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Abstract: The variational Bayesian method solves nonlinear estimation problems by iteratively
computing the integral of the marginal density. Many researchers have demonstrated the fact its
performance depends on the linear approximation in the computation of the variational density in
the iteration and the degree of nonlinearity of the underlying scenario. In this paper, two methods
for computing the variational density, namely, the natural gradient method and the simultaneous
perturbation stochastic method, are used to implement a variational Bayesian Kalman filter for
maneuvering target tracking using Doppler measurements. The latter are collected from a set
of sensors subject to single-hop network constraints. We propose a distributed fusion variational
Bayesian Kalman filter for a networked maneuvering target tracking scenario and both of the evidence
lower bound and the posterior Cramér–Rao lower bound of the proposed methods are presented.
The simulation results are compared with centralized fusion in terms of posterior Cramér–Rao lower
bounds, root-mean-squared errors and the 3σ bound.

Keywords: distributed fusion; nonlinear estimation; variational Bayesian optimization; natural
gradient; simultaneous perturbation stochastic approximation; Kullback–Leibler divergence

1. Introduction

There has been much interest in recent years in the use of sensor networks as op-
posed to single sensors in the fields of target tracking [1], intelligent transportation [2],
environmental monitoring [3], spacecraft navigation [4], etc. Multi-sensor nodes can pro-
vide greater spatial coverage and, by cooperation, effectively complement the limitations
of a single sensor, potentially resulting in improving estimation and fusion performance.
Along with the rapid development of sensor network technologies, the two aspects of
fusion architecture and state estimation optimization have been studied in the past few
years [5–7].

Sensor network fusion can be classified into three categories, i.e., centralized, decen-
tralized, and distributed architectures [6,8]. Schematically, examples of different fusion
architectures are shown in Figure 1. The topology of sensor networks is, typically, described
as an undirected graph where nodes can exchange measurements (or estimation) from
neighbors via a bidirectional edge or a directed graph where nodes only can deliver mea-
surements (or estimation) in a fixed direction. Broadcast communications can be single-hop
or multi-hop [9]. Here, we only consider the sensor network with undirected topology and
single-hop communications. The yellow circles and blue circles describe fusion centers and
sensor nodes, respectively.
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(a) (b) (c)

Figure 1. The architectures of sensor networks. (a) Centralized sensor network architectures.
(b) Decentralized sensor network architectures. (c) Distributed sensor network architectures.

In the centralized architecture, information fusion takes place after the local sensor
measurements are delivered into the fusion center. This architecture can make full use of
measurements if the communication bandwidth is high enough to accommodate trans-
mission of all sensor measurements to the fusion center, leading to theoretically optimal
fusion [10]. As a result, it is generally utilized as a benchmark for performance comparison
and evaluation of the other fusion architectures that will be discussed here. However,
there are several inherent problems that need to be taken into account in considering a
centralized fusion architecture. One problem is the measurement delay resulting from
communication or sensor sampling rate [11–13]. Another is that the centralized architecture
will, typically, result in a trade-off between timely fusion accuracy performance, and the
requirements of communication bandwidth and computational costs because of the broad-
cast and processing of measurements from all sensors [6,14]. In addition, this architecture
is also generally more sensitive to outliers than other fusion architectures [15], such as the
following decentralized one.

In decentralized architecture, sensors are partitioned into several clusters, each of them
with a fusion center [16,17] where measurements from neighboring nodes are collected
to yield a local fused estimation. The decentralized architecture is distinguished from the
centralized one by the multiple fusion centers, which can lead to a spread of computational
costs across multiple devices and better robustness [6].

In the distributed fusion architecture, each node individually provides a local estima-
tion by using measurements collected from itself and its neighbors. It could be considered
as a special form of the decentralized one. Compared with the other two forms, it has the
following advantages: (1) Enhanced scalability and feasibility; it allows relatively easy
scaling of the network up or down by adding or subtracting nodes depending on practical
applications [18]. (2) Increased robustness and fault tolerance to node failures, especially in
harsh situations, such as an underwater environment. (3) Reduced bandwidth requirement;
it mitigates communication bottlenecks that might arise, for example, in target detection
and tracking systems. (4) Reduced computational cost of the three architectures because
some processing such as inverse operations generally needed in estimation are performed
in their own individual fusion centers. A significant amount of literature on distributed
fusion architectures has been published. Ref. [10] is an early paper describing the basic
principles of distributed fusion architecture in target tracking systems. A comprehensive
review of the characteristics, advantages and estimation solutions for distributed low-cost
sensor networks is presented in [6]. For distributed robust filtering, a variational Bayesian
(VB) algorithm with a conjugate-exponential model is proposed in [19]. As mentioned
in [20], the problem of distributed detection and tracking over a Doppler-shift sensor net-
work is studied. Consensus methods are used in [21,22] for the problem of uncertain noise
statistics of distributed sensor networks. However, distributed fusion architecture also has
some negative issues, for example, lack of awareness of the sensor network as a whole.

In the context of fusion architectures, state estimation is also essential for target track-
ing in sensor networks, especially for a nonlinear system. Exact solutions for the posterior
probability density function (PDF) for nonlinear systems are mostly unavailable, resulting
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in a considerable amount of work on approximations of the posterior. A great number of
nonlinear filters, such as the extended Kalman filter (EKF) [23], the unscented Kalman filter
(UKF) [24], the Gauss–Hermite Kalman filter (GHKF) [25], the central difference Kalman
filter (CDKF) [25], the cubature Kalman filter (CKF) [26] and their variants [27,28], have
been proposed under a Gaussian noise assumption both on measurements and system.
For non-Gaussian noise models, stochastic estimation methods, such as Markov Chain
Monte Carlo [29], and sequential Monte Carlo (also named particle filters (PF)) [30] and
variants [31,32] have been the focus of much attention over the last two decades. Since
these methods need a large number of particles to ensure nonlinear estimation accuracy,
Doucet and his colleagues introduced the Rao–Blackwellized particle filter (RBPF) [33]
to marginalize out the linear variables to be solved by an optimal filter, and focused the
sampled particles on the remaining variables (nonlinear part). For more information about
nonlinear estimation problems, we refer the reader to the review articles [34–36] where
more comprehensive interpretations have been provided.

