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Abstract: This paper is concerned with event-triggered bounded consensus tracking for a class of
second-order nonlinear multi-agent systems with uncertainties (MASs). Remarkably, the consid-
ered MASs allow multiple uncertainties, including unknown control coefficients, parameterized
unknown nonlinearities, uncertain external disturbances, and the leader’s control input being un-
known. In this context, a new estimate-based adaptive control protocol with a triggering mechanism
is proposed. We rule out Zeno behavior by testifying that the lower bound on the interval between
two consecutive events is positive. It is shown that under the designed protocol, all signals caused
by the closed-loop systems are bounded globally uniformly and tracking errors ultimately con-
verge to a bounded set. The effectiveness of the devised control protocol is demonstrated through
a simulation example.

Keywords: nonlinear multi-agent systems with uncertainties; bounded consensus tracking; adaptive
control; triggering mechanism

1. Introduction

Nowadays, consensus tracking has been extensively investigated for MASs due to
its widespread applications in many fields such as cooperative control of mobile robots
and spacecraft formation flying control [1–6]. In MASs, each agent is usually equipped
with embedded microprocessors, which have limited energy and computing resources.
We remark that event-triggered control (ETC) makes it so the information transmitted
or the controller is updated only when necessary for systems, which thus can effectively
reduce resource consumption. As an effective tool for reducing resource consumption,
event-triggered control has been proposed [7,8]. This inspires the study of the event-
triggered consensus tracking problem of MASs.

In the past few decades, abundant work on consensus tracking of MASs with ETC has
been reported [9–19]. Specifically, single-integrator agents and double-integrator agents
were investigated in [9,10], respectively. However, the presented triggering mechanism
required each agent to continuously monitor the states of neighboring agents. This re-
quirement is removed in [11] by adopting a triggering threshold that is state-independent,
while consensus tracking of general linear MASs was realized. As a further improvement,
works [12,13] considered the consensus tracking problems by ETC for nonlinear MASs.

We remark that all the above works do not consider MASs with uncertainties, which are
unavoidable when modeling real plants. Specifically, work [20] proposed a hybrid system
approach to address the ETC problem for linear systems with uncertainties. Then, in [21],
consensus tracking was realized for nonlinear MASs whose the parameters in nonlinearities
have a known upper bound. As an extension, work [22] permitted completely unknown
parameters in nonlinearities. Work [23] considered MASs with parameterized unknown
nonlinearities, but unknown control coefficients were not taken into account. Work [24]
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considered uncertain nonlinear MASs with unknown control coefficients, and an estimate-
based ETC protocol was proposed to achieve bounded consensus tracking. Then, uncertain
nonlinear MASs subjected to unknown external disturbances were investigated in [25],
and output consensus tracking was realized. However, in reality, second-order nonlinear
MASs with uncertainties are more practical for modeling real systems such as torque motors
and jet engines, which are tuned to achieve the desired motion directly through acceleration
rather than velocity [26]. Hence, it is exigent to investigate consensus-tracking-based ETC
for nonlinear MASs with uncertainties. In this context, how to design an ETC protocol
to realize bounded consensus tracking and how to develop an appropriate compensation
mechanism to counteract the uncertainties in systems deserve our efforts. A comparison of
the features of the investigated MASs in the existing literature is depicted in Table 1.

Table 1. Comparison of the features of the investigated MASs in the existing literature.

Work Control
Coefficient

Lipschitz
Constant

External
Disturbance Leader Input

[21] No Known No Known

[22] No Unknown No Zero

[22] No Unknown No Zero

[23] Yes Unknown No Unknown

this paper Yes Unknown Yes Unknown

This paper is devoted to event-triggered bounded consensus tracking for second-
order nonlinear MASs with uncertainties. Compared with the relevant literature, the
MASs in this paper permit multiple uncertainties, including unknown control coefficients
and parameterized unknown nonlinearities. In contrast with work [27], the considered
nonlinear MASs with uncertainties permit unknown external disturbances, and event-
triggered consensus tracking is investigated in this paper. Moreover, the leader’s control
input is also allowed to be unknown, and the leader’s information is broadcast to only
a few of the agents. To counteract the uncertainties and to realize bounded consensus
tracking, a novel estimate-based adaptive control protocol with triggering mechanism is
developed. Further, through Lyapunov analysis, it is proved that the devised adaptive
control protocol can make certain that all signals caused by the closed-loop systems are
bounded globally uniformly, and with the passage of time, tracking errors converge to a
bounded set.

