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Abstract: An abundance of features in the light field has been demonstrated to be useful for saliency
detection in complex scenes. However, bottom-up saliency detection models are limited in their
ability to explore light field features. In this paper, we propose a light field saliency detection method
that focuses on depth-induced saliency, which can more deeply explore the interactions between
different cues. First, we localize a rough saliency region based on the compactness of color and
depth. Then, the relationships among depth, focus, and salient objects are carefully investigated, and
the focus cue of the focal stack is used to highlight the foreground objects. Meanwhile, the depth
cue is utilized to refine the coarse salient objects. Furthermore, considering the consistency of color
smoothing and depth space, an optimization model referred to as color and depth-induced cellular
automata is improved to increase the accuracy of saliency maps. Finally, to avoid interference of
redundant information, the mean absolute error is chosen as the indicator of the filter to obtain the
best results. The experimental results on three public light field datasets show that the proposed
method performs favorably against the state-of-the-art conventional light field saliency detection
approaches and even light field saliency detection approaches based on deep learning.

Keywords: light field; saliency detection; focus cue; foreground; color and depth-induced cellular
automata

1. Introduction

The light field is a densely sampled image array, which has brought humans closer
to recording the real world. Compared with traditional images, the light field can record
the intensity and direction of light rays and has a stronger expressive ability. With the
development of refocusing and rendering techniques, many light field applications have
been generated, such as depth estimation [1,2] and light field super-resolution [3,4]. As
an important image preprocessing, light field saliency detection is crucial to promote the
research of light field applications.

Saliency detection aims to identify important regions that are interesting or obvious
to human eyes and improve the understanding of computer vision applications, such
as semantic segmentation [5], object detection [6], image recognition [7], etc. Saliency
detection methods based on RGB images make it difficult to accurately detect salient objects
in cluttered scenarios by color, compactness, or contrast cues. Moreover, saliency detection
methods based on RGB-D images are easily misled by depth maps, as shown in Figure 1.

Existing methods [8–14] detected salient regions via hand-crafted features such as
color, depth, and focus, while having a limited exploration of the light field and a few
related studies. The deep learning methods, leveraging powerful extraction and expression
capabilities, promote the development of light field saliency detection. Piao et al. [15] used
a single sub-aperture image to synthesize the complex light field. In [16], a micro-lens

Entropy 2023, 25, 1336. https://doi.org/10.3390/e25091336 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25091336
https://doi.org/10.3390/e25091336
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0009-0002-8859-2209
https://orcid.org/0000-0002-3921-9152
https://orcid.org/0000-0001-8286-538X
https://orcid.org/0000-0002-6065-5987
https://doi.org/10.3390/e25091336
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25091336?type=check_update&version=1


Entropy 2023, 25, 1336 2 of 19

image is used to predict salient regions through a convolutional network, which did not
consider the correlation between sub-aperture maps. Wang et al. [17] designed a cross-
modal feature fusion module to fuse the aggregated features from various modalities in
the three networks of all-focus, depth, and focal stack images. Liang et al. [18] adopted
a weakly supervised network and exploited the features of focal stack and depth maps to
generate pixel-level pseudo-saliency maps. Jiang et al. [19] leveraged attention mechanisms
to explore cross-modal complementarity and overcome information loss in the focal stack.
Yuan et al. [20] refined the focal stack with depth modality, which enhances the structure
and location information of salient objects in the focal stack.

However, there is no traditional method for exploring the relationship between the
focal stack and the depth map, and how to use the interaction between these to improve the
performance of saliency detection in the light field is still a problem worth thinking about.

All-focus

Image
Depth Image GT Ours D3Net S2MA DILF

Figure 1. Comparison of the detection results due to depth image misleading by different methods
(D3Net [21], S2MA [22], DILF [10] ) on the DUT-LF [15] dataset.

The key to successfully identifying salient objects is via exploring the potential features
and discovering the interactions between different cues in the light field. In this paper, we
propose a light field saliency detection algorithm, in which the cues among the focal stack,
depth, and all-focus images are fully explored and utilized to improve saliency detection
via complementation and fusion. Specifically, the coarse region of the salient object is
localized by combining the color and depth compactness. For the focal stack, we compute
the background and foreground probabilities to highlight the foreground. Among these,
the foreground object is enhanced by the depth contrast and the foreground probability.
In addition, we introduce the local geodesic saliency cues [23] and combine them with
the depth compactness to refine the saliency map. Furthermore, taking into account the
consistency and smoothness of the saliency object, we design a saliency optimization model,
the color and depth-induced cellular automata (CDCA), by exploiting the complementarity
of the color and depth cues to optimize the salient detection map with higher accuracy.
Finally, to avoid the influence of low-quality saliency maps, we use a filter to obtain excellent
saliency detection results by comparing the values of the mean absolute error (MAE).

To summarize, the main contributions of this paper are:

1. We introduce a light field saliency detection method taking into account interactions
among the depth, focus, color, and compactness cues.