In terms of optimization techniques, gradient-based optimization is often used in
nonlinear filters to improve the performance of nonlinear estimation. As shown in [37],
gradient descent is adopted for smartphone orientation estimation, yielding a quaternion-
based Kalman filter algorithm to estimate exercise motion. In [38], a gradient descent
iterative nonlinear Kalman is proposed for the problem of random missing outputs. For
problems where the objective function, such as the variational evidence lower bound
(ELBO) and the Kullback–Leibler Divergence (KLD), need to be maximized or minimized,
the gradient method generally requires linearization of the objective function. For nonlinear
estimation optimization problems, the gradient can be written as a mean of the samples
of interest, yielding a stochastic gradient optimization method [39]. In [40], the authors
present a modified particle filter where stochastic gradient is used to minimize the criterion
function. Compared with the ordinary gradient, natural gradient (NG) has the advantage of
theoretical connections from information geometry. According to Amari’s works [41,42], it
has a steepest direction in Riemannian space. As shown in [41], NG comes with a theoretical
guarantee of asymptotic optimality and can be used to produce a Fisher-efficient iterative
estimator on a statistical manifold. In [43], the NG method for the nonlinear estimation
problem is proved to be asymptotically optimal in the sense of the Cramér–Rao bound.
The earliest interest in NG can be found in [44,45]. Simultaneous perturbation stochastic
approximation (SPSA) [46] is an alternative optimization method which can be use for
stochastic search. It is a gradient approximation statistic optimization method, which does
not require the linearization of the objective function [46]. In this method, a group of
samples of objective functions is sampled to obtain a two-side differential function, so that
it can be used to approximate the otherwise intractable gradient of the objective function
to be estimated. An application of SPSA for detection of the center of a thermal updraft
is presented in [47], resulting in an adaptive autonomous soaring algorithm for multiple
unmanned aerial vehicles.

In terms of the iterative optimization methods, among the most common approaches
are expectation-maximization (EM) [48] and VB [49,50]. EM realizes estimation opti-
mization by establishing a feedback loop, including an expectation step (E-step) and a
maximization step (M-step). In the E-step, the conditional expectation of the likelihood
function is calculated according to a given prior and measurement. In the M-step, the
conditional expectation is maximized to obtain the estimation of the variables. While the
state and parameters are estimated and optimized alternately in the iteration cycle, EM still
has problems for large scale models and data. VB differs from EM in that the parameters
are stochastic [50], resulting in VB being capable of making a joint distribution of state
and parameters, and then being especially suitable for dealing with high-dimensional and
large-scale problems via mean field theory. Recent advances in the variational iterative
framework can be found in [19,51], in which a unified VB approach is provided for the joint
estimation of system state and parameters in a target tracking system.
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This paper considers the problems of estimation optimization and fusion in networked
target tracking systems, and aims to derive a nonlinear estimation, optimization and fusion
approach by utilizing VB with the optimization methods of NG and SPSA, achieving a high
performance in accuracy. The key contributions of this paper are as follows:

1. Development of a distributed variational fusion framework by utilizing variational
mean field theory to approximately partition the joint posterior distribution into several
solvable variational distributions under the assumption of independent measurements.

2. Presentation of a novel deterministic nonlinear estimation optimization method
to maximize the distributed ELBO using NG, based on linearization to approxi-
mate the posterior distributions closely, producing the DVBKF-NG algorithm which
yields closed form nonlinear state estimation with the associated covariance for
the sensor network.

3. Presentation of a novel stochastic estimation optimization for the VB framework by
using SPSA and deriving the stochastic gradient estimation of ELBO, thus producing
an iterative filter, i.e., DVBKF-SPSA.

4. Demonstrate performance metrics: distributed ELBO and the posterior Cramér–Rao
lower bound (PCRLB) for these algorithms over different iterations.

The rest of the paper is organized as follows. In Section 2, we introduce the general
nonlinear estimation problem in target tracking over a sensor network. A distributed
variational Bayesian estimation optimization framework is proposed in Section 3, involving
partitioning of the joint measurement likelihood. Under the optimization framework, two
distributed iterative nonlinear variational Bayesian Kalman filtering algorithms (DVBKF-
NG and DVBKF-SPSA) are presented in Section 4, using NG and SPSA, respectively. In
Section 5, we consider two kinds of metrics, i.e., ELBO and PCRLB, to evaluate the perfor-
mance of the proposed methods. In Section 6, we give an example to verify the proposed
methods for maneuvering target tracking over a sensor network. Finally, conclusions are
drawn and future work is discussed in Section 7.

2. Problem Formulation

Consider a maneuvering target travels in the area covered by a fully connected sensor
network with N nodes; the measurements Zk = [Z1,k, · · · ,Zn,k, · · · ,ZN,k]

T with noise co-
variance Rk at time index k are collected from the set of sensors, where

Zn,k =
[
zn,k, z1

n,k, · · · , zl
n,k, · · · , zL

n,k

]T
denotes the measurements from sensor n and its

neighbors, where zn,k ∈ Rd is the measurement of the nth sensor and zl
n,k is the mea-

surement from the lth neighbor of the nth sensor, the sensor index n ∈ {1, 2, · · · , N},
l ∈ {1, 2, · · · , L} and satisfies L ≤ N − 1, d denotes the dimension of zn,k. We assume
that only the single-hop communication between two sensors is considered in this paper.
The system model and the measurement model are given as follows, respectively,

xk = fk|k−1(xk−1) + ωk−1 (1)

zn,k = hn,k(xk) + υn,k, l ∈ {1, 2, · · · , L} (2)

where xk ∈ Rm is the system state which may include position, velocity and other related
quantities, and m is the dimension of xk. Both the system process ωk and the measurement
noise υn,k of sensor n are assumed to be mutually independent and zero-mean Gaussian
noises with covariances of Qk−1 and Rn,k, respectively. And fk|k−1(·) and hn,k(·) denote the
state transfer function and measurement function, respectively.

What we want is to estimate the system state based on the collection of sensor mea-
surements, which is the process of inferring the system state of interest using measurements
Zk, usually, under the Minimum Mean Square Error (MMSE) criterion, i.e.,
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xk|k , Ep[xk|Zk] =
∫

xk p(xk|Zk)dxk (3)

Pk|k , Ep

[(
xk − xk|k

)(
xk − xk|k

)T
|Zk

]
=
∫ (

xk − xk|k

)(
xk − xk|k

)T
p(xk|Zk)dxk (4)

where xk|k and Pk|k are the state estimation and the associated error covariance, and
Ep[·] , Ep(xk |zk)

[·]. The posterior distribution p(xk|Zk) is expressed as

p(xk|Zk) =
p(Zk|xk)p(xk|Zk−1)∫

p(xk,Zk)dxk
(5)

where p(xk|Zk−1) is the a priori distribution and p(Zk|xk) is the likelihood of measurement
Zk with given xk. Under Gaussian assumptions, the predicted density p(xk|Zk−1) is given by

p(xk|Zk−1) ∼ N
(

xk| fk|k−1(xk−1|k−1), Fk|k−1Pk−1|k−1FT
k|k−1 + Qk−1

)
(6)

where Fk|k−1 = ∂ fk(x)
∂x |x=xk−1|k−1 . For nonlinear systems, computing the integral

∫
p(xk, zk)dxk

in the denominator of (5) is in general difficult and the optimal approximation is needed.
In this paper, we are interested to use the variational Bayesian method to approximate the
a posteriori distribution and thus solve the nonlinear estimation problem of maneuvering
target tracking in the described sensor network.