The remaining context of this paper consists of the following sections. The related
preliminaries, which include the problem statement, graph theory, and notation, are for-
mulated in Section 2. Section 3 proposes the triggering mechanism and a distributed
adaptive control protocol with the triggering mechanism. The main results are summarized
in Section 4. Simulations of nonlinear MASs with uncertainties are given to exemplify the
effectiveness of the proposed control protocol are in Section 5. Concluding remarks are
provided in Section 6.

2. Preliminaries
2.1. Graph Theory and Notation

Represent a graph by G = (V , E), which consists of a nonempty finite set of nodes and
a set of edges E ⊆ V × V , where a set of nodes is denoted by V = (v1, . . . ,vN). The edge (vi,vj)
denotes that node vi can transmit information to node vj, where vi is vj’s neighbor. Graph G is
called undirected if (vi,vj) ∈ E implies (vj,vi) ∈ E . For a directed graph, an edge (vi,vj) ∈ E
indicates that node vi can transmit information to node vj, but node vj cannot transmit
information to node vi. A directed graph contains a spanning tree: the graph includes a root
node with no parent and the root node has directed paths to every other node.
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The adjacency matrix of a graph G is denoted by A = [aij] ∈ RN×N . In A, aij = 1
if (vi,vj) ∈ E , and aij = 0 otherwise. This paper assumes that there are no self-loops;
thus, aii = 0. Correspondingly, the degree matrix is denoted by ∆ = diag{∆1, . . . , ∆N} with
∆i = ∑N

j=1 aij. Then, the Laplacian matrix associated with G can be defined as L = ∆ − A,

where L = [lij] ∈ RN×N is defined as lii = ∑N
j=1,i 6=j aij, and lij = −aij, i 6= j.

In this paper, we use µi = 1 to denote that the leader’s trajectory information is
available for the i-th follower; otherwise, µi is set as 0. Let P = diag{µ1, . . . , µN}, and define
W = L + P .

Standard notations are presented as follows.

Q > 0 the matrix Q is positive definite

QT the transposition of matrix Q

‖ Q ‖ the 2-norm of a matrix Q

λmax(·) the largest eigenvalues of the matrix

λmin(·) the smallest eigenvalues of the matrix

1N an N-dimensional column vector with all entries being 1

D+ the upper-right-hand derivative

Lemma 1. If a directed graph contains a spanning tree wherein the root node is the leader, then the
matrix W = L + P is positive definite.

Lemma 2 (Schur Complement). For a symmetric matrix Q =
[

Q11 Q12
QT

12 Q22

]
, the following state-

ments are equivalent:

(1) Q > 0,
(2) Q11 > 0, Q22 −QT

12Q−1
11 Q12 > 0,

(3) Q22 > 0, Q11 −Q12Q−1
22 QT

12 > 0.

2.2. Problem Statement

Consider an uncertain MAS with N followers and one leader. The i-th follower’s
dynamics, i = 1, . . . , N, are described as follows:{

ẋi(t) = vi(t),
v̇i(t) = biui(t) + θi fi(xi, vi, t) + di(t), i = 1, . . . , N,

(1)

where xi(t) ∈ R and vi(t) ∈ R represent the i-th follower’s states; ui ∈ R is the i-th follower’s
control input; bi ∈ R is a non-zero constant that is unknown, called the i-th follower’s
control coefficient; θi ∈ R is an unknown constant; fi(xi, vi, t) : R×R×R+ → R, is a known
nonlinear function and is locally Lipschitz in (xi, vi) on R× R and continuous in t on R+;
di(t) ∈ R represents an external disturbance that is unknown and time-varying.

