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Abstract: The majority vote model is one of the simplest opinion systems yielding distinct phase
transitions and has garnered significant interest in recent years. This model, as well as many
other stochastic lattice models, are formulated in terms of stochastic rules with no connection to
thermodynamics, precluding the achievement of quantities such as power and heat, as well as their
behaviors at phase transition regimes. Here, we circumvent this limitation by introducing the idea of
a distinct and well-defined thermal reservoir associated to each local configuration. Thermodynamic
properties are derived for a generic majority vote model, irrespective of its neighborhood and
lattice topology. The behavior of energy/heat fluxes at phase transitions, whether continuous
or discontinuous, in regular and complex topologies, is investigated in detail. Unraveling the
contribution of each local configuration explains the nature of the phase diagram and reveals how
dissipation arises from the dynamics.

Keywords: majority vote models; stochastic thermodynamics; phase transitions and spin systems

1. Introduction

Opinion dynamics is a crucial issue in sociophysics, encompassing several topics,
such as complex social processes, populational dynamics, decision making, elections and
spreading of fake news/rumors and others [1]. In recent years, distinct approaches have
been proposed and investigated, aimed at tackling the key aspects of opinion dynamics.
Several of them deal with systems presenting phase transitions, marking the existence of
two regimes, one of which has a prevailing given opinion.

Among the distinct opinion systems, the majority vote (MV) model is highlighted by
its simplicity and for exhibiting universal features of nonequilibrium phase transitions. Its
interaction mechanism comprises the agent’s tendency to align (follow) its opinion based
on the majority opinion of its nearest neighborhood [2–4]. Subsequently, generalizations
of the MV model have aroused interest, taking into account the influence of network
topology [3,4], the inclusion of distinct noises [5,6], more states per agents [7,8] and more
recently, inertial effects [8–10]. In the latter, the presence of inertial terms has revealed
a robust mechanism, affecting the classification of phase transitions even for different
lattice topologies [10] and in systems subject to temporal disorder [11]. More recently,
the main properties of the MV have been extensively studied in terms of entropy production
signatures [12,13].

Stochastic thermodynamics [14–17] has become one of the most important topics in the
realm of nonequilibrium statistical mechanics and an appropriate framework for describing
the thermodynamic properties of Markovian nonequilibrium systems, having as a starting
point a suitable definition of production of entropy that is able to discern equilibrium from
nonequilibrium systems [18]. It presents intrinsically out of equilibrium results, such as
generalizations of the first and second laws, that can be used to describe dynamics in terms
of energy exchanges, their fluctuations and limits. Despite previous works investigating the
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main properties of the MV through the entropy production [12,13], other quantities have to
be defined to establish a firm link between voter models and stochastic thermodynamics’
own framework. Aimed at overcoming such a drawback, a thermodynamic description for
opinion models has been recently proposed [19], in which the idea of a distinct thermal
reservoir per neighborhood opinion configuration was introduced. Such a framework
not only allows one to associate the dynamics with well-defined temperatures but also
reconciles the relationship between entropy production and heat flux.

In this paper, we advance on the aforementioned idea, by thoroughly investigating the
thermodynamics of the majority vote model. More concretely, a general and unambiguous
temperature definition is derived, providing a way to properly investigate the behavior
of entropy production and heat fluxes in distinct phases as well as in continuous and
discontinuous transition regimes. The investigation is also aimed at understanding the
roles of inertia and distinct topologies (regular and complex), and testing fluctuation theo-
rems. Given that the number of reservoirs and heat fluxes increases with the connectivity,
the analysis of their roles and which of them is more representative of entropy production
will be addressed and, finally, used to probe its traits across phase transitions.

These introduced thermal reservoirs and their respective temperatures are of an
effective nature rather than physical entities. They are introduced to accommodate models
that otherwise would not benefit from stochastic thermodynamics’ toolbox, thus extending
the validity of its results.

This paper is organized as follows: Section 2 introduces the model and its main
properties, model thermodynamics are presented in Section 3 and conclusions are drawn
in Section 4.