3. Distributed Variational Bayesian Estimation Optimization Framework

Given measurement Zk collected from sensors, the principle of VB is given as

log p(Zk) = L(ψk) +DKL[q(xk|ψk)||p(xk|Zk)] (7)

and

L(ψk) =
∫

q(xk|ψk) log
p(Zk, xk)

q(xk|ψk)
dxk (8)

DKL[q(xk|ψk)||p(xk|Zk)] = −
∫

q(xk|ψk) log
p(xk|Zk)

q(xk|ψk)
dxk (9)

where q(xk|ψk) is a variational distribution with parameter ψk, L(ψk), and
DKL[q(xk|ψk)||p(xk|Zk)] are the ELBO and the KLD between q(xk|ψk) and p(xk|Zk), re-
spectively. What we wish to do is to approximate the p(xk|Zk) as closely as possible by
minimizing the KLD. Actually, the approximation can be considered as a moving varia-
tional distribution along a chosen search direction iteratively to the position of the posterior
distribution in a statistical manifold. However, it is difficult to seek out an appropriate
method to achieve the approximation, because the variational distribution is usually under-
parameterized and not sufficiently flexible to capture the true posterior [52]. As a result, the
ELBO is considered to be maximized since maximizing ELBO is equivalent to minimizing
KLD from (7), i.e.,

log p(Zk) ≥ L(ψk) = Eq[log p(Zk|xk)]−DKL[q(xk|ψk)||p(xk)]. (10)

We assume that measurements from all sensors are mutually independent; the term
Eq[log p(Zk|xk)] in (10) can be partitioned in distributed fusion architecture as follows

Eq[log p(Zk|xk)] =
N

∑
n=1

Eq[log p(Zn,k|xk)] (11)

where the measurements Zn,k with associated noise varianceRn,k are collected from sen-
sor n and its neighbors, where
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

Zn,k =
[
zT

n,k, (z1
n,k)

T, · · · , (zl
n,k)

T, · · · , (zL
n,k)

T
]T

p(Zn,k | xk) = N (Zn,k;Hn,k(xk),Rn,k)

Hn,k(·) =
[

hT
n,k(·), · · · , (hL

n,k(·))
T
]T

Rn,k = Cov
(
Vn,k, VT

n,k

)
= blkdiag(Rn,k, R1

n,k, · · · , Rl
n,k, · · · , RL

n,k)

(12)

where zn,k denotes the measurement of sensor n, and zl
n,k denotes the measurement from

the lth neighbor of sensor n, Vn,k =
[
vT

n,k, (v1
n,k)

T, · · · , (vl
n,k)

T, · · · , (vL
n,k)

T
]T

is the mea-
surement noise of sensor n and its neighbors, and Rn,k and Hn,k(xk) are the associated

noise covariance and measurement matrix, respectively, where Rl
n,k = Cov

(
vl

n,k, (vl
n,k)

T
)

denotes the variance of the noise vl
n,k from the lth neighbor of sensor n. The math symbol

blkdiag(·) denotes a block diagonal matrix created by aligning input matrices.
For the (i + 1)th variational iteration, we can take the ith variational distribution

q(xk|ψi
k) as the prior; the optimized ELBO can be given as

L(ψ∗k ) =
N

∑
n=1

Eq[log p(Zn,k|xk)]−DKL

[
q(xk|ψk)||q(xk|ψi

k)
]
. (13)

We note the definition ψk , (xk|k, Pk|k) in this paper, and wish to update state estimation
xk|k and the associated error covariance Pk|k in each iteration by maximizing the above
ELBO. In the following section, we present two distributed iterative variational Bayesian
Kalman filters for maneuvering target tracking by using NG and SPSA, respectively.

4. Distributed Iterative Variational Bayesian Kalman Filters over Sensor Network

In this section, with the assumption that the measurements are mutually indepen-
dent, we present alternative distribution variational Bayesian Kalman filtering algorithms
(DVBKF) via NG and SPSA.

4.1. NG-Based DVBKF

NG calculated by using information geometry (generally KLD linearization) has a steep-
est direction in Riemannian space. According to Amari’s works [41,42], we present the NG
of objective function L(ψk) with respect to parameter ψk as follows. Set ∆ψk , ψk − ψi

k → 0,
and (13) can be rewritten as

ψ∗k = arg max
∆ψk→0

{ N

∑
n=1
∇ψkEq[log p(Zn,k|xk)]∆ψk − (∆ψk)

TFψi
k
∆ψk

}
(14)

where Fψi
k

is Fisher information and presented as

Fψi
k
≈ ∇2

ψi
k
DKL

[
q(xk|ψk)‖q

(
xk|ψi

k

)]
. (15)

The proof can be seen in [53]. After computing the partial derivative of the right side of (14)
and setting it equal to 0, the NG of the ELBO at the ith iteration in distributed architecture
is expressed as

∇̃ψi
k
= F−1

ψi
k

N

∑
n=1
∇ψi

k
Eq[log p(Zn,k|xk)]. (16)

The NG ∇̃ψi
k

is the direction in which the increase of ELBO is greatest [54]; that means
it has the greatest descent or ascent at each iteration in statistical manifold space, and can
move the variational distribution to approximate the posterior fastest. At this point, the
optimal ψk is presented as
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ψi+1
k = ψi

k + ∇̃ψi
k

(17)

It is observed that (17) is a general expression of the iterative update of parameter ψk.
In terms of the update of xi+1

k|k and Pi+1
k|k , the special forms of Fisher information matrices

(F−1
xi

k|k
and F−1

Pi
k|k

) and the gradients of log-likelihood expectation (∇xi
k|k
Eq[log p(Zn,k|xk)] and

∇Pi
k|k
Eq[log p(Zn,k|xk)]) with respect to xk|k and Pk|k need to be analyzed.