The leader’s dynamics are described by:{
ẋ0(t) = v0(t),
v̇0(t) = u0(t),

(2)

where x0(t) ∈ R and v0(t) ∈ R represent the states of the leader; u0(t) is the leader’s
control input.

This paper aims to design a distributed adaptive event-triggered control protocol for
each follower to achieve the following objectives:

(1) All signals that are caused by closed-loop systems are bounded globally uniformly on
[0, +∞);

(2) There is no Zeno behavior;
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(3) The tracking errors, x̄i(t) = xi(t)−x0(t), v̄i(t) = vi(t)−v0(t), converge to a small ad-
justable bounded set.

In order to realize the control objectives, the following assumptions are imposed on
systems (1) and (2)

Assumption 1. A directed graph G contains a spanning tree whose leader is the root node, and the
communication topology between all followers is undirected.

Assumption 2. The sign of bi is known.

Assumption 3. External disturbance di(t) is bounded: that is, |di(t)| ≤ d̄∗, where d̄∗ is an
unknown positive constant.

Assumption 4. The leader’s control input u0(t) is bounded: i.e., |u0(t)| ≤ ρ, where ρ is an
unknown positive constant.

3. Event-Based Distributed Adaptive Control Protocol Design
3.1. Triggering Mechanism

Event times for the j-th agent are denoted as : tj
0, tj

1, . . . , tj
k, . . . with 0 ≤ tj

0 < tj
1 < tj

2 <

· · · < tj
k < tj

k+1 < +∞ for k ∈ Z+, j = 0, 1,. . . , N. The variable tj
k denotes the k-th event

time for the j-th agent. In this paper, x̌j and v̌j are adopted to denote the sampling states

for the j-th agent, and x̌j(t) = xj(t
j
k), v̌j(t) = vj(t

j
k), t ∈ [tj

k, tj
k+1), which can be broadcast to

neighbors at t = tj
k. Meanwhile, the j-th agent updates the controller at t = tj

k.
The event times are defined as

tj
k+1= inf

{
t > tj

k

∣∣∣ pj(t) ≥ 0
}

, j = 0, 1, . . . , N,

where tj
1 = 0, and the triggering mechanism is designed as

pj(t) = |xj(t)− x̌j(t)|+ |vj(t)− v̌j(t)| − qj, (3)

where qj is a positive constant to be designed. The triggering mechanism (3) means that:

for agent j, once an event is triggered (i.e., pj(t
j
k) = 0), information transmission and

control updating occur; after tj
k , the triggering mechanism (3) is continuously evaluated

until pj(t
j
k+1) = 0, which means that the (k + 1)-th event is triggered. During any two

consecutive events, if the neighbors of the j-th agent are triggered, the triggering
mechanism (3) will not be updated. Since the states of the neighboring agents are
not used in the triggering mechanism (3) for the j-th agent, the event times of the j-th
agent are determined by themselves. It is noted that the continuous monitoring of the
neighbors’ states is avoided since the triggering mechanism (3) only needs the current
states of the j-th agent and the sampling states of the j-th agent.

3.2. Adaptive Control Protocol

In this section, we devise the adaptive control protocol for each follower based on the
above triggering mechanism, and we analyze the existence and uniqueness of solutions
that are caused by closed-loop systems.

Firstly, according to x̄i(t) = xi(t)−x0(t), v̄i(t) = vi(t)−v0(t), we deduce that{
˙̄xi(t) = v̄i(t),
˙̄vi(t) = biui(t) + θi fi(xi, vi, t) + di(t)− u0(t), i = 1, . . . , N.

