalue of this eigenstate.

A unique aspect of quantum physics, expressed by the uncertainty principle, is that
eigenvalues of two non-commuting operators cannot be measured simultaneously. Events
cannot occur for such pair of variables simultaneously. These are mutually exclusive
quantum variables and so, randomness associated with a state cannot be reduced to zero.
To characterize the randomness associated with a state, non-commuting operators are then
needed. A special operator is x with eigenstates |x〉. Together with the unitary evolution
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operator, they define the space-time properties of states. In quantum mechanics, the
uncertainty principle associated with the operator x is derived from the non-commuting
property [x, p] = ih̄, where p is the momentum operator. The variables x and k = p

h̄ are
Fourier of each other, where k is the spatial frequency variable. The randomness of a state
|Ψt〉 is then captured in phase space, the space formed by the pair of Fourier variables x, k.

In quantum field theory, a relativistic theory, space becomes the domain variable, not
an operator, and the spatial frequency k becomes the Fourier domain variable [18]. The
phase space is then the space of the two domains of the quantum fields, one being the
Fourier of the other. In this case, quantum field operators are rooted on the creation and
annihilation operators defined in these two domains. A creation operator can then create a
particle at some position or with some spatial frequency. The coefficients in front of these
operators replace the role of the wave functions establishing the distribution in phase space.
Phase space becomes the space where all randomness of a state is captured in quantum
field theory.

In probability theory, any statistics of interest is derived from the joint distribution of all
variables, so the joint distribution in phase space is the quantity to be derived. A constraint
to events in phase space occurs from the fact that ψ(x, t) = 〈x|Ψt〉 and φ(k, t) = 〈k|Ψt〉
are the Fourier transform of each other. If one acquires full knowledge of one of the
variables at time t, expressed by a Dirac delta distribution, then the other phase space
variable must be described by a uniform distribution, indicating maximum entropy in this
other variable. It is this constraint of our knowledge about the pair of variables x and k at
time t that yields the uncertainty principle as clearly formulated by Robertson [19]. The
uncertainty principle suggests that events do occur in a volume element in phase space of
size ∆x∆k ≥ 1, forming a coarse representation of the phase space. Thus, with respect to
the statistical mechanical view of Gibbs [20], quantum mechanics already have a coarse
mechanism built in to describe events in phase space.

Early attempts to create a quantum probability distribution in phase space by
Wigner [21] and by Husimi [22] ended up with pseudo-distributions that fail Kolmogorov
probability axioms and also have consistency difficulties with special relativity. Thus, the
need for a pursue of a new approach.

With a new approach to create a phase space probability density, to be developed in
Section 2 capturing knowledge about the phase space variables, we further exploit how
such knowledge can be used to characterize quantum states entanglement and interference.

1.4. Entropy, Interference, and Entanglement

The previous work [23,24] shows how Shannon entropy of a quantum state in phase
space captures the loss of knowledge or the loss of information such a state describes.
That work explores the hypothesis that knowledge (or information) cannot be gained in
a closed quantum system to account for the time arrow. Here, the objective is to quantify
interference and entanglement in terms of information loss or gained.

The Kullback–Liebler divergence (reviewed in Appendix B) is employed to define
interference as a loss of information if one replaces the state probability density in phase
space by a “classical probability density” in phase space. The Kullback–Liebler divergence
is also employed to define entanglement as a loss of information if one replaces a state
probability density in phase space by a product of state probability density in phase space.
Such quantification of interference and entanglement could help our understanding of
physical system evolution, for example by restricting which physical phenomena are
allowed according to the gain or loss of interference or entanglement.

Position and spin are degrees of freedom (DoFs) required to specify a quantum
state. This paper addresses how knowledge in phase space is quantified for position
and spin DOFs.
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1.5. Paper Organization

The remainder of the paper is organized as follows. In Section 2, the Bayesian formu-
lation of probability density in position-momentum phase space is developed. In Section 3,
the quantification of interference in phase space is proposed and compared to the entropy
in phase space. In Section 4, the quantification of entanglement in phase space is proposed
and compared to the entropy in phase space. Section 5 expands the concept of phase space
to spin systems and proposes the quantification of entanglement for spin systems. Such
quantification can also be expanded to Qbit technology. We also briefly show the approach
to mixed states and compare it to von Neumann entropy. Lastly, concluding remarks are
provided in Section 6.

2. A Bayesian View of Quantum Phase Space

One question immediately arises, what is the meaning of a joint distribution in phase
space given that events in phase space cannot occur?

For quantum physics to be a statistical theory, a joint distribution for two variables
of non-commuting operators must not require an event and a conditional distribution for
the same variables must not require an event to be given. Instead, the joint distribution
will describe the degree of belief about the joint variables and the conditional distribution
will describe the degree of belief about a variable given the degree of belief about the
other variable. An event associated with any one, but not both, of the variables of the
non-commuting operators is still possible.

Quantum physics, as a statistical theory, is best described through the states so that
classical logical manipulations such as or and and become additions and products of states
analogous to operations in classical probability theory. For example, in the double slit
experiment, according to classical logic an electron can pass through slit 1 or slit 2, so the
quantum state at slit 1 will add with the quantum state at slit 2 to form the final state. To
represent a particle A and a particle B, one takes the product of the two quantum states
(a state in a product of Hilbert Spaces). After the operations with the state occur, quantum
probabilities are then associated with the final state |Ψt〉 via the probability density matrix
ρt = |Ψt〉 〈Ψt|.