With the Gaussian system assumption, the KLD between two Gaussian distributions
q1 ∼ N(ξ1; µ1, C1) and q2 ∼ N(ξ2; µ2, C2) with the same dimension d is given as

DKL[q1‖q2] =
1
2

{
ln(|C2||C1|−1) + tr

(
C−1

2 C1

)
+(µ2 − µ1)

TC−1
2 (µ2 − µ1)− d

}
(18)

Combining with (15), the Fisher information matrices with respect to xi
k|k and Pi

k|k are
presented as

Fxi
k|k

= (Pi
k|k)
−1 (19)

FPi
k|k
≈ 1

2
(Pi

k|k)
−1 ⊗ (Pi

k|k)
−1. (20)

The gradient of log-likelihood expectation with respect to xi
k|k and Pi

k|k of sensor n are
presented as

∇xi
k|k
Eq[log p(Zn,k|xk)] ≈HT

n,xi
k|k
R−1

n,k

(
Zn,k −Hn,k

(
xi

k|k

))
(21)

∇Pi
k|k
Eq[log p(Zn,k|xk)] ≈−

1
2

HT
n,xi

k|k
R−1

n,k Hn,xi
k|k

(22)

where Hn,xi
k|k

=
∂Hn,k(xk)

∂xk|k

∣∣∣
xk|k=xi

k|k
denotes the Jacobian matrix of the measurement matrix of

the nth sensor.
Recalling the iterative optimization forms in (16) and (17), the distributed iterative

state estimation xi+1
k|k and the associated covariance Pi+1

k|k in DVBKF-NG are, respectively,
given by

xi+1
k|k = xi

k|k + Pi
k|k

N

∑
n=1

HT
n,xi

k|k
R−1

n,k

(
Zn,k −Hn,k

(
xi

k|k

))
(23)

Pi+1
k|k = Pi

k|k

(
I −

N

∑
n=1

HT
n,xi

k|k
R−1

n,k Hn,xi
k|k

Pi
k|k

)
. (24)

The iterative optimization process of DVBKF-NG is summarized in Algorithm 1.
We make the following remarks:

1. The update of xi
k|k is preconditioned by Pi

k|k, which produces an adaptive movement
to the posterior PDF along the direction of NG.

2. Clearly, Equation (24) shows that Pi+1
n,k|k ≤ Pi

n,k|k, which means that estimation error

covariance decreases gradually at each iteration. Additionally, since HT
n,xi

k|k
R−1

n,k Hn,xi
k|k

is the expectation of the Hessian, Pi
n,k|k has a quadratic convergence.

3. To make the algorithm adaptive, the relative estimation error er can be used for
judging the iteration termination.

er =

∣∣∣∣∣ x
i+1
k|k − xi

k|k

xi
k|k

∣∣∣∣∣ ≤ ε (25)

where ε is a small positive number which can be chosen according to practical scenarios.
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Algorithm 1 The DVBKF-NG algorithm

1: Initialize state estimation x1|1, estimation error covariance P1|1, the number of iterations
Iter;

2: Compute one-step predicted state
xk|k−1 = fk|k−1

(
xk−1|k−1

)
;

3: Compute predicted state error covariance
Pk|k−1 = Fk|k−1Pk−1|k−1FT

k|k−1 + Qk;

4: Let i = 1, and x1
k|k = xk|k−1, P1

k|k = Pk|k−1.
5: for each iteration i = 1 : Iter and er ≤ ε do
6: Compute Fisher information matrices with respect to xi+1

k|k and Pi+1
k|k

by (19) and (20).
7: Compute the gradients of log-likelihood expectation of each sensor with respect to

xi+1
k|k and Pi+1

k|k by (21) and (22), respectively.

8: Compute the iterative state estimation xi+1
k|k and the associated error covariance Pi+1

k|k
by (23) and (24), respectively.

9: Compute relative error er by (25).
10: end for
11: Output xk|k = xi+1

k|k , Pk|k = Pi+1
k|k .

4.2. SPSA-Based DVBKF

SPSA is a statistical optimization method for gradient approximation, which does
not require the full knowledge of the objective function being minimized (or maximized)
and parameters being optimized [46]. In this method, a group of samples of objective
function L(ψk) is sampled as Y(ψk) = L(ψk) + ζ to obtain a two-side differential function,
where ζ is a random infinitesimal perturbation. Then, the two-side infinitesimal function is
computed by

dY
(

ψi
k

)
= Y(ψk + cψi

k
∆ψi

k
)−Y(ψk − cψi

k
∆ψi

k
). (26)

where ∆ψi
k

is random perturbation vector with a Gaussian distribution form and cψi
k

is a
small positive number that decreases with i. As a result, the estimation of the gradient of
objective function L(ψk) can be obtained by the two-side differential. The mth component
of the gradient estimator at the ith iteration is given as follows,

(ĝ(ψi
k))m =

Y(ψk + cψi
k
∆ψi

k
)−Y(ψk − cψi

k
∆ψi

k
)

2cψi
k
(∆ψi

k
)m

(27)

where m ∈ {1, 2, , · · · , M}, M is the dimension of ψk. The gradient estimation of L(ψk) at
the ith iteration is presented as

Ĝ
(

ψi
k

)
=
[
(ĝ(ψi

k))1 (ĝ(ψi
k))2 · · · (ĝ(ψi

k))M

]T
=

dY
(
ψi

k
)

2cψi
k

Λψi
k

(28)

where Λψi
k
=
[
(∆ψi

k
)−1

1 (∆ψi
k
)−1

2 · · · (∆ψi
k
)−1

M

]T
, Λψi

k
is random perturbation vector with

multivariate Gaussian distribution form and (∆ψi
k
)m denotes the mth element of Λψi

k
.