2. Majority Vote Model and Phase Transition Behavior

In this section, we present an overview of the majority vote model and its phase tran-
sition aspects. It consists of a simple system with Z2 “up-down” symmetry, in which each
microscopic configuration η is set by the collection of N individuals η ≡ (η1, η2, ..., ηi, ..., ηN),
with ηi being the spin variable of site i which takes the values ±1 according to whether the
spin is “up” or “down”. With probability 1− f , the spin ηi tends to align itself with its local
neighborhood majority. Conversely, with complementary probability f , the majority rule is
not followed. The inertial version differs from the original one by the inclusion of a term
proportional to the local spin competing with the neighborhood. The model dynamics are
governed by the following master equation

d
dt

P(η, t) =
N

∑
i=1
{wi(η

i)P(ηi, t)− wi(η)P(η, t)}, (1)

where wi(η) comprises the transition rate at which each site i changes its opinion from ηi
to −ηi, given by

wi(η) =
1
2
{1− (1− 2 f )ηisgn(X)}, (2)

where X = (1− θ)`+ kθηi, k is the connectivity of a site, θ is the inertia strength, and sgn(X)
is the sign function. The term ` plays a key role in the following results; it is defined as
the sum of a site’s neighboring spins, ` := ∑j ηj, and we omit the dependence on η for
convenience. At a given configuration, all sites with ` will become thermodynamically
equivalent, defining a thermal reservoir. The system presents two ferromagnetic phases
for small f . Upon raising f , the system yields an order–disorder phase transition, where
the value of the critical point is dependent on the lattice topology and neighborhood [2,3].
Although phase transitions are always continuous for the original model (θ = 0) [4],
the inclusion of inertia can shift the phase transition from continuous to discontinuous
depending on the lattice topology and the neighborhood [8–10].

Since Equation (2) states that the transition rate depends on the sign of X, the flip
probability (whether 1− f or f ) will depend on the interplay between the number of nearest
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neighbors k and θ. For example, for ηi = −1, the argument of sgn(X) reads `− θ(k + `)
implying that the transition −1→ +1, due to a neighborhood with `/(k + `) > θ, occurs
with probability 1− f (similar to the inertialess case), whereas when `/(k + `) < θ the
probability is f . Thus, we define `∗ := −kθηi/(1− θ) as the threshold value splitting the
neighborhoods: All values |`| > |`∗| yield a transition rate equals to the inertialess case,
while |`| < |`∗| yield wi(η) = f regardless of ηi. For completeness, the transition rate is
1/2 when both values are the same.

For fixed k, as in the present case, the phase diagram θ versus f will be characterized
by plateaus. If θ is increased, the plateaus emerge when `∗ has an even integer value,
since it marks a regime where one additional neighborhood type ` shifts its contribution
f ↔ 1− f . The plateaus can be obtained by relation

θ∗ =
2m

k + 2m
, m ∈ N. (3)

For instance, when the connectivity is k = 20, these values are

θ∗ =

{
1

11
,

1
6

,
3

13
,

2
7

,
1
3

,
3
8

,
7

17
,

4
9

,
9

19
,

1
2

}
, (4)

which are later verified in the phase diagrams obtained by simulations in the first figure in
Section 2.2 and the first figure in Section 2.3. They are the same for both regular and random-
regular topologies, although the classification of the phase transition is also influenced by
the topology, demonstrating that the mechanism behind the appearance of such plateaus is
related to sharp shifts of contribution of each neighborhood `.