With this view the following proposition and theorem follows

Lemma 1 (Conditional Probability Density). Given the projection of a state to the position basis,
ψt(x) = 〈x|Ψt〉, then the conditional probability density function in the spatial frequency domain
is ρ(k|ψt(x)) = | 〈k|Ψt〉 |2. Also, given φt(k) = 〈k|Ψt〉, then the conditional probability density
function in the position domain is ρ(x|φt(k)) = | 〈x|Ψt〉 |2.

Proof. Given the wave function ψt(x) = 〈x|Ψt〉, we can derive via the inverse Fourier
transform the conditional wave function in spatial frequency

φt(k|ψt(x)) =
∫

dx
1√
2π

e−ikx ψt(x) (1)

Clearly, φt(k|ψt(x)) =
∫

dx 〈k|x〉 〈x|Ψt〉 = 〈k|Ψt〉, where 〈k|x〉 = 1√
2π

e−ikx. Thus,

ρ(k|ψt(x)) = |φt(k|ψt(x))|2 = | 〈k|Ψt〉 |2. Similarly, starting from φt(k) = 〈k|Ψt〉 and
applying the Fourier transform followed by the magnitude square one obtain ρ(x|φt(k)) =
| 〈x|Ψt〉 |2.

The conditional distribution ρ(k|ψt(x)), in general, depends on the entire function
ψ(x) and not on any one event in x. Note that conditional probabilities do not necessarily
describe a cause and consequence relation but rather they are knowledge or information
relation.
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Theorem 1 (Joint Distribution in Phase Space). Given a state |Ψt〉, evolving in time according to
some Hamiltonian. Then, the joint distribution in phase space is ρt(x, k) = |ψt(x)|2 |φt(k)|2, where
ψt(x) = 〈x|Ψt〉 and φt(k) = 〈k|Ψt〉 are the projection in position basis and spatial frequency basis.

Proof. Considering the state projected in the position domain to be a prior known function
ψt(x) = 〈x|Ψt〉 we obtain the conditional projection of the state in the spatial frequency
domain from Lemma 1 to be φt(k|ψt(x)) = 〈k|Ψt〉. We then have the conditional density as
ρt(k|ψt(x)) = | 〈k|Ψt〉 |2.

From Bayes’ theorem applied to the density we have ρt(x, k) = ρt(k|ψt(x))ρx
t (x) =

| 〈k|Ψt〉 |2 | 〈x|Ψt〉 |2.
Clearly, we could have started with the state prior φt(k) = 〈k|Ψt〉 and obtained via the

Fourier transform the (conditional) projection of the state in position ψt(x|φt(k)) = 〈x|Ψt〉
and then obtained the same joint distribution.

In quantum statistics, the joint distribution ρt(x, k) = ρx
t (x) ρk

t (k) is not to be inter-
preted as the product of two independent random variables since the two distributions
ρx

t and ρk
t are not independent from each other, and independent events cannot occur

simultaneously.

Entropy in Phase Space

Geiger and Kedem [23] proposed a quantification of knowledge of a quantum state
through Shannon entropy associated with the phase space distribution, namely

St = −
∫

dx dk ρt(x, k) log ρt(x, k) . (2)

They showed various desired properties of this entropy, including it to be invariant to
canonical transformations, special relativity and to CPT transformations. We adopt this
entropy here for the study of interference and entanglement.

3. Interference

Given two states |ΨA〉 and |ΨB〉 and a general superposition of these two states
|ΨA or B〉 as in Equation (A2). The projections of |ΨA or B〉 written in polar representation are

ψ(x) = 〈x|ΨA or B〉 =
eiν
√

ZP

(
cos θ1 |ψA(x)| eiξA(x) + sin θ1 |ψB(x)| ei(ξB(x)−ϕ1)

)
(3)

φ(k) = 〈k|ΨA or B〉 =
eiν√
ZQ

(
cos θ1 |φA(k)| eiχA(k) + sin θ1 |φB(k)| ei(χB(k)+ϕ1)

)
(4)

where |.| is the magnitude value, ξA,B(x) are the complex phases associated to the wave
functions ψA,B(x) and similarly χA,B(k) are the complex phases associated to the wave
functions φA,B(k).

The probability densities are then

p(x) = |ψ(x)|2 =
1

ZP

(
pc(x) + |ψA(x)| |ψB(x)| sin 2θ1 cos(ξA(x)− ξB(x)− ϕ1)

)
,

q(k) = |φ(k)|2 =
1

ZQ

(
qc(k) + |φA(k)| |φB(k)| sin 2θ1 cos(χA(k)− χB(k)− ϕ1)

)
(5)

where the normalization constants are ZP = 1 + sin 2θ1
∫

dx(|ψA(x)| |ψB(x)| cos(ξA(x)
−ξB(x)− ϕ1)) and ZQ = 1 + sin 2θ1

∫
dk|φA(k)| |φB(k)| cos(χA(k)− χB(k)− ϕ1), and

pc(x) = cos2θ1 |ψA(x)|2 + sin2 θ1 |ψB(x)|2

qc(k) = cos2 θ1 |φA(x)|2 + sin2 θ1 |φB(x)|2 (6)
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are probability densities without the interference terms. The upper-index c refers to these
probability densities also representing classical statistical combination (weighted average)
of probability densities associated to the quantum states A and B.