2. We separate foreground and background by taking advantage of the focal stack and
depth image. Exploring the depth feature, we extract the depth compactness and local
saliency cues to emphasize local regions for refinement. At the same time, we integrate
foreground probability with a depth contrast map to highlight the foreground.

3. We develop the CDCA optimization model, which integrates color and depth cues to
improve the spatial consistency of saliency detection results.

The rest of the paper is organized as follows: Section 2 overviews the related works
on RGB, RGB-D, and light field saliency detection. In Section 3, the proposed method and
formulation are described in detail. The experimental results are presented and analyzed
in Section 4. Finally, we summarize the proposed method in Section 5.
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2. Related Works

This section will briefly review the related work on RGB images, RGB-D images, and
light field saliency detection methods.

2.1. RGB Image Saliency Detection

RGB image saliency detection models can be divided into two categories, top-down
and bottom-up models. Top-down methods are mainly task-oriented for saliency detection.
Bottom-up methods mainly use the low-level features of an image, such as color, texture,
and contrast information for saliency detection. This is especially true after the appearance
of the simple linear iterative cluster (SLIC) [24] algorithm, which improves computational
efficiency for image segmentation. Initially, saliency detection methods [25] used global
and local contrast information as salient features for detection. Yang et al. [26] considered
both foreground and background cues in a different way and ranked the similarity of
the image regions via graph-based manifold ranking. Zhu et al. [27] analyzed the spatial
distribution of the region and regarded the region with a large boundary border as the
background. Zhou et al. [28] recovered the falsely suppressed salient regions by combining
image internal compactness and local contrast information. Inspired by the automatic
cellular machine, Yao et al. [29] used the propagation mechanism of the single-layer cellular
automaton (SCA) to find the intrinsic correlation of similar regions and dynamically update
the saliency map. At the same time, a multi-layer automatic cellular (MCA) optimization
algorithm is proposed to integrate the advantages of the salient features.

It is difficult to achieve predictions that are highly consistent with human perception
only by relying on low-level features, thus motivating many deep learning-based salient
object detection models. Lou et al. [30] introduced a U-Net network to fuse multi-level con-
text and perform salient object detection in both local and global manners. Wang et al. [31]
added a pyramid attention structure and edge detection module to the network to obtain
accurate salient area edges while expanding the receptive field. To make full use of the
global context information, Chen et al. [32] utilized several context-aware modules to
incorporate multiple levels of features with global contextual information. Since humans
assign more attention to moving objects, Zhou et al. [33] proposed a motion-attention
transfer network for zero-shot video object segmentation within the encoder, which not
only inherits the advantages of multi-modal learning but also utilizes motion-attention
to facilitate appearance learning. Fully supervised networks rely on a large amount of
annotated data labels; Lai et al. [34] adopted weak supervision to improve salient objects in
complex scenes by exploring the nature of visual attention patterns.

However, it is difficult to detect more accurate saliency results only by limiting features
in challenging scenarios.

2.2. RGB-D Image Saliency Detection

According to the perceptual characteristics of human eyes, salient objects are often
located in the foreground. Nowadays, many RGB-D saliency detection methods reduce
misjudgments in challenging scenes by adding depth information. Niu et al. [35] demon-
strated that stereoscopic information can provide a useful complement to existing RGB
image saliency detection. Peng et al. [36] proposed a multi-stage RGB-D saliency detection
model and demonstrated that depth information can improve the robustness of saliency
results. Ren et al. [37] performed saliency detection by fusing global priors such as regional
contrast, depth information, and background. Cong et al. [38] proposed a saliency detection
method based on depth confidence and multi-information fusion to reduce the impact of
depth images. Zhu et al. [39] found that the center-dark channel prior can distinguish the
foreground and background. Cong et al. [23] refined the generated saliency detection map
by extracting the shape and contour of salient objects in the depth image and achieved
excellent results.

In addition, the method of RGB-D saliency detection using deep learning [21,22,40,41]
can achieve better results. Zhu et al. [40] designed an independent sub-network to extract
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depth cues and guide the main network to improve the saliency detection performance.
Liu et al. [22] proposed a selective attention mechanism to weigh the mutual attention
to filter unreliable information. Fan et al. [21] proposed a new RGB-D dataset and de-
signed a deep cleaning unit to filter low-quality salient results. Zhao et al. [41] designed
a depth-awareness framework by excavating depth information and exploiting the low-
level boundary cues to achieve accurate salient detection results. However, RGB-D image
unavoidably suffer from the influence of poor-quality depth images on the detection results,
especially when the salient and non-salient objects are at the same depth.