At this point, the ψi+1
k can be updated by

ψi+1
k = ψi

k + aψi
k
Ĝ
(

ψi
k

)
(29)

where aψi
k

is a weighted factor.
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Taking the distributed variational ELBO L(ψk) in (13) as the objective function, the
two-side infinitesimal perturbations of L(ψk) with respect to xi

k|k and Pi
k|k are given, respec-

tively, as

L
(

xk|k ± cxi
k|k

∆xi
k|k

)
=

N

∑
n=1

Eq

[
log p

(
Zn,k|xi

k|k ± cxi
k|k

∆xi
k|k

)]
−DKL

[
N
(

xk|xi
k|k ± cxi

k|k
∆xi

k|k
, Pk|k

)
||N

(
xk|xi

k|k, Pi
k|k

)]
(30)

L
(

Pk|k ± cPi
k|k

∆Pi
k|k

)
=−

1± cPi
k|k

2

N

∑
n=1

HT
n,xi

k|k
R−1

k Hn,xi
k|k

∆Pi
k|k

−DKL

[
N
(

xk|xi
k|k, Pk|k ± cPi

k|k
∆Pi

k|k

)
||N

(
xk|xi

k|k, Pi
k|k

)]
(31)

where the parameters cxi
k|k

and cPi
k|k

are the special forms of cψi
k

with respect to xi
k|k and Pi

k|k,

respectively.
Now, we formulate the random perturbation factors of ∆xi

k|k
and ∆Pi

k|k
by sampling

from the Gaussian distribution xs
k ∼ N (xi

k|k, Pi
k|k); the mean and covariance of the samples

are xs
k = 1

S ∑S
s=1 xs

k and δ2 = 1
S−1 ∑S

s=1
(
xs

k − xs
k
)(

xs
k − xs

k
)T, where s ∈ {1, 2, · · · , S}.

Randomly choose a sample xs
k; the random perturbation of state ∆xi

k|k
is given by

∆xi
k|k

= xi
k|k − xs

k. (32)

The associated random perturbation of covariance is given as

∆Pi
k|k

= δ2 − Pi
k|k. (33)

Recall (26), the two-side differential dY
(
ψi

k
)

with respect to xi
k|k and Pi

k|k is written as

dY
(

xi
k|k

)
= L(xi

k|k + cxi
k|k

∆xi
k|k
)−L(xi

k|k − cxi
k|k

∆xi
k|k
) + ζx (34)

dY
(

Pi
k|k

)
= L(Pi

k|k + cPi
k|k

∆Pi
k|k
)−L(Pi

k|k − cPi
k|k

∆Pi
k|k
) + ζP. (35)

where ζx and ζP are random infinitesimal perturbations.
It follows that the estimation of the gradient of L(ψk) with respect to xi

k|k and Pi
k|k at

the ith iteration is given by

Ĝ
(

xi
k|k

)
=

dY
(

xi
k|k

)
2cxi

k|k
∆xi

k|k

Λxi
k|k

(36)

Ĝ(Pi
k|k) =

dY
(

Pi
k|k

)
2cPi

k|k
∆Pi

k|k

ΛPi
k|k

(37)

where

Λxi
k|k

=

[
(∆xi

k|k
)−1

1 (∆xi
k|k
)−1

2 · · · (∆xi
k|k
)−1

M

]T

ΛPi
k|k

=diag
[
(∆Pi

k|k
)−1

1,1 (∆Pi
k|k
)−1

2,2 · · · (∆Pi
k|k
)−1

M,M

]
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and (∆Pi
k|k
)m,m denotes the element in the mth row and mth column of ∆Pi

k|k
. Therefore, state

estimation and the associated covariance are updated by

xi+1
k|k =xi

k|k + axi
k|k
Ĝ
(

xi
k|k

)
(38)

Pi+1
k|k =Pi

k|k + aPi
k|k
Ĝ(Pi

k|k) (39)

where the parameters of axi
k|k

and aPi
k|k

are weighted factors. Set the same iteration termina-

tion as (25); the DVBKF-SPSA algorithm is summarized in Algorithm 2.

Algorithm 2 The iterative optimization process in the DVBKF-SPSA algorithm

1: Initialize state estimation x1|1, estimation error covariance P1|1, the number of iterations
Iter;

2: Compute one-step predicted state
xk|k−1 = fk|k−1

(
xk−1|k−1

)
;

3: Compute predicted state error covariance
Pk|k−1 = Fk|k−1Pk−1|k−1FT

k|k−1 + Qk;

4: Let i = 1, and x1
k|k = xk|k−1, P1

k|k = Pk|k−1.
5: for each iteration i = 1 : Iter and e ≤ ε do
6: Sampling from the Gaussian distribution

xs
k ∼ N (xi

k|k, Pi
k|k).

7: Compute stochastic perturbations ∆xi
k|k

and ∆Pi
k|k

by (32) and (33), respectively.

8: Compute the two-side infinitesimal perturbations of L(ψk) with respect to xi
k|k and

Pi
k|k by (30) and (31), respectively.

9: Compute the estimation of gradient Ĝ(xi
k|k) and Ĝ(Pi

k|k) by (36) and (37), respectively.

10: Update distributed iterative state estimation xi+1
k|k and the associated error covariance

Pi+1
k|k by (38) and (39), respectively.

11: Compute relative error er by (25).
12: end for
13: Output xk|k = xi+1

k|k , Pk|k = Pi+1
k|k .

5. Performance Evaluation

It is often of interest to know how closely the posterior distribution is approximated
and how accurately a variable can be estimated. In this section, we present two metrics
for the proposed algorithm performance evaluation: One is variational ELBO which is
monotonically increasing in iteration index to measure the convergence of variational
iteration. The other is PCRLB which provides a lower bound on the mean square error of
system state estimation [27]. In this section, we present the general forms of ELBO and
PCRLB both of DVBKF-NG and DVBKF-SPSA.

5.1. Performance in ELBO

From (10) and (11), the iterative ELBO of distributed architecture can be rewritten as

L
(

ψi
k

)
=

N

∑
n=1

Eq[log p(Zn,k|xk)] +Eq[log p(xk)]−Eq

[
log q

(
xk|ψi

k

)]
(40)

After computing the log-likelihood expectations in (40) under the Gaussian assumption, we
present the iterative ELBO of DVBKF (see the derivation in Appendix A) over the sensor
network, as follows
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L
(

ψi
k

)
= −1

2

{
N

∑
n=1

tr
(
R−1

n,k

(
(Zn,k − Hn,xi

k|k
xi

k|k)(Zn,k − Hn,xi
k|k

xi
k|k)

T + Hn,xi
k|k

Pi
k|k HT

n,xi
k|k

))
+ tr

(
P−1

k|k−1

(
(xi

k|k − xk|k−1)(xi
k|k − xk|k−1)

T + Pi
k|k

))
+ log

(
|Pk|k−1||Pi

k|k|
−1

N

∏
n=1
|Rn,k|

)
+

N

∑
n=1

Dn,z log(2π)− Dx

} (41)

in which Dn,z and Dx are the dimensions of Zn,k and xk, and Hn,xi
k|k

=
∂Hn,k(xk)

∂xk
|xk=xi

k|k
.