Definition 1 (Interference:). Given two states |ΨA〉, |ΨB〉 and their linear superposition |ΨA or B〉
as in Equation (A2). Interference, I , is the amount of information lost when ρc(x, k) = pc(x)qc(k)
is used to approximate ρ(x, k) = p(x)q(k). It is calculated via the Kullback–Liebler divergence
between the phase space probability densities ρ(x, k) and ρc(x, k), i.e.,

I(θ1, ϕ1, |ΨA〉 , |ΨB〉) = DKL(p(x)q(k)||pc(x)qc(k))
= CrossS(p(x), pc(x))− S(p(x)) + CrossS(q(k), qc(k))− S(q(k))

=
∫

dx |ψ(x)|2 log
(

1 +
|ψA(x)| |ψB(x)| sin 2θ1 cos(ξA(x)− ξB(x)− ϕ1)

cos2 θ1 |ψA(x)|2 + sin2 θ1 |ψB(x)|2

)
(7)

+
∫

dk |φ(k)|2 log
(

1 +
|φA(k)| |φB(k)| sin 2θ1 cos(χA(k)− χB(k)− ϕ1)

cos2 θ1 |φA(k)|2 + sin2 θ1 |φB(k)|2

)
,

where CrossS(p, q) is the cross entropy between probability distributions p and q (see Equation (A8))
and the phase space entropy Equation (2) for the phase space distributions Equation (5) is given by

S(|ΨA or B〉) = −
∫ ∫

dx dk p(x)q(k) log(p(x)q(k)) = −
∫

dx p(x) log p(x)−
∫

dk q(k) log q(k) (8)

As one varies the combination of the two states, the larger I is, the larger the interference contribution
to the distribution ρ(x, k) = p(x)q(k).

There is no interference, i.e., I = 0, when

1. the functions’ support in phase space do not overlap, i.e.,

|ψA(x)| |ψB(x)| = 0; ∀x , and |φA(k)| |φB(k)| = 0; ∀k , (9)

2. the complex phases are aligned up to a constant multiple of π
2 , i.e.,

ξA(x)− ξB(x)− ϕ1 = n
π

2
; n ∈ Z+ , and χA(k)− χB(k)− ϕ1 = m

π

2
; m ∈ Z+ , (10)

3. either θ1 = 0, π
2 , since then there is no superposition of states. This will effectively

occur when ψA(x) = ψB(x).

Also, IFF there is no interference, P(x) = pc(x) and Q(x) = qc(x). Figure 1c,f,i, illustrates
scenarios with each state being a coherent state and not overlapping in neither position nor
spatial frequency.

Clearly, one can consider the interference just in position representation or just in
spatial frequency representation. However, here, the quantification of the interference in
phase space distinguish the case (a) when a projection of superposition of two states in
position space does not interfere but the same superposition projection in spatial frequency
does interfere, from the case (b) a superposition of two states that do not interfere neither
in position nor in spatial frequency.

Figure 1 illustrate some scenarios of two coherent states that can be superposed to
investigate inference as discussed next. Figure 2 illustrates some scenarios comparing the
Kullback–Liebler divergence (KLD) (7) and the entropy (8). The entropy captures the notion
of overlap of the superposition of states. For example, when both states are similar and
superposed, the classical addition of probability densities and the quantum superposition
do occur. Then, the KLD and the entropy will be small. However, for cases where there is
no overlap between the two states, the classical weighted average distribution is a good
approximation to the quantum one, the KLD will be small, but the entropy will be large.
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a. b. c.

d. e. f.

g. h. i.

Figure 1. Normal distribution in phase space for two coherent states, A and B in 1D with centers and
variances as follows. For all (a–c) position space probabilities, with µA = 27 with σA = 5.6 and for
(a) µB = 27, (b) µB = 37, (c) µB ≈ 48, all with σB = 4.2 . Note that for each coherent state, the spatial
frequency value is the phase of the coherent state in position space. For (d–f), spatial frequency
space probabilities, with kA ≈ 0.35 and (d) kB ≈ 0.35, (e) kB ≈ 0.75, (f) kB ≈ 1.15. For (g–i), spatial
frequency space probabilities, with kA ≈ 1.04 and (g) kB ≈ 1.04, (h) kB ≈ 1.55, (i) kB ≈ 2.05.

Both concepts may be helpful to characterize the knowledge one has about the su-
perposition of states. The KLD captures the distinction between classical probability and
quantum probability, while the entropy captures the concept of lack of overlap of two states
in quantum phase space. One advantage of the entropy over the KLD is that one does not
need to know the components of the superposition of states to evaluate the entropy.