(4)
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For System (4), the following adaptive control protocol is devised for the i-th follower{
ui = β̂iαi,

αi = −θ̂i fi − l0(εi1 + εi2) + ûi,0 − d̂i,
(5)

where β̂i and θ̂i are the estimates of βi = 1
bi

and θi, respectively; d̂i is the estimate of di;
ûi,0 is the estimate of u0 by the i-th follower; l0 is a positive parameter to be designed;
εi1 and εi2 are relative errors on t ∈ [tk, tk+1). The triggering mechanism is integrated into
Control Protocol (5) by relative errors εi1 and εi2. In (5), an estimate-based method is used
to estimate unknown parameters.

In (5), the estimates’ dynamics for the i-th follower are designed as

˙̂θi = ri1(ei1 + ei2) fi − ri1ki1(θ̂i − θi,0),
˙̂βi = −ri2(ei1 + ei2)sign(bi)αi − ri2ki2(β̂i − βi,0),

˙̂ui,0 = −ri3(ei1 + ei2)− ri3ki3(ûi,0 − u0,0),
˙̂di = ri4(ei1 + ei2)− ri4ki4(d̂i − di,0),

(6)

where sign(·) is the sign function; ril and kil , l = 1, 2, 3, 4, are positive constants; θi,0, βi,0,
u0,0, di,0 are constants; ei1 and ei2 are relative errors.

In (6) and (7), the involved relative errors ei1, ei2, εi1, and εi2 are defined as

ei1(t) =
N
∑

j=1
aij(xi(t)− xj(t)) + µi(xi(t)− x0(t)),

ei2(t) =
N
∑

j=1
aij(vi(t)− vj(t)) + µi(vi(t)− v0(t)),

εi1(t) =
N
∑

j=1
aij(xi(t)− x̌j(t)) + µi(xi(t)− x̌0(t)),

εi2(t) =
N
∑

j=1
aij(vi(t)− v̌j(t)) + µi(vi(t)− v̌0(t)).

(7)

Next, we analyze the existence and uniqueness of solutions that are caused by closed-
loop systems, consisting of (3)–(6). Note that the right-hand sides of differential Equa-
tions (4)–(6) are locally Lipschitz in (x̄i, v̄i, θ̂i, β̂i, ûi,0, d̂i) on R× R× R× R× R× R and
continuous in t on R+. Therefore, by Peano’s existence theorem and the extension theo-
rem [28], a closed-loop system has a unique solution on its maximal existence interval [0, t f )
with 0 < t f ≤ +∞ for any initial conditions (xi(0), vi(0), θ̂i(0), β̂i(0), ûi,0(0), d̂i(0), x0(0),
v0(0)) on R× R× R× R× R× R× R× R.

4. Main Results

In this section, we firstly construct a Lyapunov function. By Lemma 2, we prove
the constructed Lyapunov function is positive definite. Then, we prove that all closed-
loop system signals are bounded and exclude Zeno behavior on [0, t f ) with t f < +∞.
Furthermore, for all signals that cause the closed-loop system to be bounded, we deduce
that t f = +∞. Finally, we prove that the devised adaptive event-triggered control protocol
can realize bounded consensus tracking.

Theorem 1. Consider Systems (1) and (2) under Assumptions 1–4. The designed distributed
adaptive control protocol (5) with event-triggering mechanism (3) can guarantee: (i) all closed-loop
system signals (i.e., xi, vi, ui, θ̂i, β̂i, ûi,0, d̂i) are bounded on [0,+∞); (ii) Zeno behavior is excluded;
(iii) for each follower, the tracking errors x̄i(t) and v̄i(t) converge to an adjustable bounded set.



Entropy 2023, 25, 1335 6 of 12

Proof. Firstly, we prove that all signals that are caused by closed-loop systems are bounded
on [0, t f ) with t f < +∞. According to the estimation errors for unknown parameters and
the unknown leader’s control input, a Lyapunov function is constructed as

V=
1
2

δTΘ δ +
1
2

N

∑
i=1

1
ri1

θ̃2
i +

1
2

N

∑
i=1

|bi|
ri2

β̃2
i +

1
2

N

∑
i=1

1
ri3

ũ2
i,0 +

1
2

N

∑
i=1

1
ri4

d̃2
i , (8)

where Θ =
(

2W W
W W

)
, δ(t)=[δ1(t), . . . , δN(t)] with δi = [x̄i, v̄i]