2.1. Entropy Production

The entropy production and its connection with the heat flux is the central issue of this
paper. Before relating both of them, we first review the main features of the microscopic
entropy production formula. Starting with the entropy definition S = −〈ln P(η)〉 (here
and hereafter, we adopt the convention kB = 1 for the Boltzmann constant) and assuming
the system is in contact with a (or multiple) reservoir(s), its time derivative dS/dt is the
difference between two terms: dS/dt = Π− σ, where Π and σ are the entropy production
and entropy flux rates, given by the generic expressions:

Π =
1
2 ∑

η
∑

i
{wi(η

i)P(ηi, t)− wi(η)P(η, t)} ln
wi(η

i)P(ηi, t)
wi(η)P(η, t)

(5)

and

σ =
1
2 ∑

η
∑

i
{wi(η

i)P(ηi, t)− wi(η)P(η, t)} ln
wi(η

i)

wi(η)
. (6)

where the one-site dynamics assumption was used. Since dS/dt = 0 in the nonequilibrium
steady state (NESS), in which P(η, t) → pst(η), the steady entropy production can be
calculated from σ, acquiring the convenient ensemble average form [13]:

σ = ∑
i

〈
wi(η) ln

wi(η)

wi(ηi)

〉
, (7)

In order to evaluate σ from Equation (7) we take the ratio between wi(η) and its reverse
wi(η

i) given by
wi(η)

wi(ηi)
=

1− (1− 2 f )ηisgn[(1− θ)`+ kθηi]

1 + (1− 2 f )ηisgn[(1− θ)`− kθηi]
. (8)

Inspection of the ratio above reveals that only local configurations where |`| > |`∗|
will contribute to the entropy production. When |`| < |`∗|, the ratio vanishes and therefore
these configurations yield reversible transitions. This property is illustrated in Figure 1,
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where values of `∗ are shown in terms of θ. For a given finite k, the even values of ` locate
the plateaus in the figure.

Figure 1. Scheme representing the values of `∗ for ηi = ±1 corresponding to the plateaus. In the
shaded area, where |`| < |`∗|, the neighborhoods do not contribute to the entropy production.

For ` 6= kθ/(1− θ), Equation (8) is conveniently rewritten as

ln
wi(η)

wi(ηi)
= −ηisgn(`)H

[
|`| − kθ

1− θ

]
ln
(

1− f
f

)
, (9)

where H(•) is the Heaviside function. However, for ` = kθ/(1− θ), marking the plateau po-
sition, Equation (9) acquires a distinct value given by ln

(
wi(η)/wi(η

i)
)
= ηisgn(`) ln(2 f ).

The above formulae are equivalent by calculating such a ratio only over the subspace
of local configurations in which the ratio is different from 1, that is for ` ≥ kθ/(1− θ) [13].
Thus, when expressed in terms of the misalignment parameter f , the steady entropy
production σ is given by

σ =
1
2

ln
1− f

f

{
(1− 2 f )

〈
sgn2(`)H

[
|`| − kθ

1− θ

]〉
−
〈

ηisgn(`)H
[
|`| − kθ

1− θ

]〉}
, (10)

which only depends on f and on 〈ηisgn(`)H[|`| − kθ/(1− θ)]〉 and
〈sgn2(`)H[|`| − kθ/(1− θ)]〉.

2.2. Overview about Phase Transitions and Finite-Size Scaling

As stated broadly in the literature, continuous and discontinuous phase transitions
become rounded at the vicinity of phase transitions due to finite size effects, whether
for equilibrium [20,21] and nonequilibrium systems [22,23]. Despite the order parameter
and its moments have been broadly exploited for characterizing nonequilibrium phase
transitions, recently, the behavior of entropy production and allied quantities (e.g., its first
derivative) has attracted a great deal of attention as their identificators [12,13,24–27].
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According to the finite-size scaling (FSS) theory, at the vicinity of the critical point fc,
a given quantity X [X ∈ (|m|, χ and σ′ ≡ dσ/d f )] will behave as X = Nyx/ν fx(N1/ν|ε|),
where fx is a scaling function, ε = ( f − fc)/ fc is the distance to the criticality and yx is
the critical exponent obtained from (yx = −β, γ and α) [20]. The last exponent is similar
to the relationship between the thermal derivative of the entropy, S, and specific heat, C,
in equilibrium phase transitions (recalling that C = Nα/ν fc(N1/ν|ε|) [20], illustrating that
the connection between entropy production and exchanged heat presented here introduces
a physical argument for such scaling behavior.