The role of the phase differences is noticeable, in position and in spatial frequency,
as per (10). In addition, for coherent states, used in the simulations, the difference in
phase of the state projection in position basis is the differences in the centers of the state
projection in the spatial frequency basis. Also vice versa, the phase difference in spatial
frequency is the center difference in the position domain. The periodic range for ∆µ is
reduced for Figure 2c,d. creating the oscillations in the KLD and entropy. Entropy seems to
be a good estimation for the interference behavior when the two states overlap either in
spatial frequency or in position. However, the more the overlap in both spaces is reduced
the more the two quantities differ in behavior.
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a. b.

c. d.
Figure 2. Interference Simulations for a superposition of two coherent states as shown in Figure 1.
The coherent state |ΨA〉 has µA = 27, σA = 5.6, and for (a,b) the phase is kA = 0.35 while for (c,d),
the phase is kA = 1.04. The other coherent state |ΨB〉 in position has fixed σB = 4.2 and the position
center and phase vary in 48 increments each, as follows: µB = [27, . . . , 48], and for (a,b), the phase
varies as kB = [0.35, . . . , 1.15], while for (c,d), the phase varies as kB = [1.04, . . . , 2.05]. The plots axis
are all with ∆µ = µB− µA vs. ∆k = kB− kA. The KLD and the entropy become small as the two states
closely overlap, i.e., where δµ ≈ δk ≈ 0. However, the KLD becomes small as the states do not overlap
while the entropy gets to be larger. As the phase increases from (a,b) to (c,d) oscillation increases for
both (KLD and Entropy) as periods reduce. Entropy seems to be a good estimation for the interference
behavior when the two states overlap either in spatial frequency or in position. However, the more
the overlap in both spaces is reduced the more the two quantities differ in behavior.

4. Entanglement

Given two states |ΨA〉 and |ΨB〉 consider the entangled state |ΨA and B〉 as described
in Equation (A3). Extending the language of probability to the quantum states, each state
represent a random object. A quantum Bayesian interpretation of this state is that it reflects
a joint state of |ΨA〉 and |ΨB〉, thus the sub-index A and B. Considering the prior to be the
state |ΨA〉, then the conditional state-operator, which is the product of a state in one Hilbert
space times an operator acting in another Hilbert space, is

|Ψcond-B/A〉 = |ΨB|ΨA〉 = eiν2
√

Z2

(
cos θ2 |ΨA〉 ⊗ |ΨB〉 〈ΨA|+ eiϕ2 sin θ2 |ΨB〉 ⊗ I

)
, (11)

where I is the identity operator acting in the other Hilbert space. The conditional state-
operator, with an abuse of state notation, reflects the impacts/change to a state |ΨB〉 given
the knowledge of the state |ΨA〉. This conditional state-operator leads to the joint state by
acting on the prior state |ΨA〉 as follows

|ΨA and B〉 = |Ψcond-B/A〉 |ΨA〉 = eiν2
√

Z2

(
cos θ2 |ΨA〉 |ΨB〉+ eiϕ2 sin θ2 |ΨB〉 |ΨA〉

)
. (12)

associated with joint density operator
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ρA and B = |ΨA and B〉 〈ΨA and B|

=
1

Z2

(
cos θ2 |ΨA〉 |ΨB〉+ eiϕ2 sin θ2 |ΨB〉 |ΨA〉

)(
cos θ2 〈ΨB| 〈ΨA|+ e−iϕ2 sin θ2 〈ΨA| 〈ΨB|

)
=

1
Z2

(
cos2 θ2 |ΨA〉 |ΨB〉 〈ΨB| 〈ΨA|+ sin2 θ2 |ΨB〉 |ΨA〉 〈ΨA| 〈ΨB|

1
2

sin 2θ2

(
e−iϕ2 |ΨA〉 |ΨB〉 〈ΨA| 〈ΨB|+ eiϕ2 |ΨB〉 |ΨA〉 〈ΨB| 〈ΨA|

))
. (13)

Clearly, we would have obtained the same joint state had we considered the prior to be
|ΨB〉 and the conditional state-operator to be |Ψcond-A/B〉 = |ΨA|ΨB〉 = eiν2√

Z2
(cos θ2 |ΨA〉 ⊗

I +eiϕ2 sin θ2 |ΨB〉 ⊗ |ΨA〉 〈ΨB|).
The probability density in position space of the joint state is then

p(x, y) = 〈x| 〈y| ρA and B |y〉 |x〉 = 1
Z2,P

(
cos2 θ2 |ΨA(x)|2 |ΨB(y)|2 + sin2 θ2 |ΨB(x)|2 |ΨA(y)|2

+ sin 2θ2 cos(ξA(x)− ξB(x) + ξB(y)− ξA(y)− ϕ2) |ΨA(x)| |ΨB(y)| |ΨA(y)| |ΨB(x)|
)

. (14)

Similarly, the probability density q(kx, ky) in spatial frequency space is

q(kx, ky) = 〈kx| 〈ky| ρA and B |ky〉 |kx〉 =
1

Z2,Q

(
cos2 θ2 |ΦA(kx)|2 |ΦB(ky)|2 + sin2 θ2 |ΦB(kx)|2 |ΦA(ky)|2

+ sin 2θ2 cos(χA(kx)− χB(kx) + χB(ky)− χA(ky)− ϕ2) |ΦA(kx)| |ΦB(ky)| |ΦA(ky)| |ΦB(kx)|
)

, (15)

where θ2 = π
4 and ϕ2 = 0, π describe bosons and fermions, respectively. However, in

various empirical works, specially related to quantum computers, one can trap fermions on
different locations so that they do not occupy the same state, and still entangle their spin
with any general set of parameters. Thus, in theory, one could prepare two fermions to
have different spin states and allow them to combine in phase space freely, described by a
general set of parameters above. Expanding this formalism to Qbits there are no restrictions
on the set of parameters used.