T , θ̃i = θi − θ̂i, β̃i = βi − β̂i,

ũi,0 = u0 − ûi,0, d̃i = di − d̂i. Under Assumption 1, W is symmetric, which means that the
matrix Θ is symmetric, and we obtain that W is positive definite by Lemma 1. In Lemma 2,
Θ can be regarded as Q; 2W can be regarded as Q11; W can be regarded as Q12 and Q22.
Then, we can deduce that Θ > 0 by noting 2W > 0, WT(2W)−1W > 0. Thus, we obtain
that V is positive definite.

With this in hand, the derivative of V regarding time can be computed as

V̇= δTΘ δ̇−
N

∑
i=1

1
ri1

θ̃i
˙̂θi −

N

∑
i=1

|bi|
ri2

β̃i
˙̂βi −

N

∑
i=1

1
ri3

ũi,0 ˙̂ui,0 −
N

∑
i=1

1
ri4

d̃i
˙̂di. (9)

From (4), it follows that

δ̇(t) =
(

0 IN
0 0

)
δ(t) +

(
0

Bu(t)

)
+

(
0

θF(x, v, t)

)
+

(
0

D(t)

)
−
(

0
1Nu0(t)

)
, (10)

where B = diag{b1, . . . , bN}, u(t) = [u1, . . . , uN ]
T , θ = diag{θ1, . . . , θN}, F(x, v, t) =

[ f1(x1, v1, t), . . . , fN(xN , vN , t)]T , D(t) = [d1(t), . . . , dN(t)]T .
Based on (5) and (10), (9) can be further computed as

V̇= δT
(

0 2W
0 W

)
δ +

N

∑
i=1

1
ri1

θ̃i

(
ri1(ei1 + ei2) fi − ˙̂θi

)
+

N

∑
i=1

1
ri3

ũi,0

(
−ri3(ei1 + ei2)

− ˙̂ui,0

)
+

N

∑
i=1

1
ri4

d̃i

(
ri4(ei1 + ei2)− ˙̂di

)
−

N

∑
i=1

l0(ei1 + ei2)(εi1 + εi2)

+
N

∑
i=1

|bi|
ri2

β̃i

(
−ri2(ei1 + ei2)sign(bi)αi − ˙̂βi

)
.

Noting that δT
(

0 W
W W

)
δ = δT

(
0 2W
0 W

)
δ, we have

V̇= δT
(

0 W
W W

)
δ +

N

∑
i=1

1
ri1

θ̃i

(
ri1(ei1 + ei2) fi − ˙̂θi

)
+

N

∑
i=1

1
ri3

ũi,0

(
−ri3(ei1 + ei2)

− ˙̂ui,0

)
+

N

∑
i=1

1
ri4

d̃i

(
ri4(ei1 + ei2)− ˙̂di

)
−

N

∑
i=1

l0(ei1 + ei2)(εi1 + εi2) (11)

+
N

∑
i=1

|bi|
ri2

β̃i

(
−ri2(ei1 + ei2)sign(bi)αi − ˙̂βi

)
.

Substituting (6) into (11) yields

V̇= δT
(

0 W
W W

)
δ +

N

∑
i=1

ki1θ̃i(θ̂i − θi,0) +
N

∑
i=1

ki2|bi|β̃i
(

β̂i − βi,0
)
+

N

∑
i=1

ki4d̃i(d̂i − di,0)

+
N

∑
i=1

ki3ũi,0(ûi,0 − u0,0)−
N

∑
i=1

l0(ei1 + ei2)(εi1 + εi2). (12)
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By [24], the following inequalities are acquired:

θ̃i(θ̂i − θi,0) ≤ − 1
2 θ̃2

i +
1
2 (θi − θi,0)

2,

β̃i(β̂i − βi,0) ≤ − 1
2 β̃2

i +
1
2 (βi − βi,0)

2,

d̃i(d̂i − di,0) ≤ − 1
2 d̃2

i +
1
2 (di − di,0)

2,

ũi,0(ûi,0 − u0,0) ≤ − 1
2 ũ2

i,0 +
1
2 (ui,0 − u0,0)

2.