Since the scaling behavior of heat fluxes (and their derivatives) at the criticality was
considered previously in [19] we are going to focus on nonequilibrium discontinuous phase
transitions in this paper. For a generic ensemble average X, the starting point consists of
assuming a bimodal Gaussian distribution, centered at µo and µd (with associated variances
χo and χd). In the case of the steady entropy production at the vicinity of ε = f − fc,
a bimodal entropy production probability distribution centered at µo and µd (with associate
variances χd and χo) leads to the approximate expression for σ:

σ ≈ µo + αµde−N[(µo−µd)ε]

1 + αe−N[(µo−µd)ε]
, (11)

where α =
√

χd/χo. We note that the ordered and disordered phases are favored as ε < 0
and ε > 0 (assuming that µo < µd), respectively, and σ = (µo + αµd)/(1 + α) at ε = 0,
indicating that all entropy production curves, simulated for distinct N’s, will cross at the
transition point fc. Having σ, its derivative in respect to f behaves at the vicinity of fc as:

σ′ ≈ N(µo − µd)
2eN(µo−µd)ε

α
(
1 + αeN(µo−µd)ε

)2 , (12)

showing that σ′ scales with N at the coexistence ε = 0, in agreement with the above
finite size expression for the quantity X. Alternatively (and analogously), Equation (11) is
obtained by resorting to the ideas presented in [28–30], where coexisting phases are treated
via a two-state model in which ordered and disordered phases are given by transition rates
exhibiting an exponential dependence on the system size N and proportionality to the
distance ε to the transition point:

a ∼ k
√

χae−N(c0−caε), b ∼ k
√

χbe−N(c0+cbε), (13)

where k, c0, ca, cb > 0 are constants. “Ordered” and “disordered” probabilities, p and q,
respectively, are related to rates a and b by means of relations p = b/(a + b) and q = 1− p,
given by p =

√
χb(
√

χb +
√

χaecNε)−1, where c = ca + cb > 0. As shown in Ref. [29],
a given ensemble average including the entropy production σ = 〈στ〉/τ averaged over a
sufficiently long time t→ ∞ and over many independent stochastic trajectories given by
σ = µa p + µbb, where

σ ≈
µb
√

χb + µa
√

χaecNε

√
χb +

√
χaecNε

, (14)

which has precisely the form of Equation (11).
The main features of discontinuous phase transitions are summarized in Figure 2.

From now on we shall consider k = 20 which exhibits a discontinuous phase transition
for θ > 1/3, as depicted in panel Figure 2a). Aforementioned portraits are exemplified
in panels (b)− (d) for θ = 3/8. We remark that continuous lines, given by Equation (11),
describe very well the behavior of the entropy production and its derivative, the latter
presenting a maximum at f ∗c scaling with N−1, whose value as N → ∞ agrees very well
with those obtained from the crossing among curves.
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Figure 2. In (a), the phase diagram of the inertial majority model for a regular lattice for k = 20.
Vertical lines mark the plateau positions predicted in Equation (3). Panel (b) depicts the entropy
production σ for distinct system sizes N = L2’s. Continuous lines denote the phenomenological de-
scription from Equation (11) and vertical line corresponds to the crossing among entropy production
curves at fc = 0.05085(2). In (c), the derivative σ′ ≡ dσ/d f versus f obtained from continuous lines
in (b). Panel (d) show the position f ∗c of maximum of σ′ versus N−1 and its accordance with the
crossing among entropy production curves yielding (symbol •) as N → ∞.