The phase space entropy (2) for this joint state becomes

S(|Ψ〉2) = −
∫ ∫ ∫ ∫

dx dkx dy dky p(x, y) q(kx, ky) log
(

p(x, y), q(kx, ky)
)

. (16)

The product of states, or the disentangled states, are described by the two-state (12) with
θ2 = 0, π

2 , i.e.,

θ2 = 0 θ2 =
π

2
pD1(x, y) = |ΨA(x)|2 |ΨB(y)|2 pD2(x, y) = |ΨB(x)|2 |ΨA(y)|2

qD1(kx, ky) = |ΦA(kx)|2 |ΦB(ky)|2 qD2(kx, ky) = |ΦB(kx)|2 |ΦA(ky)|2 (17)

where the upper index D1 and D2 indicate two different disentangle states.

Proposition 1. Given two states |ΨA〉, |ΨB〉 and the two-state |ΨA and B〉, shown in (12). Refer
by pD(x, y)qD(kx, ky) to any of the disentangled states (17). The Kullback–Liebler divergence
DKL

(
p(x, y)q(kx, ky)|| pD(x, y)qD(kx, ky)

)
is invariant to any choice of disentangled states for

bosons or fermions, where θ2 = π
4 and ϕ2 = 0, π, respectively.
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Proof. The proposition follows from performing the decomposition of the logarithm of
products into the sum of logarithms and then using the symmetric properties of fermions
and bosons. More precisely,

DD
KL = −S(p, q) +

∫
dx dy dkx dky p(x, y)q(kx, ky) log

(
pD(x, y)qD(kx, ky)

)
(18)

where DD
KL is short for DD

KL
(

p(x, y)q(kx, ky)|| pD(x, y)qD(kx, ky)
)
. Then, for D1 we get

DD1
KL = −S(p, q) +

∫
dx dy p(x, y) log

(
|ΨA(x)|2 |ΨB(y)|2

)
+
∫

dkx dky q(kx, ky) log
(
|ΦA(kx)|2 |ΦB(ky)|2

)
= −S(p, q) +

∫
dx p(x) log |ΨA(x)|2 +

∫
dy p(y) log |ΨB(y)|2

+
∫

dkx q(kx) log |ΦA(kx)|2 +
∫

dky q(ky) log |ΦB(ky)|2 (19)

where p(x) =
∫

dy p(x, y), p(y) =
∫

dx p(x, y), q(kx) =
∫

dky q(kx, ky), q(ky) =
∫

dkx q(kx, ky).
Note that the integrals yield the same functions p(.) and q(.) due to the symmetric proper-
ties for bosons and fermions.

Similarly, for D2 we get

DD2
KL = −S(p, q) +

∫
dx p(x) log |ΨB(x)|2 +

∫
dy p(y) log |ΨA(y)|2

+
∫

dkx q(kx) log |ΦB(kx)|2 +
∫

dky q(ky) log |ΦA(ky)|2 (20)

and clearly every term here has a perfect match in (19), e.g.,
∫

dx p(x) log |ΨB(x)|2 =∫
dy p(y) log |ΨB(y)|2 and so DD2

KL = DD1
KL.

Definition 2 (Entanglement:). Given two states |ΨA〉, |ΨB〉 and the two-state |ΨA and B〉, shown
in (12), that when projected in phase space yields the probability density distribution ρ(x, y, kx, ky) =
p(x, y)q(kx, ky) given by (14) and (15). Entanglement, E , is the amount of information lost when
the product of states is used to approximate ρ(x, y, kx, ky). More formally, for bosons or fermions,
where θ2 = π

4 and ϕ2 = 0, π we have

E(ϕ2 = 0, π, |ΨA〉 , |ΨB〉) = DKL

(
p(x, y)q(kx, ky)|| pD(x, y)qD(kx, ky)

)
(21)

= CrossS(p(x, y)q(kx, ky), pD(x, y)qD(kx, ky))− S(p(x, y)q(kx, ky))

and when the parameters θ2 and ϕ2 are free to vary (as in Qbits) then

E(θ2, ϕ2, |ΨA〉 , |ΨB〉) = arg min
D1,D2

[
DKL

(
p(x, y)q(kx, ky)|| pD1(x, y)qD1(kx, ky)

)
DKL

(
p(x, y)q(kx, ky)|| pD2(x, y)qD2(kx, ky)

)]
(22)

The entanglement vanishes when

1. θ2 = 0, π
2

2. |ΨA〉 = |ΨB〉.
One comparison of interest is between the entanglement (21) and the entropy (16).