(13)

Substituting (13) into (12), it can be deduced that

V̇≤ δT
(

0 W
W W

)
δ−

N

∑
i=1

ki1
2

θ̃2
i −

N

∑
i=1

ki2
2
|bi|β̃2

i −
N

∑
i=1

ki3
2

ũ2
i,0 −

N

∑
i=1

ki4
2

d̃2
i

+
N

∑
i=1

ki1
2
(θi − θi,0)

2 +
N

∑
i=1

ki2
2
|bi|(βi − βi,0)

2 +
N

∑
i=1

ki3
2
(u0 − u0,0)

2 (14)

+
N

∑
i=1

ki4
2
(di − di,0)

2 −
N

∑
i=1

l0(ei1 + ei2)(εi1 + εi2).

where εi1 + εi2 = ei1 + ei2 +
N
∑

j=1
aij(xj(t)− x̌j(t))+µi(x0(t)− x̌0(t))+

N
∑

j=1
aij(vj(t)− v̌j(t))+

µi(v0(t)− v̌0(t)).
Moreover, by Young’s inequality, we have

l0q|ei1 + ei2|·|∆i + µi| ≤
l0
2
(ei1 + ei2)

2 +
l0
2

q2(∆i + µi)
2,

where q = max{qj, j = 0, 1, . . . , N}.

By (7), note
N
∑

i=1
(ei1 + ei2)

2 = δT
(

W 0
0 W

)T(W 0
0 W

)
δ. Then, from (14), it follows that

V̇≤− δT
(

l0
2

(
W 0
0 W

)T(W 0
0 W

)
−
(

0 W
W W

))
δ−

N

∑
i=1

( ki1
2

θ̃2
i +

ki2
2
|bi|β̃2

i

+
ki3
2

ũ2
i,0 +

ki4
2

d̃2
i

)
+

N

∑
i=1

( l0
2

q2(∆i + µi)
2 +

ki1
2
(θi − θi,0)

2 (15)

+
ki2
2
|bi|(βi − βi,0)

2 +
ki3
2
(u0 − u0,0)

2 +
ki4
2
(di − di,0)

2
)

.

Let Γ =
(

W 0
0 W

)T(W 0
0 W

)
, Π =

(
0 W

W W

)
. Based on (15), we obtain

V̇≤−
( l0

2
λmin(Γ)− λmax(Π)

)
δTδ−

N

∑
i=1

ω
( θ̃2

i
2ri1

+
|bi|β̃2

i
2ri2

+
ũ2

i,0

2ri3
+

d̃2
i

2ri4

)
+

N

∑
i=1

( l0
2

m2(∆i + µi)
2 +

ki1
2
(θi − θi,0)

2 +
ki2
2
|bi|(βi − βi,0)

2 +
ki3
2
(u0−u0,0)

2 (16)

+
ki4
2
(di − di,0)

2
)

,

where ω = min{ki1ri1, ki2ri2, ki3ri3, ki4ri4}.
Furthermore, from (8), it follows that

V≤ 1
2

λmax(Θ)δTδ +
N

∑
i=1

( θ̃2
i

2ri1
+
|bi|β̃2

i
2ri2

+
ũ2

i,0

2ri3
+

d̃2
i

2ri4

)
. (17)
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Combining (16) with (17), we obtain

V̇≤ −( l0
2

λmin(Γ)− λmax(Π)− ω

2
λmax(Θ))δTδ−ωV + M∗,

where M∗ =
N
∑

i=1

( l0
2 q2(∆i + µi)

2 + ki1
2 (θi − θi,0)

2 + ki2
2 |bi| (βi − βi,0)

2 + ki3
2 (u0 − u0,0)