5.2. Performance in PCRLB

The PCRLB provides a theoretical lower bound for the estimation problem under a
distributed Bayesian framework. It has the following defined form [55]

Pk+1|k+1 , Eq(xk |ψk)

[(
xk − xk|k

)(
xk − xk|k

)T
]
≥ J−1

k+1 (42)

where Jk+1 is the posterior Fisher information matrix, recursively computed by

Jk+1 = D22
k − D21

k

(
Jk + D11

k

)−1
D12

k . (43)

The terms in (43) can be expressed by

D11
k =E

[
−∇xk∇

T
xk

log p(xk+1|xk)
]

D12
k =E

[
−∇xk∇

T
xk+1

log p(xk+1|xk)
]

D21
k =E

[
−∇xk+1∇

T
xk

log p(xk+1|xk)
]
=
[

D12
k

]T

D22
k =E

[
−∇xk+1∇

T
xk+1

log p(xk+1|xk)
]
+E

[
−∇xk+1∇

T
xk+1

log p(Zk+1|xk+1)
]
.

(44)

From (44), we can know that the terms of D11
k , D12

k and D21
k are related only to the system

model and irrelated to the fusion architecture of the sensor network. With the assumption
of independent measurements, log p(Zk+1|xk+1) = ∑N

n=1 log p(Zn,k+1|xk+1).

D22
k =E

[
−∇xk+1∇

T
xk+1

log p(xk+1|xk)
]
+

N

∑
n=1

E
[
−∇xk+1∇

T
xk+1

log p(Zn,k+1|xk+1)
]
. (45)

After computing the gradients in (44) and (45) by linearizing hk(xk) and fk|k−1

(
xk−1|k−1

)
,

the PCRLB (see the derivation in Appendix B) of DVBKF has the following form

P−1
k|k =

(
Qk−1 + Fk|k−1Pk−1|k−1FT

k|k−1

)−1
+

N

∑
n=1

(
Hn,xi

k|k

)T
R−1

n,k Hn,xi
k|k

. (46)

5.3. Remarks

1. From (40) and (41), it is observed that the ELBO values both of DVBKF-NG and
DVBKF-SPSA are related to measurements, prior, variational distribution and the
number of iterations. Generally, it is assumed that the prior of a given objective system
is known. Therefore, choosing an appropriate form of parameterized variational
distribution, increasing the number of iterations and providing more measurement
are of the essence to maximize the ELBO and lead a close approximation of the
posterior. However, the balance between computation cost and accuracy should be
considered according to practical applications.
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2. The PCRLB is an important metric to evaluate the accuracy of estimation algorithms.
On the one hand, it is determined by models of dynamic systems and measurement
systems. On the other hand, similarly to the ELBO, the PCRLB values both of DVBKF-
NG and DVBKF-SPSA are still related to the number of iterations and the amount
of measurement.

3. The two metrics are inextricably linked with each other: The former is the means
and the latter is the goal. ELBO maximization means approximating the posterior
distribution closely by an iterative variational distribution, which can lead the PCRLB
to a lower trend.

6. Numerical Simulation

In this section, we present a scenario of 2-D maneuvering target tracking over a
sensor network with Doppler-only measurement to illustrate the performance of DVBKF-
NG and DVBKF-SPSA. We also present the NG-based and SPSA-based optimizations
for centralized fusion architecture, named CVBKF-NG and CVBKF-SPSA, which can be
utilized, respectively, as benchmarks corresponding to DVBKF-NG and DVBKF-SPSA for
performance comparison.

From the system observability theory, we can know that target state with Doppler-only
measurement only can be observable after collecting measurements from at least three
Doppler sensors with different fixed locations. Thus, the measurements from neighbors
along with the measurements of local sensors are used to estimate variables in distribution
fusion architecture.

6.1. Performance Metrics

The estimation performance of the proposed algorithms is measured by root-mean-
squared error (RMSE), 3σ rule and the mean running overhead with 1000 Monte Carlo
simulations. The RMSE in range RRMSE

k , RMSE in radical velocity VRMSE
k , 3σ in range R3σ

k ,
3σ in radical velocity V3σ

k and mean running time Tmean are given, respectively, as follows

RRMSE
k =

√√√√ 1
M

M

∑
m=1
||xp

k − xp
k|k||2

VRMSE
k =

√√√√ 1
M

M

∑
m=1
||xv

k − xv
k|k||2

R3σ
k = 3

√√√√ 1
M

M

∑
m=1

(
||xp

k || − ||x
p
k|k||

)2

V3σ
k = 3

√√√√ 1
M

M

∑
m=1

(
||xv

k || − ||x
v
k|k||

)2

Tmean =
1

MK

M

∑
m=1

K

∑
k=1

tm,k

where xk = [xp
k xv

k ]
T, xp

k = [x y]T and xv
k = [ẋ ẏ]T denote the true position vector and velocity

vector of the target, where xp
k|k and xv

k|k denote the associated estimation, respectively, ‖ · ‖
denotes the Euclidean norm and tm,k is the running time at the kth estimation in the mth
Monte Carlo simulation. The values of the parameters in the proposed algorithms are given
in Table 1.
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Table 1. The values of parameters.

Parameter a b c α γ cxi
k|k

cPi
k|k

axi
k|k

aPi
k|k

Value 0.01 20 100 1 0.16666701
c
iγ 0.01cxi

k|k

a
(i+b)α 0.001axi

k|k

6.2. Simulation Setup

In this scenario, we consider a sensor network which consists of 20 Doppler-only sen-
sors located in a square of 120 m × 120 m randomly, as shown in Figure 2.
The communication capability of each sensor node is 50 m. The target is maneuvering with
dynamic multiple models Fj

k, j ∈ {1, 2} given as follows.