Figure 3 illustrates some scenarios combining two coherent states where these two quan-
tities are evaluated and a comparisons is made. While the definition of entanglement is
through the KLD, the entropy captures a similar behavior and it can be evaluated from
the state itself, without having to know what the product of the states would be. Entropy
behavior seems to be a good estimation for entanglement. One reason is that the basis
functions for a product of N Hilbert spaces of the total operators X = x1 × x2 . . .× xN and
K is given by the product of states |x1〉 . . . |xN〉 and |k1〉 . . . |kN〉. These are the eigenstates of
the operators x1 . . . xN and k1 . . . kN . Then the product of coherent quantum states, where
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each one minimizes the phase space entropy, projected in these bases have lower entropy
than the entangled states, which are linear superposition of these products.

a. b.

c. d.

e. f.
Figure 3. Entanglement simulations from two coherent states shown in Figure 1, with normal
probability distributions. Note that the phase of the coherent state projected to position space is the
center of the coherent state projected in the spatial frequency space, and vice versa. The coherent
state |ΨA〉 has a fixed set of parameters, µA = 27, σA = 5.6 in position space, and for (a,b) the phase
is kA = 0.35 while for (c–f) the phase is kA = 1.04. The coherent state |ΨB〉 in position has fixed
σB = 4.2 and the center and phase vary in 48 increments each, as follows: µB ∈ [27, . . . , 48], and
for (a,b) kB ∈ [0.35, . . . , 1.15], while for (c–f) the phase varies as kB ∈ [1.04, . . . , 2.05]. The parameter
θ2 =

pi
4 is fixed when entangling the two states. Cases (a–d) show KLD and Entropy, respectively, for

a symmetric entanglement where phase ϕ2 = 0. Cases (e,f) show KLD and Entropy, respectively, for
an anti-symmetric entanglement where phase ϕ2 = π. The effect of the phase ϕ2 is only noticeable
when the two states are very similar to each other and then both, KLD and entropy, yield large values
for the anti-symmetric case (after all anti-symmetric functions must vanish in these cases, while the
product of states does not). While the KLD has a smoother behavior, both increase as the separation of
the two coherent state parameters increases. The larger values of the phase parameters in (c–f) clearly
cause a periodic behavior. Entropy behavior seems to be a good estimation for entanglement.

The study of the more general case of entanglement (22), which is applicable to Qbits,
is left as future work.
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5. Entanglement for Spin or Qbit Phase Space

The degrees of freedom (DoFs) in quantum physics specify the wave function (projec-
tion of the state in position space) and the spin. Thus, when quantifying our knowledge
of a quantum system one must also quantify our knowledge of a spin state. Qbits are like
spin in formalism, but with less constraints as the Pauli exclusion principle is no longer
required (since other aspects of the complete state may already be identified or are already
anti-symmetric). What follows also applies to Qbits.

Let us consider two spin states |ξA〉 and |ξB〉, each formed with NA and NB spin s
particles, respectively. A spin state formed from these two states may be in a superposition
of any of the total spin magnitudes s ∈ [sN , sN − 1, . . . , 1

2 mod (2 sN , 2)], where sN = Ns
and N = NA + NB, and is written as

|ξ〉 = eiν2
√

Z2

(
cos θ2 |ξA〉 |ξB〉+ eiϕ2 sin θ2 |ξB〉 |ξA〉

)
. (23)

The operator Sz associated with |ξ〉 is given by

Sz = SA
z ⊗ I2NB + I2NA ⊗ SB

z (24)

where IN is the identity of dimension N and ⊗ is the exterior product.
As discussed earlier, the position and spatial frequency operators for a product of

N Hilbert spaces is the product of position operators in each Hilbert space. For spin
states, the total Sz operator (24) is not just the product of single particle operator. The
set of eigenstates of the operators Sz and S2 include entangled spin states. Let us refer to
the eigenstates of Sz and S2 as {|ξs,ms〉 ; s = sN , sN − 1, . . . smin , ms = −s, . . . , s}, where
smin = 1

2 mod (2 ∗ sN , 2). Thus, the state is written in this basis as

|ξ〉 =
sN

∑
s=smin

s

∑
m=−s

αs,m |ξs,m〉 , (25)

where αs,m = 〈ξs,m|ξ〉 ∈ C and 1 = ∑sN
s=smin ∑s

m=−s |αs,m|2.
The phase space for the spin associated with the operators Sz and S2 is derived from

quantizing the sphere, the surface of the ball with a radius of the spin magnitude h̄ sN ,
as developed by the Geometric Quantization (GQ) method, e.g., see [25–27]. Geiger and
Kedem [24] have proposed this approach to evaluate the entropy of a quantum state which
is briefly summarized next.

The conjugate basis to {|ξs,m〉} is {|φ〉 ; [0, 2π]}, obtained by identifying the angle φ,
the rotation angle around the z-axis of e−iSz φ, as the conjugate operator to Sz. The spin
state |ξ〉 in this basis is

|ξ〉 =
∫ 2π

0
|φ〉 〈φ|ξ〉dφ =

∫ 2π

0
λ(φ) |φ〉dφ , (26)

where

λ(φ) = 〈φ|ξ〉 =
sN

∑
s=smin

s

∑
m=−s

αs,m 〈φ|ξs,m〉 =
sN

∑
s=smin

s

∑
m−s

αs,mψs,m(φ) . (27)

and

ψs,m(φ) =

{ 1√
2π

ei(s+m)φ, m ≥ 0 (northern hemisphere) ,
1√
2π

ei(−s+m)φ, m < 0 (southern hemisphere) .
(28)

The two solutions in (28) are periodic in φ and differ by a phase (gauge) transformation of
e−i2sφ.
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Thus, for a state |ξ〉with density matrix ρ = |ξ〉 〈ξ|, the probabilities of the phase space
are the product of the probabilities {ρs,m = 〈ξs,m| ρ |ξs,m〉 = |αs,m|2} with the probability
densities {ρ(φ) = 〈φ| ρ |φ〉 = |λ(φ)|2}. Note that given {αs,m} one obtains {λ(φ)} via the
predefined set of functions (28), i.e., one can interpret ρ(φ) as a conditional probability
density ρ(φ/{αs,m}).