2.3. Discontinuous Phase Transitions in Complex Topologies

The behavior of discontinuous phase transitions in complex topologies is more reveal-
ing and it is different for small and large system sizes. In the former case, quantities change
smoothly as f is varied (see e.g., Figure 3c), in similarity with the behavior in regular
structures, also characterized by the reduced cumulant U4 presenting a minimum value
increasing with N (inset) and a maximum behavior of χ near the coexistence. Conversely,
the behavior becomes akin to the mean-field when N is large, in which the phase coexis-
tence manifests itself by means of a hysteretic branch, e.g., a region located at fb < f < fc
when the dynamics evolve to the ordered (stable for f ≤ fb) and disordered (stable for
f ≥ fc) phases depending on the initial condition. Such changes upon raising N share some
similarities with the metastable behavior observed in the dynamics and thermodynamics
of work-to-work transducers, where the system behavior “quickly” approaches the MFT’s
[behavior] as N increases [31].

Here, we describe a brief (nonrigorous) argument about the expected behavior in
complex topologies by resorting to the ideas from Ref. [13]. Since spins are independent
of each other in the disordered phase, the order parameter behaves as 〈ηi〉 ∼ N−1/2

and then a n-th correlation will behave as 〈ηiηi+1...ηi+n〉 ≈ 〈ηi〉〈ηi+1〉...〈ηi+n〉 = N−n/2.
Hence, in the thermodynamic limit, all correlations will vanish and σ will depend solely
on control parameters. On the other hand, 〈ηiηi+1...ηi+n〉 is expected to be finite and also
f− dependent in the ordered phase, consistent with σ exhibiting a dependence on the
control parameters and correlations. Therefore, the existence of a hysteretic loop for the
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order parameter (panel (b)) is also translated to the entropy production behavior (see
e.g., panel (d)).
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Figure 3. Phase transition for the MV in a random-regular topology with connectivity k = 20. Panel
(a) depicts the phase diagram θ versus f . Continuous and dashed lines show, for a system of size
N = 104. Note that a hysteretic branch for θ > 3/13. Panels (b,c) show, for θ = 3/8, the order
parameter |m| versus f for distinct large and small system sizes N, respectively. Inset: the reduced
cumulant U4 versus f . Circles and× attempt to the forward and backward “trajectories”, respectively.
In (d), its corresponding σ’s for N = 5000.

3. Thermodynamics of the Majority Vote Model
3.1. General Features

In Section 2, the main properties of the majority vote model were analyzed without any
thermodynamic consideration. Here, we incorporate the notion of temperatures mediating
changes of configuration in order to establish the connection with thermodynamics. Since
the stochastic dynamics over the configuration space is fully determined by its transition
rates, we shall resort the ideas from Refs. [16,17,32] in which transition rates are defined by
assuming the local detailed balance. The central point consists of assuming that the one-site
transition rate wi(η) is decomposed in ` distinct (and mutually exclusive) components,
each one associated with a given thermal reservoir (reciprocal inverse temperature β`),
given by wi(η) = ∑` w`i(η) (` = 2, 4, ..., k), where w`i(η) assumes the Glauber form:

w`i(η) =
α`
2
{1− tanh(β`∆E)}, (15)

where α` is a constant and ∆E = E(ηi)− E(η) denotes the energy difference between con-
figurations η and ηi. For “up-down” Z2 symmetry systems, the energy can be generically
expressed according to the Ising-like form E(η) = −J ∑(i,j) ηiηj − H ∑N

i=1 ηi [33], where J
represents the interaction energy between spins, and H is a parameter accounting for the de-
pendence on the local spin ηi (usually the magnetic field). Giving that sgn(`) = −sgn(−`),
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one has H = 0 for all values of θ. From Equation (15), the ratio w`i(η
i)/w`i(η) is then

expressed according to the local detailed balance:

w`i(η)

w`i(ηi)
= e−β` [E(ηi)−E(η)]. (16)

We are now in a position to obtain the model’s thermodynamic properties. The time
variation of the mean energy U = 〈E(η)〉 is given by dU/dt = ∑` Φ`, where Φ` denotes
the heat exchanged due to the `-th thermal reservoir, given by

Φ` = ∑
i
〈[E(ηi)− E(η)]w`i(η)〉, (17)

constrained by the first law of thermodynamics, ∑` Φ` = 0 in the NESS. The entropy
production and entropy flux are also decomposed into `-indexed components by replacing
wi(η)→ w`i(η) in Equations (5) and (6). In particular, the latter reads

σ` = ∑
η

pst(η)∑
i

w`i(η) ln
w`i(η)

w`i(ηi)
. (18)

Since the entropy change vanishes at the NESS, dS/dt = ∑`(Π` − σ`), both entropy
production and entropy flux can be identified by Equation (18): Π = ∑` Π` = ∑` σ` = σ.
The expressions above are consistent with Refs. [16,32].