Fj
k =


1 0 sin

(
θjT
)
/θj

(
cos
(
θjT
)
− 1
)
/θj

0 1
(
1− cos

(
θjT
))

/θj sin
(
θjT
)
/θj

0 0 cos
(
θjT
)

− sin
(
θjT
)

0 0 sin
(
θjT
)

cos
(
θjT
)

 (47)

{
j = 1, k ∈ {[1, 14), [18, 30), [34, 49), [53, 71), [75, 90)};
j = 2, k ∈ {[14, 18), [30, 34), [49, 53), [71, 75)}. (48)

where the turn rates are θ1 = −9.8N1/vk and θ2 = −θ1, N1 = 0.2 is the overloads of target
maneuvering and the scan period is T = 0.2 s. In this manuscript, the target state is
represented as xk = [xp

k xv
k ]

T, where xp
k = [x y]T and xv

k = [ẋ ẏ]T denote the true position
and velocity of the target. Both measurements zk and xk are defined in a macro sense, not
as one state or one measurement. In the simulation, the state of velocity is updated in the
coordinates. The initial state estimation is x1|1 = [−40 m − 40 m 3.5 m/s 0 m/s]T and its
estimated error covariance is given as P1|1 = diag

(
[δ2

1 δ2
1 δ2

2 δ2
2 ]
)
, where δ1 =

√
1.5 m and

δ2 =
√

0.03 m/s. System noise covariance is given as Qk = diag
([

q2
1 q2

1 q2
2 q2

2
])

, where
q1 = 0.01 m and q2 = 0.01 m/s.

Sensor measurements are described by a nonlinear equation of Doppler shift between
the target and each of the sensors, and measurement noise covariances are time-varying
because of target motion. The measurement function and measurement noise covariances
are given by [56,57]

h(j)
k (xk) =

2
(

xp
k − Sn

)
||xv

k ||

‖xp
k − Sn‖

(49)

Rj
n,k =

3
π2T2

d RSNR
(50)

Equations (49) and (50) represent the measurement model of the sensors, where (49) is the
mapping from state to measurement and represents the Doppler shift between the target
and each of the sensors. Since the radial velocity of the target is related to Doppler shift, we
update it by using the velocity in the coordinates. Equation (50) represents the associated
time-varying measurement variance because of target motion, where Td = 1 µs is the
pulse Doppler waveform width, RSNR is the signal-to-noise ratio (SNR) and RSNR = Pe

Pn
.

For a given transmitted waveform with unit energy, the energy of the received signal
Pe =

PtGAeδ
(4π)2r4 , where r is radar radius, G and δ are the radar antenna and the cross-section

area, respectively, and Pt and Ae are the echo power and the effective receiving area of
radar antenna, respectively. The relationship between measurement noise covariance and
the range from radar to target is presented in Appendix C for a Gaussian noise Pn = kTs

2 ,
where Ts = 290 K and k = 1.3806× 10−23 J/K are the temperature in degrees Kelvin and
the Boltzmann constant, respectively.

Figure 3a shows the number of neighbors of each sensor node. It is clearly the 4th
sensor has the most neighbors, numbering 12, then the 1st, 6th, 12th and 14th sensors,
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and the 17th sensor has the least number of neighbors. Besides the proposed iterative
algorithms, we use the interacting multiple model (IMM) method to achieve the model
transfer in simulation. In distributed architecture, the sensor with best estimation accuracy
is chosen for output. From Figure 3b, we can observe that sensor 4 has the largest number
of outputs, then sensors 6, 14, 12 and 1. To a certain degree, this reflects that multi-sensor
measurements have the advantage of improving accuracy.
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Figure 2. Sensor network scenario.
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Figure 3. (a) The number of the neighbors of each sensor. (b) The output sensor against scan index.

6.3. Simulation Results and Analysis

Figure 4a,b shows the PCRLB and RMSE curves in range and radical velocity, re-
spectively. From the view of fusion architecture, centralized fusion architecture has lower
RMSE curves and PCRLB curves than the distributed one. Namely, CEKF, CVBKF-NG and
CVBKF-SPSA are, respectively, better than the associated distributed DEKF, DVBKF-NG
and DVBKF-SPSA, since the state estimation is updated by using the measurements from
the sensor and its neighbor in distributed architecture. In contrast, the measurements col-
lected from all sensors are used to update state estimation in centralized fusion architecture.

From the view of optimization methods, we can observe that the RMSE curves of
DVBKF-NG and DVBKF-SPSA are better than DEKF which does not use any optimization
methods. Besides iterative linearization, random perturbation sampling which can capture
more information from nonlinear measurement is used in DVBKF-SPSA. As a result, the
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measurement is utilized effectively to improve the accuracy performance. As shown in
Figure 4, the RMSE curves obtained by using SPSA are lower than those obtained by
NG optimization both in range and radical velocity. However, from Figure 4b, it is also
found that the proposed algorithms and comparison algorithms in distributed architecture
are more sensitive than those in the centralized one when the dynamic model transfers.
The comparisons of the PCRLB and RMSE of estimated position and velocity in coordinates
are given in Figures 5 and 6, respectively.

0 50 100 150 200
Scan (s)

0

0.5

1

1.5

2

2.5

T
he

 R
M

S
E

 o
f r

an
ge

 (
m

)

DEKF
CEKF
DVBKF-NG
CVBKF-NG
DVBKF-SPSA
CVBKF-SPSA
PCRB of distributed structure
PCRB of centralized structure

(a)

0 50 100 150 200
Scan (s)

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

T
he

 R
M

S
E

 o
f r

ad
ic

al
 v

el
oc

ity
 (

m
/s

)

DEKF
CEKF
DVBKF-NG
CVBKF-NG
DVBKF-SPSA
CVBKF-SPSA
PCRB of distributed structure
PCRB of centralized structure

(b)

Figure 4. The comparison of PCRLB and RMSE. (a) The RMSE of range. (b) The RMSE of velocity.
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Figure 5. The comparison of the PCRLB and RMSE of estimated position in coordinates. (a) The
RMSE on x-axis. (b) The RMSE on y-axis.
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Figure 6. The comparison of the PCRLB and RMSE of estimated velocity in coordinates. (a) The
RMSE on x-axis. (b) The RMSE on y-axis.

More quantitative RMSE comparison in centralized architecture and distributed archi-
tecture can be seen in Tables 2 and 3, from which it can be seen that the RMSE curves of the
proposed algorithms DVBKF-NG and DVBKF-SPSA are close to those in the centralized
architecture. It is also clear that the PCRLB in distributed architecture is slightly bigger than
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that in centralized architecture, because only a part of the sensors are used in distributed
architecture. However the computational cost in distributed architecture is much smaller
than that in the centralized one. Tables 4 and 5 give the computational cost comparison of
the algorithms in centralized architecture and distributed architecture mentioned above.

Table 2. The comparison of mean RMSE in centralized architecture.

Algorithm CEKF CVBKF-NG CVBKF-SPSA PCRLB

Position (m) 0.6285 0.4636 0.4212 0.3411
Velocity (m/s) 0.0762 0.0695 0.0667 0.0627

Table 3. The comparison of mean RMSE in distributed architecture.