2.3. Light Field Saliency Detection

The rich features of the light field are beginning to be used to supplement the insuf-
ficiency of RGB and RGB-D images. Li et al. [8] calculated the likelihood score for the
first time to distinguish the foreground and background of light field images for saliency
detection. Li et al. [9] constructed salient and non-salient dictionaries from feature vec-
tors, but the salient results could not provide a better visual experience for human eyes.
Zhang et al. [10] combined depth, color contrast, and background probability for saliency
detection and obtained the complete salient region. Wang et al. [11] fused color contrast,
background prior, depth, and focus information through a Bayesian framework, but did
not fully explore the depth image. Zhang et al. [12] used multiple cues to improve the
performance of saliency detection by complementing the differences between different
information. The single-layer cellular automaton can enhance the saliency consistency be-
tween similar regions. Inspired by [29], Piao et al. [13] proposed a depth-guided automatic
cellular machine model (DCA) that can automatically optimize saliency maps based on
depth, focus, and color information. Wang et al. [14] calculated the degree of focus to
generate depth information to reduce the dependence on the depth map.

With the continuous improvement of light field datasets, many models have begun to
use convolutional networks to extract the salient features of the light field. Piao et al. [15]
proposed a multi-view object detection network to synthesize multi-view images for
saliency detection. Zhang et al. [16] proposed an end-to-end convolutional network
to extract the salient features of micro-lens images. Wang et al. [42] and Zhang et al. [43]
have committed to exploring the correlation and fusion between focal stack and all-focus
images to improve saliency detection performance, but they need to rely on high-quality
focal stacks. To aggregate cross-level features, Wang et al. [17] propose a cross-modal
feature fusion module to fuse features from various modalities from three sub-networks.
Liang et al. [18] designed a weakly supervised learning framework based on a pseudo-
ground truth to solve the problem of unclear edges of salient objects in complex structures.
Jiang et al. [19] utilized the attention mechanism to explore cross-modal complementarities
and generated object edges and edge features to progressively refine regional features
to achieve edge-aware detection. Zhang et al. [44] designed a multi-task collaborative
network for light field salient object detection to explore the complementary coherence
among multiple cues, including spatial, edge, and depth information. Feng et al. [45]
exploited the relationship between light field cues to identify clean labels from pixel-level
noisy labels for saliency detection. Yuan et al. [20] used the multi-modal feature guidance
method to refine the focal stack, enhance the structure and position information about the
salient objects in the focal stack, and improve accuracy.

Compared with conventional methods, deep learning methods can obtain high-quality
and remarkable results but require greater computing power, which increases the cost of
experiments to a certain extent. We focus extensively on designing a low-cost detection
model and adopting the interaction and complementarity between light field cues to
improve the saliency detection performance in challenging scenarios.

3. Methodology

In this paper, we make full use of the advantages of focus, depth, and color to improve
the accuracy of the saliency detection model. Figure 2 shows the framework of the proposed
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method and the framework mainly has the following stages: (1) We obtain the global
compactness saliency to locate the compactly distributed areas. (2) The foreground and
background probabilities are calculated and respectively combined with the depth contrast
cue and the global compactness map to highlight the salient objects, as shown in Figure 3.
(3) The global compactness saliency is refined by exploring high-quality depth compactness
and local geodesic cues. (4) The saliency maps are optimized by the CDCA model to obtain
a more perfect saliency map. (5) We design an output model to obtain excellent saliency
detection results by judging the MAE value. Figure 4 shows the visual processes of each
step. In the next section, this paper presents the details of the method.

Depth 

Contrast Map
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Slice

Background 
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CDCA
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Figure 2. The framework of the proposed method where “a” and “b” are the different weighted
coefficient to balance the background saliency map and foreground saliency map.

3.1. Compactness Based on Color and Depth Cues

In the spatial domain, the salient region usually has a compact spread. In the depth
domain, the region closest to the camera often contains a concentrated distribution in the
depth image. Motivated by this, we integrate color and depth to define global compactness,
which can be used to distinguish salient objects from the background.

We divide an image into compact and homogenous superpixels by the SLIC algo-
rithm [24] and construct a graph G = (V, E), where V represents the generated superpixel
node set, and E represents the distance between adjacent nodes’ connection set. Therefore,
the similarity between superpixels vi and vj in the Lab color space and depth space is
defined as:

ac
ij = exp(−||ci − cj||2/σ2) (1)

ad
ij = exp(−λd · |di − dj|/σ2) (2)

where ci is the mean color value of vi superpixels in the Lab color space, the mean depth
value of vi superpixels in di depth space, λd = exp((1− md) · CV · H − 1) is the depth
confidence [38], md is the mean value of the depth map, CV is the coefficient of variation,
and H denotes the depth frequency entropy. λd is used to judge the quality of a depth
image. The higher the value of λd, the better the quality of the depth image. σ2 = 0.1 [26]
is a constant that controls the strength of the similarity. Here, the global compactness based
on color and depth is defined as:

SCS(i) = 1− norm(cc(i) + cd(i)) (3)