Finally, by inserting Equation (16) into Equation (18), each entropy flux component σ`
is related with exchanged heat Φ` by a Clausius-like form σ` = −β`Φ`, where Φ` is given
by Equation (17). Alternatively, σ can also be written in the usual thermodynamics form as
a sum of thermodynamic fluxes times forces:

σ = −∑
`

β`Φ` or σ = ∑
` 6=2

X`Φ`, (19)

where the second temperature was set as a reference to define all (k/2)− 1 thermodynamic
forces X` ≡ β2 − β`, associated with its respective flux, Φ`. For simplicity, we set the Ising
interaction parameter to J = 1. From the expression for E(η), it follows that ∆E = 2ηi`,
which can be rewritten as ∆E = 2ηi|`|sgn(`). By taking the logarithm of Equation (16), it
follows that

ln
w`i(η)

w`i(ηi)
= −2β`|`|ηisgn(`). (20)

Since the transition rates associated with each thermal reservoir are mutually exclusive,
a direct comparison with Equation (9) for a given ` provides to obtain each (reciprocal
inverse) temperature β` given by

β` =
1

2|`|H
[
|`| − kθ

1− θ

]
ln
(

1− f
f

)
, (21)

where β2 = 2β4 = 3β6... = kβk/2 in the inertialess case. We pause to make a few comments.
First, Equation (21) comes from the local detailed balance and constitutes one of the main
results of this paper. Such temperature relation (see e.g., Equation (15)) provides a clear
connection between entropy production and heat fluxes, in which (as shall be discussed
later) some of the heat components has to be strictly positive and negative in order to
ensure σ ≥ 0. Second, Equation (21) extends the calculation of temperatures for a given
neighborhood and inertia, and reduces to the expression from Ref. [19] as θ = 0. Third,
β` vanishes for large enough values of inertia θ > θp, illustrating that despite a heat flux
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associated with the `-th reservoir being well-defined, it does not produce entropy. Fourth
and last, the temperature assumes a different value for θ = θp given by

β` = −
1

2|`| ln(2 f ). (22)

This completes our description of the temperature definitions for the MV as well as
the influence of inertia. Now we turn to unravel the role of each ` to the fluxes of heat and
entropy production. Starting with the inertialess case, where β2 > β4 > ... > βk, we argue
that the heat fluxes associated with the states in contact with the coldest and hottest baths
are always positive and negative, respectively: Φ2 < 0 and Φk > 0, whose a (nonrigorous)
argument is present as follows. Starting with the two thermal baths case (k = 4), it is
straightforward to verify that, since σ acquires the simple form σ = (β2 − β4)Φ4 > 0.
Given that β2 − β4 > 0 (cf. Equation (21)), it follows that Φ4 ≥ 0 and hence Φ2 = −Φ4 ≤ 0.
The case of more than two reservoirs is more intriguing, since intermediate fluxes can be
positive, negative, or even change their sign upon f being varied (see e.g., the first figure
(d) in Section 3.3). For k = 6, one has σ = −(β2 − β6)Φ2 − (β4 − β6)Φ4 ≥ 0 and three
possibilities for Φ2 and Φ4. The former, in which both are negative, promptly implies
σ ≥ 0, whereas the second case, Φ2 ≤ 0 and Φ4 ≥ 0, is also consistent since −(β2 −
β6)Φ2 ≥ (β4 − β6)Φ4 and hence Φ6 ≥ 0 (recalling that Φ6 = −(Φ2 + Φ4)). The third
possibility, in which Φ2 ≥ 0 and Φ4 ≤ 0 violates the second law in some cases and thus
it is not possible. Similar findings are verified for θ 6= 0, but we should note that only
neighborhoods with `∗ greater than `− kθ/(1− θ) will contribute to the entropy production,
σ = −∑k