Thus, the entropy (2) of a spin state |ξ〉 in spin phase space is

S = Sz + Sφ = −
sN

∑
s=smin

s

∑
m=−s

ρs,m ln ρs,m −
∫

ρ(φ) ln ρ(φ) dφ

= −
sN

∑
s=smin

s

∑
m=−s

|αs,m|2 ln |αs,m|2 −
∫
|λ(φ)|2 ln |λ(φ)|2 dφ . (29)

The first term is the Shannon entropy capturing the randomness of the spin value along
the z-axis. The second term is differential entropy capturing the randomness of the spin
value in the plane perpendicular to the z-axis, i.e., the entropy of the polarization angle
φ. Geiger and Kedem [24] have shown that this entropy reaches its lowest value zero for
the eigenstates of the two operators Sz and S2. Products of states that are described by the
superposition of these eigenstates will have higher entropy.

The densities in spin phase space associated with the product state |ξA〉 |ξB〉 are
derived from the projections

|ξA〉 |ξB〉 =
sN

∑
s=smin

s

∑
m=−s

αA,B
s,m |ξs,m〉 ⇒ αA,B

s,m = 〈ξs,m|ξA〉 |ξB〉 ⇒ λA,B(φ) =
sN

∑
s=smin

s

∑
m−s

αA,B
s,m ψs,m(φ) , (30)

Extending the work of [24] to also define the Kullback–Liebler divergence between a
joint state as described by (12) and the product of the states |ξA〉 |ξB〉.

Definition 3 (Spin Entanglement:). Given two spin states |ξA〉 , |ξB〉 and the joint state |ξ〉,
shown in (23), that when projected in spin phase space yields the probability density distribution
ρs,m(φ) = |αs,m|2 |λ(φ)|2. Spin entanglement, sE , is the amount of information lost when the
product of states is used to approximate ρs,m(φ). More precisely,

sE(θ2, ϕ2, |ξA〉 , |ξB〉) = arg min
(A,B),(B,A)

[
DKL

(
|αs,m|2 |λ(φ)|2

∣∣∣ |αA,B
s,m |2 |λA,B(φ)|2

)
, (31)

DKL

(
|αs,m|2 |λ(φ)|2

∣∣∣ |αB,A
s,m |2 |λB,A(φ)|2

)]
One comparison of interest to be made is between spin entanglement (31) and spin

entropy (29). In contrast to the position × spatial frequency phase space entanglement, the
spin entropy will be minimized and attain value zero for some entangled states that are
eigenstates of the total spin operators, such as it is the case of Bell entangled states for two
particles [24]. The product of states will then be described by the superposition of these
entangled states and thus, will not have a well-defined spin magnitude. Their entropy will
be larger. The KLD will then anti-correlate with the entropy. A more detailed study is left
for the future.

Expansion to Mixed States

One extension of this approach to mixed states starts from the density matrix derived
from the general state (23), namely

ρ = |ξ〉 〈ξ| = 1
Z2

(
cos2 θ2 |ξA〉 |ξB〉 〈ξB| 〈ξA|+ sin2 θ2 |ξB〉 |ξA〉 〈ξA| 〈ξB|

+
1
2

e−iϕ2 sin 2θ2 |ξA〉 |ξB〉 〈ξA| 〈ξB|+ 1
2

eiϕ2 sin 2θ2 |ξB〉 |ξA〉 〈ξB| 〈ξA|
)

. (32)
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Then, tracing out the density matrix (and assuming the states |ξA〉 , |ξB〉 to be in orthogonal
Hilbert spaces to each other)

ρMixed
s = 〈ξA| |ξs〉 〈ξs| |ξA〉+ 〈ξB| |ξs〉 〈ξs| |ξB〉 = cos2 θ2 |ξB〉 〈ξB|+ sin2 θ2 |ξA〉 〈ξA| . (33)

Then, von Neumann entropy is the Shannon entropy of this mixed state. While this is of
interest to much research, Shannon entropy of pure states precedes von Neumann entropy.
Also, von Neumann entropy obtained by tracing out pure states has some similarity to the
entropy of the superposition of two states Equation (A2), but neglecting both quantities the
interference and the conjugate variable of the phase space. Geiger and Kedem [23] showed
invariant properties of the Shannon entropy in phase space that von Neumann entropy
would not have.