Entropy 2023, 25, 1336 6 of 19

where norm(x) = (x− xmin)/(xmax − xmin) is a function that normalizes x to the range of
[0, 1]. cc(i) and cd(i) are the color compactness and depth compactness of the superpixel
vi, respectively. They are expressed as follows:

cc(i) =
∑N

j=1 nj · ac
ij ·
∥∥bj − µi

∥∥
∑N

j=1 nj · (ac
ij + ad

ij)
(4)

cd(i) =
∑N

j=1 nj · ad
ij ·
∥∥bj − p0

∥∥
∑N

j=1 nj · (ac
ij + ad

ij)
(5)

where N represents the number of superpixels, nj represents the number of pixels in the
superpixel vi, bj = [bx

j , by
j ] represents the centroid coordinates of the superpixel vj, µi =[

∑N
j=1 aij

c ·nj ·bx
j

∑N
j=1 aij

c ·nj
,

∑N
j=1 aij

c ·nj ·b
y
j

∑N
j=1 aij

c ·nj

]
represents the spatial average value, and p0 is the coordinate of

the center.

3.2. Exploring Focus for Foreground Enhancement

Effectively distinguishing the foreground from the background is a key step in salient
detection. Considering the problem that salient objects are mostly located in the foreground
and the foreground is not easy to obtain, we analyze the focus distribution in the focal stack
to select the background slice, and determine the foreground by finding the background.
At the same time, global compact saliency maps based on color and depth information
can comprehensively detect salient objects in images, but the detection results are rough.
To further suppress the interference caused by the background, we fuse the background
and foreground probabilities with the global compact map and the depth-contrast saliency
map, respectively, to achieve the purpose of separating the foreground and background.

The focal stack is a set of focused slices focused on the foreground and background,
and the difference of the focus point will lead to the sharpness difference of different
regions. Considering the advantages of the center prior and background prior, we detect
background regions and compute background and foreground probabilities to highlight
salient objects.

In order to highlight the foreground and suppress the background, we select the back-
ground slice and compute the background probability [10] to refine the global compactness
saliency map, and the result Sbg(i) is as follows:

Sbg(i) = ∑N
i=1 Scs(i) · Pbbg(i) (6)

Pbbg(i) = 1− exp(−
Ubg(i)2

2σ2
bg
·
∥∥∥p0 −U∗pos(i)

∥∥∥2) (7)

where we set σB= 1 to ensure that the background probability is maximized, U f oc(i) is the
mean value of superpixel vi of the slice, ||C−U∗pos(i)|| is used to measure the superpixel
spatial information related to the superpixel and the image center, and U∗pos(i) is the
normalized average coordinate of the superpixel vi.

At the same time, to fully extract the depth cues, we introduce the foreground proba-
bility Pf g(i) [13] to highlight the foreground objects. Figure 3 shows that the foreground
probability enhances the depth cues. The foreground saliency map S f g(i), induced by the
depth cues, is defined as:

S f g(i) = ∑N
j=1 SD(i) · Pf g(j) (8)

Pf g(i) = exp(−
U f oc(i)2

2σ2
F
·
∥∥∥p0 −U∗pos(i)

∥∥∥2
· ‖1− d(i)‖2) (9)
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where σF= 0.2, and the depth-induced contrast saliency SD and spatial weight factors are:

SD(i) = ∑N
j=1 Wpos(i, j) ·

∥∥di − dj
∥∥ (10)

Wpos(i, j) = exp(−
||U∗pos(i)−U∗pos(j)||2

2σ2
w

) (11)

where σw= 0.67.
A depth prior has a great help in distinguishing a salient object from the background.

To further emphasize the salient object, we distribute more weight to the foreground salient
maps, and the saliency detection result map SFF is obtained by weighted fusion as:

SFF = α · S f g + (1− α) · Sbg (12)

where α is set to 0.7.

Figure 3. Foreground probability enhances depth contrast saliency map (from top to bottom are the
all-focus image, depth image, depth contrast saliency map, and enhancement result).

3.3. Depth-Induced Refinement

In order to avoid the influence of a poor-quality depth image, the depth confidence [38]
is introduced to calculate the high-quality depth compactness and refine the foreground.
The improved depth compactness Sdc(i) is defined as:

Sdc(i) = 1− N(
∑N

j=1 nj · ac
ij · ad

ij ·
∥∥bj − p0

∥∥ · exp(− λd ·di
σ2 )

∑N
j=1 nj · ac

ij · ad
ij

) (13)

Observing the depth map contained in existing light field datasets, we find that
the quality of the depth map correlates with the detection of high-quality salient objects.
Considering the quality of depth maps of different datasets, we adopt the average depth
confidence value as a benchmark to extract depth information. When the quality of the
depth map is reliable (i.e., λd ≥ mean), the salient object has an obvious depth contrast
with the background, and the depth compactness can refine the saliency map. When the
quality of the depth map is poor (i.e., λd < mean), we utilize the global compactness to
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strengthen the salient features. For refinement, the saliency map combined with the depth
feature is defined as:

SDF(i) =

{
0.5 · SCS(i) + 0.5 · N(Sdc(i) · Sg(i) + Sdc(i)), λd ≥ mean
0.5 · SCS(i) + 0.5 · N(Sdc(i) · SCS(i) + Sdc(i)), λd < mean

(14)

where the local geodesic distance saliency Sg(i) [23] is introduced to accumulate edge
weights along the shortest path from a superpixel to a background node, mean is the
average depth confidence of the depth image, and the specific value is placed in the
experiment section.