`∗ β`Φ`. For example, for k = 20 and distinct inertia intervals 3/8 < θ ≤ 7/17,
7/17 < θ ≤ 4/9, θ > 4/9, the corresponding entropy productions read σ = −∑k

`=14 β`Φ`,
σ = −β16Φ16 − β18Φ18 − β20Φ20 and σ = −β18Φ18 − β20Φ20, such latter one similar to
the k = 4 case (but here ∑k

`=2 Φ` = 0) and once again illustrating that Φ`∗=18 ≤ 0 and
Φk=20 ≥ 0. We close this section by pointing out that, despite the above nonrigorous
argument, the general finding Φ`∗ ≤ 0 and Φk ≥ 0 has been verified in all cases. In contrast,
it is not possible to draw general conclusions about intermediate fluxes, in which some
change sign as f increases.

3.2. Fluctuation Theorems

Thermodynamic consistent systems satisfy the detailed fluctuation theorem (DFT)
for entropy production, which gives rise to the stochastic version of the second law. It
states that negative fluctuations of the integrated entropy production are exponentially
suppressed by the positive counterparts. For a given integration window τ, the DFT
is asymptotically valid for Σ =

∫ τ
0 σ(t)dt at the NESS since it is equal to the entropy

production:

lim
τ→∞

ln
Pτ(Σ)

Pτ(−Σ)
= Σ, (23)

where Pτ(Σ) represents the probability of measuring Σ in a trajectory of length τ. This
relation holds beyond the long-time limit when the internal change of configuration entropy
is considered in addition to the entropy fluxes. Consequence of the above, the integral
fluctuation theorem (IFT) reads

lim
τ→∞

〈
e−Σ

〉
τ
= 1 (24)

and is useful for relating the components of Σ, such as in the celebrated Jarzynski equal-
ity [34] that relates the statistics of work to free energy differences, bridging equilibrium
and nonequilibrium quantities. The feasibility of employing such methods is tightly related
to the ability to observe fluctuations in the trajectories, which become rare as τ increases.
We explore the manifestation of these relations, cornerstones of stochastic thermodynamics,
in the MV vote model.
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The left panel of Figure 4 shows the convergence of the left-hand side of Equation (23)
to its right-hand side as the integration windows become larger for the entropy production
evaluated from Equations (18) and (19). Observing the DFT becomes an expensive task
even for small systems since the negative fluctuations of entropy production become
increasingly rare for larger values of τ. The right panel shows the left-hand side of the
IFT in Equation (24), which converges to one despite the presence of inertia. It is worth
mentioning that the convergence is observed from above and from below. Although no
general conclusion can be drawn, the behavior of these fluctuation relations might be
related to the phase transitions: In the examples, the IFT presents a slower convergence at
the vicinity of the phase transition.

Figure 4. (Left) Convergence to the detailed fluctuation theorem as integration window τ increases
for a lattice L = 6 and f = 0.04; solid lines are simulation results while dashed lines are the respective
linear fits. (Right) Convergence to the integral fluctuation theorem for the case with no inertia (blue)
and with inertia θ = 3/8 (green); additional parameters are k = 20 and N = 104.

3.3. Heat Fluxes at Phase Transitions

According to Equation (17), every heat flux Φ` is an ensemble average and, therefore,
we expect at least the most significant components of the entropy production to behave
similarly to σ at the vicinity of a phase transition. More specifically, at discontinuous phase
transitions, the curves of entropy production cross at fc for distinct system sizes in regular
lattices, and a hysteretic branch is present in complex topologies [13]. These properties
are promptly verified for the largest fluxes ` = 12, 14 and 20. For a regular lattice, panels
(a)–(c) of Figure 5 display the crossing of the fluxes for different systems sizes, and panel
(d) shows the quantitative value of each individual flux. For a random-regular network,
panels (a)–(c) of Figure 6 show the hysteretic branch while (d) shows individual flux values.