Algorithm DEKF DVBKF-NG DVBKF-SPSA PCRLB

Position (m) 0.6524 0.5373 0.4388 0.3277
Velocity (m/s) 0.0957 0.0837 0.0816 0.0560

Table 4. The comparison of computational cost in centralized architecture.

Algorithm CEKF CVBKF-NG CVBKF-SPSA

Time (s) 0.0725 0.1827 0.3231

Table 5. The comparison of computational cost in distributed architecture.

Algorithm DEKF DVBKF-NG DVBKF-SPSA

Time (s) 0.0614 0.1047 0.2102

The 3σ bound is another evaluation of target tracking accuracy. A solid line indicates
the estimation error of associated algorithm. A dashed line indicates the 3σ error of
the algorithm which presented as a solid line with the same color. Figure 7 presents the
comparison of the 3σ bound. It is seen that the algorithms with NG or SPSA have smaller 3σ
bound in range than CEKF and DEKF. The radical velocities 3σ of the proposed algorithms
with NG and SPSA are slightly bigger than that of CEKF at some scans in Figure 7b. But
we can observe that the radical velocities 3σ of the proposed algorithms are robust for
the maneuvering target tracking both in centralized fusion architecture and distributed
fusion architecture. The comparisons of 3σ error of estimated position and velocity in
coordinates are given in Figures 8 and 9, respectively. A solid line indicates the estimation
error. A dashed line indicates the 3σ error of the algorithm which presented as a solid line
with the same color. The quantitative 3σ comparison is given in Tables 6 and 7.

As mentioned above, the minimization of KLD between variational distribution and
posterior distribution is equivalent to maximization variational ELBO. To observe the
changes in ELBO and KLD with iteration clearly, we present Figures 10 and 11 to illustrate
the normalized ELBO and KLD of the proposed DVBKF-NG and DVBKF-SPSA, respectively.
In Figure 10, each line denotes the ELBO in one scan with 200 iterations, and each line in
Figure 11 denotes KLD in one scan with 200 iterations. The results in Figures 10 and 11
verify our standpoints by the following fact: the ELBO curves increase with the number of
iterations, corresponding to a decrease in the KLD.
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Figure 9. The 3σ comparison of estimated velocity. (a) The 3σ on x-axis. (b) The 3σ on y-axis.

Table 6. The comparison of 3σ centralized architecture.

Algorithm CEKF CVBKF-NG CVBKF-SPSA

Position (m) 1.3833 1.0086 0.9196
Velocity (m/s) 0.1537 0.1550 0.1474

Table 7. The comparison of 3σ distributed architecture.

Algorithm DEKF DVBKF-NG DVBKF-SPSA

Position (m) 1.4430 1.2050 0.9606
Velocity (m/s) 0.1835 0.1684 0.1714
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(a) (b)

Figure 10. ELBO. (a) DVBKF-NG. (b) DVBKF-SPSA.

(a) (b)

Figure 11. KLD. (a) DVBKF-NG. (b) DVBKF-SPSA.

7. Discussion

In this paper, we address the problem of improving the accuracy for maneuvering
target tracking in sensor networks. Two kinds of optimization methods, NG and SPSA,
are introduced to maximize the distributed ELBO where the joint likelihood is partitioned
approximately into several simple marginal likelihoods by variational mean field, formulat-
ing the algorithms of DVBKF-NG and DVBKF-SPSA. Moreover, the performance metrics,
both of ELBO and PCRLB, are presented over different iterative indexes. In addition, a
maneuvering target tracking scenario over a sensor network is given to verify the perfor-
mance of the proposed algorithms. From the view of fusion architecture, centralized fusion
architecture has lower RMSE curves and PCRLB curves than the distributed one. From the
view of optimization methods, the simulation results show that the RMSE curves of the
proposed algorithms are better than those which do not use any optimization methods.

For future work, we plan to adopt VB for the robust estimation of sensor networks.
For example, outliers always lead to heavy-tailed and asymmetric distributions which
are apt to lead to large estimation errors. It is expected for novel methods to mitigate the
adverse influence and VB in which an unsolvable distribution can be approximated by a
parameterized distribution is an appropriate method at this point. We also plan to develop
VB for multiple passive sensor placement. For example, in a bearings-only target tracking
system, tracking accuracy is highly dependent on the locations of the bearings-only sensors.
Therefore, it is desirable to schedule the sensors’ moving trajectories in a way to achieve a
minimized tracking error at a future time.
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Appendix A. Derivation of ELBO of DVBKF

With Gaussian assumption, the log-likelihood expectations in (40) are computed
as (A1), in which

Hn,xi
k+1|k+1

=
∂Hn,k(xk)

∂xk
|xk=xi

k+1|k+1
.

The expectation of log-a priori distribution and the expectation of log-variational distri-
bution are given as (A2) and (A3), respectively. As a result, the distributed ELBO L
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)

in (40) is calculated as (A4).
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Appendix B. Derivation of the PCRLB of DVBKF

After the linearization of hk(xk) and fk

(
xk−1|k−1

)
, the above equations can be

written as
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According to the matrix inversion lemma, the Fisher information in Equation (43) can be
rewritten as
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Therefore it yields the distributed PRLB,
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Appendix C. The Relationship between Measurement Noise Covariance and the Range
from Radar to Target

The standard deviation of the time-varying measurement noise of radar is σ ≥
√

3∆ f
π
√

RSNR
,

which is given as Equation (18.46) in reference [56]; the ∆ f is the frequency domain
resolution and ∆ f = 1

Td
. The time-varying measurement noise can be rewritten as follows

R = σ2 ≥ 3∆ f 2

π2RSNR
=

3
π2T2

d RSNR
. (A8)

Assume a radar transmit power is Pt; the power density is written as S1 = Pt
4πr4 . Define

the radar antenna gain G; the power density can be rewritten as

S2 = S1G =
PtG
4πr2 . (A9)

Set the cross-section area as δ; the received power density Sr is calculated by

Sr = S2
δ

4πr2 =
PtGδ

(4πr2)
2 . (A10)

Assume the effective receiving area of radar antenna Ae; the echo power is given as

Pe = AeSr =
PtGAeδ

(4π)2r4 ∝
1
r4 . (A11)

since signal-to-noise ratio is defined as RSNR = 10 log10

(
Pe
Pn

)
, where Pn is noise power.

For Gaussian noise Pn = kTs
2 , where k and Ts are Boltzman constant and Kelvin temperature,

respectively, it yields RSNR,

RSNR = 10 log10

(
PtGAeδ

8π2kTsr4

)
. (A12)
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