3.4. Color and Depth-Induced Optimization

We observe that the edges of the generated saliency maps are not clear, the salient
objects are incomplete, and the background still has subtle disturbances. Considering
the consistency of color smoothing and depth space, the proposed algorithm adds depth
information on the basis of the existing optimization model, and the improved optimization
model can obtain salient detection results with clearer edges and improved quality.

To obtain a meticulous saliency map, we improve upon a model called the color and
depth-induced cellular automata (CDCA) to optimize saliency maps. The CDCA model
is mainly based on two considerations: (1) Depth information helps highlight foreground
objects. We integrate the color and depth cues to define cell neighbors can improve the
optimization accuracy. (2) To avoid the influence of poor-quality depth maps, superpixels
on the image boundaries are considered background seeds. When the quality of the
depth map is reliable, the CDCA model can effectively optimize the saliency map, and its
synchronous update rule can greatly improve the detection of incomplete prior saliency
maps in challenging scenes. Therefore, we construct the impact factor matrix f cd

ij as follows:

f cd
ij =

{
exp(−(||ci − cj||2 + |di − dj|)/σ2), jεNB(i)
0, i = j or otherwise

(15)

where σ2 is a parameter controlling the strength of similarity, and set σ2= 0.1. NB(i) is the
set of the neighbors of cell i. To normalize the influence factor matrix, we generate the
degree matrix D = diag{d1, d2, . . . , dN2}, di = ∑j f cd

ij . Then, the normalized influence factor
matrix is:

F∗ = D−1 · F (16)

In order to balance the importance of the cell’s current state and the cell’s neighbors’
state, a coherence matrix C = diag{c1, c2, . . . , cN} is constructed to promote the evolution
of the cell. Then, the consistency calculation of each cell to its current state is:

ci =
1

max( fij)
(17)

In order to control ci in the range of [b, a + b], the constants a and b are set to 0.6 and
0.2, respectively. Then, the coherence matrix is C∗ = diag

{
c∗1 , c∗2 , . . . , c∗N

}
as:

c∗i = a ·
ci −min(cj)

max(ci)−max(cj)
+ b (18)

Here, the synchronous update rule is defined as:

St+1 = C∗ · St + (I − C∗) · F∗ · S∗ (19)

where St is the refined saliency map when t= 0, and the ultimate saliency map after N1
time steps is denoted as St+1.
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3.5. Output Model Using MAE

To reduce the redundant information brought by saliency map fusion, the output
result mainly considers the following aspects: (1) When the quality of the depth image is
poor, the noise introduced by the low-quality depth map should be avoided. (2) When the
quality of the depth image is reliable, salient objects can be identified by depth contrast
cues. (3) When the focal stack and the depth image are both reliable, we filter to obtain the
excellent saliency results. Figure 4 shows the visual process of the proposed method.

We design a simple screening filter, judging the mean absolute error (MAE) value, to
obtain the optimal prediction result. The higher the saliency map accuracy is, the smaller
the value of the MAE is. The final saliency detection result is denoted as:

SLF =

{
SDF, MAESDF ≤ MAESFF

SFF, MAESDF > MAESFF

(20)

(a) GT (b) 𝑆𝐶𝑆 (c) 𝑆𝑓𝑔 (d) 𝑆𝑏𝑔

(g) 𝑆𝐷𝐹 (h) 𝑆𝐹𝐹 (i) 𝑆𝐹𝐹
∗ (j) 𝑆𝐷𝐹

∗(f) 𝑆𝑑𝑐

(e) 𝑆𝑔

Figure 4. The visual process of the proposed method.

4. Experiment and Verification
4.1. Dataset and Parameter Setup

In this paper, we select the existing public light field datasets, LFSD [8], HFUT [12],
and DUT-LF [15] to verify the effectiveness and robustness of the proposed method. The
LFSD dataset captures 60 indoor and 40 outdoor scenes, most of which have a single salient
object and reliable depth image quality. The HFUT dataset contains 255 pictures, which not
only contains a large number of challenging scenes, such as small objects, multiple targets,
or image blur, but also the depth images are poor quality. The DUTLF-FS dataset consists of
1000 training images and 462 test images. The salient object has the characteristics of small
size, low contrast with the background, and multiple salient objects without connection. At
the same time, some images are affected by light intensity. In the experiments, we use test
images of the DUT-LF dataset for verification and comparison, and the experiments run on
Matlab 2018b.

We set the number of superpixels to 200 in all experiments. In the CDCA model, the
number of time steps N1=20. In the depth refinement stage, the average depth confidence
of LFSD [8] and DUT-LF [15] is 0.22, and that of HFUT [12] is 0.03.