2 + ki4
2

(di − di,0)
2). Then, by choosing l0 > λ−1

min(Γ)(ωλmax(Θ) + 2λmax(Π)), we deduce that

V̇≤ −ωV + M∗. (18)

By solving (18), we derive

V(t)≤ V(0)e−ωt +
M∗

ω
(1− e−ωt), (19)

which shows that V(t) is uniformly bounded on [0, t f ). Thus, the signals δi, θ̂i, β̂i, ûi,0, and
d̂i are bounded on [0, t f ). Under Assumption 4, it is concluded that x0 and v0 are bounded
on [0, t f ). Therefore, xi and vi are bounded by the boundedness of δi, x0, v0 on [0, t f ).
Furthermore, ui is bounded on [0, t f ) from (5).

Now, we prove that there is no Zeno behavior on [0, t f ): that is, the lower bound on

the interval between two consecutive events {tj
k+1− tj

k} is positive.

Define ϕ
j
k(t) = |xj(t) − x̌j(t)| + |vj(t) − v̌j(t)| for t ∈ [tj

k, tj
k+1). First, the derivative of

the triggering mechanism ϕ
j
k(t) regarding time needs to be acquired. Then, the maximum

velocity hj of the change in ϕ
j
k(t) from 0 to qj can be acquired. We exclude Zeno behavior

by testing if
qj
hj

is positive. The derivative of ϕ
j
k(t) regarding time is computed as

ϕ̇
j
k(t) = D+|xj(t)|+ D+|vj(t)|

= |vj(t)|+ |bjuj(t) + f j(xj, vj, t)θj + dj(t)|, j = 0, 1, . . . , N

and ϕ̇0
k(t) ≤ |ẋ0(t)|+|v̇0(t)|. By the boundedness of uj, vj, ẋ0, and v̇0 on [0, t f ), we ac-

quire a positive number hj such that ϕ̇
j
k(t) ≤ hj. Moreover, we get that

∫ tj
k

tj
k+1

ϕ̇
j
k(t)dt ≤∫ tj

k

tj
k+1

hjdt = hj(t
j
k+1 − tj

k). From (3), it follows that ϕ
j
k+1(t

j
k+1)− ϕ

j
k(t

j
k) > qj. Thus, we ar-

rive at tj
k+1− tj

k ≥
qj
hj

. Zeno behavior is excluded on [0, t f ). Furthermore, all signals that
cause closed-loop systems are bounded; we deduce that t f = +∞.

Finally, that the tracking errors x̄i(t) and v̄i(t) converge to a small adjustable bounded
set was testified. From (9), it follows that

V(t) ≥ 1
2

δT(t)
(

2W W
W W

)
δ(t) ≥ 1

2
λmin(Θ)‖ δ(t) ‖2,

then,

‖ δ(t) ‖2≤ 2
λmin(Θ)

V(t). (20)

Substituting (19) into (20), we obtain

‖ δ(t) ‖2≤ 2
λmin(Θ)

[
V(0)e−ωt +

M∗

ω
(1− e−ωt)

]
,

which implies that ‖δ(t)‖2 is bounded and converges to a compact set Er =
{

δ(t)
∣∣ ‖δ(t)‖2

≤ 2
ωλmin(Θ)

(M∗+σ)
}

for t ≥ (1/ω) ln(|ωV(0)−M∗|/σ) with σ an arbitrarily small positive
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constant. Note ‖ δ(t)‖2= x̄2
1 + · · ·+ x̄2

N + v̄2
1 + · · ·+ v̄2

N . Therefore, tracking errors x̄i(t)
and v̄i(t) also converge to Er for t ≥ (1/ω) ln(|ωV(0)−M∗|/σ). It is noted that the compact
set Er can be made as small as desired by increasing ri1, ri2, ri3, ri4 while fixing all the
remaining design parameters. Thus, the compact set Er can be adjusted by modifying the
relevant parameters.