The continuous lines in panels Figure 5a–c are obtained from the bimodal Gaussian
description in Equation (11), in good agreement with the simulation results. Remarkably,
for both regular and complex topologies, the phase transition can be probed and precisely
located from the behavior of any individual flux.
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Figure 5. For the regular lattice with θ = 3/8, k = 20 and distinct system sizes N = L2, panels
(a,b) depict the most representative (largest absolute values) heat fluxes per particle Φ`’s versus con-
trol parameter f . Continuous lines denote correspond to the phenomenological approach according
to the ideas of Equation (11). Although the component heat flux panel (c) mildly changes with f , all
curves also cross at fc. Panel (d) shows all Φ`’s (` = 2, 4, ..., k) for N = 602.
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Figure 6. For a system of size N = 5000, (a)–(d) the same as before, but for a random-regular structure.
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3.4. Contributions to Dissipation

Inspecting the thermodynamic contribution of individual `’s raises the question of
how each type of neighborhood contributes to entropy production, a measure of dissipation.
As previously discussed, the second law imposes Φ`∗ < 0 and Φk > 0 irrespective of f ,
and also local configurations satisfying |`| < |`∗| do not dissipate. Taking into account that
some intermediate fluxes Φ` are nonmonotonic in terms of f , one could expect that they
would present a less significant contribution. Inspired by evidence from simulations, we
observe the predominance of Φ`∗ and Φk, hence we introduce the contribution of these two
fluxes as σ`∗ ,k = −β`∗Φ`∗ − βkΦk > 0. This represents an approximation but not a bound
since the remaining fluxes can change their signs.

Figure 7 compares, for the random-regular and regular lattices, σ`∗ ,k and σ for distinct
values of θ. In all cases, σ`∗ ,k is not only close to σ but also captures the qualitative behavior,
successfully describing the interplay between the control parameter f , inertia θ, and the
dissipation, including a peak located at the vicinity of the phase transition. For larger θ
the set of dissipating local configurations shrinks, hence the better agreement between
both curves.

Figure 7. For k = 20, random-regular (left) and regular (right) structures of sizes N = 1600 and 402,
curves for σ`∗ ,k (dot-dashed) and σ (continuous) are shown in terms of f for distinct θ’s. From top to
bottom, `∗ = 2, 4, 6, 12 and 14.

4. Conclusions

The nonequilibrium thermodynamic theory of the generic majority vote model was
presented and thoroughly investigated, encompassing its phase transition. A consistent def-
inition of temperature and the connection between heat fluxes and entropy production were
introduced and analyzed in the context of continuous and discontinuous phase transitions.
The present approach for fluxes is thermodynamically consistent and equivalent to the
microscopic entropy production definition and satisfies the detailed fluctuation theorem.

We believe that the present framework not only conciliates the thermodynamic as-
pects of an important class of nonequilibrium systems but also introduces a new kind of
nonequilibrium ingredient, based on the idea of a thermal reservoir associated with the
system neighborhood. Such an idea has revealed general for a generic voter-like model
with “up-down” Z2 symmetry. In the presence of inertia, the spin changes induced by some
local configurations are reversible. Moreover, we explore what are the most relevant neigh-
borhoods driving the system dissipation, including its qualitative features across a phase
transition, and how these neighborhoods contribute to the structure of the phase diagram.

Our findings are valid for a class that describes systems from social dynamics to the
physics of thermal engines, presenting collective effects that can be leveraged for improved
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performance. Such potential application raises interesting questions such as the role of
lattice topology and even the kind of voter model used (see e.g., Ref. [19] for a comparison
between them) in order to optimize the desirable power and efficiency. Such topics should
be investigated in the future.
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