4.2. Performance Evaluation Measures

To conduct a quantitative performance evaluation, we compute the precision-recall
(PR) curve, F-measure, WF-measure [46], E-measure [47], S-measure [48], and mean abso-
lute error (MAE) to evaluate the state-of-the-art detection models used for comparison.

The PR curve reflects the relationship between precision and recall. By binarizing
the saliency map and the ground-truth map with a threshold, the value of precision and
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recall can be calculated. The F-measure is the result calculated by the weighted sum of the
precision and recall. The higher the F-measure value is, the more effective the model is:

Fβ =
(1 + β2) · Precision · Recall

β2 · Precision + Recall
(21)

where β2 = 0.3.
In [46], considering the correlation between the pixels of the saliency map and the

position of the wrong pixels, a weighting function ω is added in precision and recall to
represent the importance of the pixels and the degree of dependence between different
pixels. The weighted F-measure is defined as follows:

Fω
β =

((1 + β2)Precisionω · Recallω)

(β2 · Precisionω + Recallω)
(22)

The E-measure is used to evaluate the structural similarity between the saliency
detection map and the ground-truth map [47], and its specific formula is:

ES =
1

W · H ∑W
x=1 ∑H

y=1φ(x, y) (23)

where φ(x, y) is the enhanced alignment matrix.
The S-measure is used to obtain the two characteristics of pixel-level matching and

image-level statistics [48], and its specific formula is:

Sλ = λ · So + (1− λ) · Sγ (24)

where So and Sγ represent object-aware and region-aware structural similarity, respectively,
and λ is a balance parameter and is set to 0.5.

The MAE expresses the similarity between the saliency map and the true value map,
which is used to measure the average error between each pixel of the binarized saliency
map and the ground truth. The MAE is expressed as follows:

MAE =
1

W · H ∑W
x=1 ∑H

y=1‖S(x, y)− GT(x, y)‖ (25)

where W and H, respectively, represent the width and height of the image, S(x, y) is the
continuous saliency map, and GT(x, y) is the the binary ground truth.

4.3. Comparison with State-of-the-Art Methods

In this paper, we focus on bottom-up saliency detection models and qualitatively
compare them with the state-of-the-art conventional light field methods (LFS [8], WSC [9],
DILF [10], and RDFD [14]). All comparative saliency maps were provided by the authors
or run on publicly available code. Figure 5 shows the visual comparison of the proposed
method with the others on the LFSD [8], HFUT [12], and DUT-LF [15] datasets, and the
proposed method achieves the highest PR curve. On the HFUT and DUT-LF datasets
shown in Figure 5a,b, the proposed method can improve the detection performance in
challenging scenes by exploring the interaction and complementarity among different light
field features when the quality of the depth map and focal stack is poor. When the quality
of the image is reliable, the proposed method can achieve the superior saliency detection
performance shown in Figure 5c.

Table 1 shows the quantitative performance evaluation of the proposed method and
the others (LFS [8], WSC [9], DILF [10], RDFD [14]). The proposed method achieves the best
score, and the saliency detection results obtained are superior to the latest conventional
methods. It is demonstrated that salient object detection performance in challenging
scenarios can be improved by exploiting the interaction and complementarity among the
salient features of the light field.
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Table 1. Quantitative comparison between the proposed method and the state-of-the-art saliency
detection methods on different datasets (E-measure (Eβ), S-measure (Sα), WF-measure (Fω

β ), F-
measure (Fβ), and MAE(M)) (bold: best).

Method
LFSD [8] HFUT [12] DUT-LF [15]

Eβ Sα Fω
β Fβ M Eβ Sα Fω

β Fβ M Eβ Sα Fω
β Fβ M

LFS [8] 0.749 0.660 0.470 0.725 0.219 0.666 0.565 0.260 0.426 0.222 0.742 0.585 0.309 0.525 0.228
WSC [9] 0.778 0.693 0.637 0.735 0.163 0.679 0.613 0.428 0.485 0.154 0.787 0.656 0.527 0.617 0.151

DILF [10] 0.828 0.790 0.654 0.787 0.149 0.693 0.672 0.430 0.530 0.151 0.813 0.725 0.517 0.663 0.157
RDFD [14] 0.813 0.760 0.647 0.792 0.152 0.691 0.619 0.355 0.518 0.215 0.782 0.658 0.443 0.599 0.192

Ours 0.8470.8470.847 0.8120.8120.812 0.7200.7200.720 0.8400.8400.840 0.1240.1240.124 0.7460.7460.746 0.6870.6870.687 0.4550.4550.455 0.6000.6000.600 0.1480.1480.148 0.8410.8410.841 0.7590.7590.759 0.5570.5570.557 0.7560.7560.756 0.1440.1440.144

To prove that the proposed method is better than other state-of-the-art saliency de-
tection methods, we compare them with related RGB/RGB-D and light field methods, in-
cluding RGB conventional methods (DCLC [28], BSCA [29]), RGB-D methods (CDCP [39],
DCMC [38], D3Net [21], S2MA [22], PDNet [40]), and light field methods (DLSD [15],
MAC [16], DCA [13], NoiseLF [45]). The experiments show that the proposed method
not only outperforms conventional saliency detection methods but also achieves a more
accurate salient object detection at a lower computational cost than deep learning methods,
as shown in Table 2 and Figure 6.