5. Simulation of Nonlinear MASs with Uncertainties

In this section, we provide a simulation example in detail to verify the theoreti-
cal results obtained. Consider an uncertain MAS with four followers and one leader.
The i-th follower’s dynamics, i = 1, . . . , 4, are described as (1), where b1 = b2 = b3 = 1,
b4 = 1.1, θ1 = 1, θ2 = 2, θ3 = 3, θ4 = 4, f1(x1, v1, t) = 0.1x2

1 + 0.1v2
1, f2(x2, v2, t) = 0.2x2

2 +
0.1v3

2, f3(x3, v3, t) = 0.2x2
3 + 0.1v2

3, f4(x4, v4, t) = 0.1x3
4 + 0.1v2

4, d1(t) = sin(t), d2(t) =
1.1sin(t), d3(t) = 1.2sin(t), d4(t) = 2sin(t). The leader’s dynamics are described by (2),
where u0(t) = −sin(t).

Note that the communication topology for systems (21) and (22) is shown in Figure 1.
The four followers’ initial conditions and the leader’s conditions are given as follows:
x1(0) = 0, v1(0) = 1, x2(0) = 1, v2(0) = 2, x3(0) = 2, v3(0) = 3, x4(0) = 4, v4(0) = 2, x0(0) = 0,
v0(0) = 1. The initial conditions θ̂i(0), β̂i(0), ûi,0(0), d̂i(0), i = 1, . . . , 4 are set to zero.
The corresponding parameters in (6) and (7) are chosen as l0 = 170, ki1 = ki2 = ki3 = ki4 = 5,
ri1 = ri2 = ri3 = ri4 = 0.005, θi,0 = βi,0 = u0,0 = di,0 = 0. The designed parameters in (3) are
taken as m1 = 0.95, m2 = 1, m3 = 2, m4 = 2.65, m0 = 1.1. From Figure 2, we can see
that the evolution of tracking errors, x̄i = xi − x0, v̄i = vi − v0, converges to a bounded
set. Figure 3 illustrates that the evolution of the control protocols for the four followers
is bounded. The four followers’ triggering times and the leader’s triggering times are
exhibited in Figure 4.

Figure 1. Communication topology among a leader and all followers.
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Figure 2. The evolution of x̄i and v̄i.
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Figure 3. The evolution of control protocol for followers.
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Figure 4. Triggering times of four followers and one leader.

In light of the work [27], a distributed adaptive control protocol without ETC is devised
to achieve consensus tracking for systems (1) and (2). The trajectories of tracking errors, x̄i
and v̄i, are shown in Figure 5.
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Figure 5. The evolution of tracking errors x̄i and v̄i.
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The simulation experiments are run to make Table 2, which shows the average con-
sensus time (ACT) and the integral of the absolute value of the input (IAU). ACT means
the average time it takes for followers to track the leader’s trajectory. IAU can evaluate
the energy consumption of control signals [29], where larger values of IAU mean greater
energy consumption for the control signals.

Table 2. Comparison between the consensus control protocol with triggering mechanism (CWT) and
the consensus control protocol without triggering mechanism (CWNT).

Protocol ACT IAU

CWT 5 s 205.4932

CWNT 8.5 s 622.5718

From Table 2, we acquire that the devised consensus protocol in this paper can make
all followers track the leader faster. Further, when the triggering mechanism is considered
in the design of the control protocol, energy resources can be better conserved.

6. Conclusions

This paper has addressed bounded consensus tracking for nonlinear MASs with
uncertainties by ETC. The considered MASs permit multiple uncertainties, including an
unknown control coefficient, parameterized unknown nonlinearities, unknown external
disturbances, and unknown control input of the leader. To compensate for uncertainties,
a new estimate-based adaptive control protocol has been proposed. Integrating a triggering
mechanism into the adaptive control protocol, the bounded consensus tracking of MASs
can be achieved with fewer communication resources. Then, by choosing an appropriate
Lyapunov function candidate, it has been proved that the designed control protocol can
guarantee that there is no Zeno behavior and that tracking errors ultimately converge to
a bounded set. For future study, extending the results to finite-time consensus will be
interesting work.
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