6. Conclusions

The Bayesian statistic view was developed to construct the phase space probability
density. The Bayesian approach to describe quantum physics in phase space considered
the conditional probability densities and joint probability densities to be descriptions of the
degree of belief about the phase space variables. It was observed that events representing
measurements in the phase space do not occur. However, in a coarse description of the
phase space, where the elementary volumes satisfy the uncertainty principle, they do occur.
This derivation of the phase space density provides further support to the work of Geiger
and Kedem [23,24] where they developed the entropy in phase space.

As a Bayesian theory, quantum physics is subjective, even if the prior knowledge
is common to different observers, the measurements may not be. The entanglement
scenarios where teleportation experiments have been reported, demonstrate the subjectivity
of quantum physics as different observers make different predictions about the outcome
of a variable. Moreover, the Bayesian view of quantum physics is that the theory is not a
complete causal theory. The time evolution of a state via the unitary evolution is causal,
as the Hamiltonian causes the state to evolve. However, the Bayesian combination of
observation and the prior knowledge is not causal.

The Bayesian theory of quantum physics also considered the probabilistic object
of manipulations to be the state and not the probabilities. Addition and multiplication
operations usually associated with or and and logical operations were applied to quantum
states and not to quantum probabilities.

With the phase space probability density constructed, the next objective was to quantify
interference and entanglement in terms of information loss or gain, using the Kullback–
Liebler divergence (rooted on Shannon entropy). A comparison to the Shannon entropy of
the state and some similarities between the two quantities were revealed. One advantage
of entropy is that it can be inferred from the quantum state, without any reference to the
two states that were used to compute the divergence. It was noted that for spin phase
space the relations between entropy and the Kullback–Liebler diverges will differ since the
eigenstates of the total spin operator become entangled states.

Extrapolating the Bayesian approach to a philosophical interpretation, and revisiting
the Bohr vs. Einstein debate, the view put forward here is similar to the epistemological
view of Bohr: quantum theory is today the best model for predictions. The view put
forward here also resonates with the ontological concern of Einstein adding the question:
“Is quantum theory a causal theory?” If not, ’is there a causal theory to be discovered?”
After all, by adopting the Bayesian view, the question of a complete causal theory was
left open.
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Appendix A. Combining Two States

Consider a quantum state |ΨA〉 in Hilbert space and its representation in phase space

ψA(x) = 〈x|ΨA〉 and φA(k) = 〈k|ΦA〉 (A1)

The time parameter is not shown here for simplicity/clarity. Figure 1 shows some scenarios
of two coherent states projected in one dimension position and spatial frequency.

Given two quantum states in Hilbert space, |ΨA〉 and |ΨB〉, are one can combine them
as follows: (i) a superposition of these two states or (ii) a sum of an exterior product of the
two states (product of the two Hilbert spaces). More precisely, a general quantum state
formed from these two states can be written as

(i) One-State Superposition: |ΨA or B〉 =
eiν1
√

Z

(
cos θ1 |ΨA〉+ eiϕ1 sin θ1 |ΨB〉

)
(A2)

(ii) Two-State: |ΨA and B〉 =
eiν2
√

Z2

(
cos θ2 |ΨA〉 |ΨB〉+ eiϕ2 sin θ2 |ΨB〉 |ΨA〉

)
(A3)

where ϕ1,2, ν1,2 ∈ [0, π], θ1,2 ∈ [0, π
2 ] and Z, Z2 are normalization constants. The notation of

the subindex |ΨA or B〉 refers to classical logic associated with the superopostion operation
and of the subindex |ΨA and B〉 refers to classical logic associated with the product operation.
For bosons or fermions there is the constraint θ2 = π

4 and ϕ2 = 0, π, respectively, so these
states will be either symmetric or anti-symmetric. The special case when two boson states
occupy the same state is also captured by θ2 = 0, π

2 .
The projection to the spatial basis leads to the wave functions

(i) ψ(x) = 〈x|ψ〉 = eiν
√

Z

(
cos θ1 ψA(x) + eiϕ1 sin θ1 ψB(x)

)
(A4)

(ii) ψ(x, y) = 〈x| 〈y| |Ψ〉2 =
eiν
√

Z2

(
cos θ2 ψA(x)ψB(y) + eiϕ2 sin θ2 ψB(x)ψA(y)

)
(A5)

and similarly for scenario (i) φ(k) = 〈k|ψ〉 and for scenario (ii) φ(kx, ky) = 〈kx| 〈ky| |Ψ〉2.

Appendix B. Entropy Concepts

The Rényi entropy of order α of a given continuous distribution P(x)

Hα(P) =
1

1− α
log
(∫

Pα(x) dx
)

(A6)

The work shown in this paper can be extended to Rényi entropy.
Shannon entropy can be derived from Rényi entropy as follows

S(P) = lim
α→1

Hα(P) = −
∫

P(x) log P(x) dµ(x) (A7)

where µ is some reference measure, usually a Lebesgue measure on a Borel σ-algebra.
The cross entropy of two probability distributions p(x) and q(x) on the variable x is

given by
CrossS(p, q) = −

∫
p(x) log q(x) dµ(x) . (A8)



Entropy 2023, 25, 1227 16 of 16

The Kullback–Liebler divergence between two probability distributions p(x) and q(x)
is given by

DKL(p||q) = −
∫

p(x) log
q(x)
p(x)

dµ(x) = CrossS(p, q)− S(p). (A9)
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