(a) Compare on HFUT dataset (b) Compare on DUT-LF dataset (c) Compare on LFSD dataset

Figure 5. Performance comparison with the proposed method and the state-of-the-art conventional
light field saliency detection methods.

Table 2. Quantitative comparisons between the proposed method and the state-of-the-art deep
learning and traditional methods on the LFSD dataset ((E-measure (Eβ), S-measure (Sα), WF-measure
(Fω

β ), F-measure (Fβ), and MAE(M)). The top three models are highlighted in red, blue, and green,
respectively.

Category Method Eβ Sα Fω
β Fβ M

RGB DCLC [28] 0.765 0.668 0.511 0.728 0.200
BSCA [29] 0.780 0.723 0.549 0.719 0.198
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Table 2. Cont.

Category Method Eβ Sα Fω
β Fβ M

RGB-D CDCP [39] 0.763 0.699 0.595 0.692 0.181
DCMC [38] 0.817 0.722 0.584 0.802 0.172

RGB-DDL
D3Net [21] 0.840 0.808 0.751 0.802 0.107
S2MA [22] 0.851 0.820 0.764 0.816 0.105
PDNet [40] - - - 0.822 0.075

Light FieldDL
DLSD [15] 0.840 0.778 0.703 0.785 0.125
MAC [16] 0.819 0.768 0.681 0.787 0.133

NoiseLF [45] - - - 0.804 0.111

Light Field DCA [13] - - - 0.831 0.133
Ours 0.847 0.812 0.720 0.840 0.124

(a) (b)

Figure 6. Performance comparison of the proposed method with other state-of-the-art saliency
detection methods (RGB/RGB-D/light field) on LFSD dataset (the dotted line is the deep learning
method). (a) Precision–recall curves of different methods. (b) Average precision, recall, F -measure,
and AUC of different methods.

4.4. Ablation Study

In this section, we analyze the effectiveness of using depth and color cues in the CDCA
model and the contributions of different components of the proposed method.

4.4.1. The Effectiveness of the CDCA Model

To prove the effectiveness of the CDCA model in the proposed method, we compare
the results of utilizing the CDCA model and non-optimization, respectively. The exper-
imental results show that the saliency map generated by the CDCA model is closer to
the ground truth with a clearer edge. Table 3 demonstrates that the CDCA model helps
improve the performance of saliency detection. The weighted F-measure considers the
correlation between the pixels of the saliency map, while the saliency map that has not been
optimized by the CDCA model contains more redundant information, which increases the
correlation between pixels.

Figure 7 shows that the depth feature can correct the saliency map when there are com-
plex colors in the scenes (rows 1 and 2). When the depth image cannot highlight the salient
objects (rows 3 and 4), the color contrast cue can be complemented with the depth, resulting
in a clearer salient result. Through quantitative and qualitative analyses, the CDCA model
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can improve the accuracy of saliency detection by utilizing the complementarity of color
and depth.

Table 3. The effectiveness of the CDCA model in the proposed method on the LFSD dataset (Eβ),
S-measure (Sα), WF-measure (Fω

β ), F-measure (Fβ) ,and MAE(M)) (bold: best).

Method Eβ Sα Fω
β Fβ M

Compactness 0.801 0.700 0.577 0.743 0.178
w/o CDCA 0.844 0.797 0.7210.7210.721 0.831 0.125

+ CDCA 0.8470.8470.847 0.8120.8120.812 0.720 0.8400.8400.840 0.1240.1240.124

All-focus Image Depth Image GT w/o CDCA CDCA

Figure 7. The comparison of the saliency maps after optimization by the proposed CDCA model and
without the CDCA model on the LFSD dataset.

To verify the superiority of the CDCA model and explain the difference between the
proposed CDCA model and the SCA [29] model, we compare the corresponding saliency
map (generated by LFS [8], DILF [10], WSC [9], and RDFD [14]) optimized by the CDCA
model and the SCA model on the LFSD [8] dataset. The suffix with CDCA in Table 4
denotes the saliency map optimized by the CDCA model. As shown in Table 4, the LFS
method has the most obvious effect after optimization; the F-measure increased by 10.6%,
and the MAE decreased by 29.68%. The CDCA model, which adds color and depth cues to
increase spatial consistency, optimizes the saliency maps with a higher precision. Therefore,
the CDCA model is suitable for light field images and has a strong generalization.
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Table 4. Performance comparison between the proposed method and the light field saliency detection
methods after the CDCA optimization (F-measure (Fβ) (bold: best).

Method Ours LFS LFS-CDCA DILF DILF-CDCA WSC WSC-CDCA RDFD RDFD-CDCA

Fβ 0.8400.8400.840 0.725 0.802 0.787 0.814 0.735 0.800 0.792 0.820

MAE 0.1240.1240.124 0.219 0.154 0.149 0.149 0.163 0.154 0.152 0.147

Figure 8 shows the performance comparison of the existing light field saliency de-
tection methods after optimization of the SCA [29] and CDCA models on the LFSD [8]
dataset. The PR curve shows that the CDCA model achieves a higher PR curve compared
to the SCA model. Figure 9 shows the visual comparison of the optimized saliency map
between the CDCA and SCA models on the LFSD [8] dataset. It is observed that when
the background color is similar to the salient object, the CDCA model can optimize the
more accurate salient detection results because of the depth feature. In the case of a reliable
depth image, the CDCA model can obtain more accurate salient edges. It is undeniable
that the CDCA model is susceptible to the impact of poor-quality depth images. However,
combining color and depth information compensates for the negative impact of the depth
image quality to a certain extent.

(a) (b)

(c) (d)

Figure 8. The comparison of the PR curves after optimization by the proposed CDCA model
and the SCA model on the LFSD dataset. (a) LFS method. (b) WSC method. (c) DILF method.
(d) RDFD method.
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Figure 9. The visual comparison of the saliency maps after optimization by the proposed CDCA
model and the SCA model on the LFSD dataset.

4.4.2. The Effectiveness of the Focal Stack and Depth

To verify the effectiveness of interaction and complementarity between different light
field cues, we evaluate a variant of the proposed method by sequentially joining the focal
stack and the depth map on the LFSD [8] dataset, as shown in Table 5. The focal stack and
depth image have improved all indicators, and it is also proved that the CDCA model can
obtain higher-precision saliency detection results.

Table 5. Performance comparison of each component in the whole algorithm where FocalStack+
represents the contribution of salient features in the focal stack and Depth+ represents the contribution
of depth cue to the model. ((E-measure (Eβ), S-measure (Sα), WF-measure (Fω

β ), F-measure (Fβ), and
MAE(M)) (bold: best).

Settings Eβ Sα Fω
β Fβ M

Compactness 0.801 0.700 0.577 0.743 0.178
FocalStack+ 0.829 0.764 0.678 0.807 0.142

Depth+ 0.791 0.746 0.624 0.747 0.162
FocalStack *+ 0.828 0.791 0.697 0.811 0.134

Depth *+ 0.834 0.794 0.674 0.828 0.141
MAE Filter 0.8470.8470.847 0.8120.8120.812 0.7200.7200.720 0.8400.8400.840 0.1240.1240.124

* Optimized by CDCA model.

Figure 10 shows the visual comparison between the proposed method and others
on the LFSD [8] dataset. The foreground and background in the all-focus images are
relatively similar (rows 2, 3, 6, 8), and the salient objects can be effectively identified with
the supplement of depth information. The depth images in the fourth and fifth rows can
easily mislead detection, while focus and color cues can play a corrective role.

As illustrated in Figure 11, we also exhibit some failures brought by the proposed
method. The performance of the method is partially dependent on the accuracy of the
depth map and the focus region of the focal stack. If the depth map is seriously blurred
or amorphous, it yields incorrect results. If the foreground and background are similar in
color and disorderly, it is necessary to rely on depth compactness and focus to extract and
detect salient objects. Therefore, obtaining an accurate depth image as well as a perfect
focal region of the focal stack remains a challenging problem.
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All-focus

Image

Depth

Image GT Ours D3Net DLSD MAC MoLF S2MA RDFD DILF WSC LFS

Figure 10. The visual comparison of our saliency maps with other state-of-the-art methods on
LFSD dataset.

All-focus Image Depth Image GT 𝑆𝐶𝑆 𝑆𝐷𝐹 𝑆𝐹𝐹 Ours

Figure 11. Some failure results by the proposed method.

5. Conclusions

In this paper, we propose a light field saliency detection method based on focus
and depth, which explores the interaction and complementarity among focus, color, and
depth cues of the light field to improve the saliency detection performance. Firstly, coarse
salient regions are localized by combining the compactness of color and depth. Then,
the interplay of depth and focus information is used to highlight the foreground and
suppress the background. At the same time, the local depth cue is used to enhance the
global features to refine the salient map. Secondly, inspired by spatial consistency, we utilize
the complementarity of color and depth information to improve previous optimization
models, resulting in remarkable results with higher accuracy. Finally, to avoid the influence
of image quality, we design an output model with the MAE as the screening index.

The proposed method can obtain high-quality saliency detection results with lower
computational cost by deeply exploring different cues of the light field. According to



Entropy 2023, 25, 1336 17 of 19

the comprehensive comparison of public datasets and ablation experiments, it is proved
that the proposed method is far superior to the conventional light field saliency detection
methods and even better than some state-of-the-art methods based on deep learning.
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