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Abstract: The Hong Kong and Macao Special Administrative Regions, situated within China’s
Guangdong–Hong Kong–Macao Greater Bay Area, significantly influence and are impacted by their
air quality conditions. Rapid urbanization, high population density, and air pollution from diverse
factors present challenges, making the health of the atmospheric environment in these regions a
research focal point. This study offers three key contributions: (1) It applied an interpretable dynamic
Bayesian network (DBN) to construct a dynamic causal model of air quality in Hong Kong and Macao,
amidst complex, unstable, multi-dimensional, and uncertain factors over time. (2) It investigated the
dynamic interaction between meteorology and air quality sub-networks, and both qualitatively and
quantitatively identified, evaluated, and understood the causal relationships between air pollutants
and their determinants. (3) It facilitated an online collaborative forecast of air pollutant concentrations,
enabling pollution warnings. The findings proposed that a DBN-based dynamic causal model can
effectively explain and manage complex atmospheric environmental systems in Hong Kong and
Macao. This method offers crucial insights for decision-making and the management of atmospheric
environments not only in these regions but also for neighboring cities and regions with similar
geographical contexts.

Keywords: explainable artificial intelligence; machine learning; dynamic Bayesian network; causality;
collaborative forecast

1. Introduction

The Guangdong–Hong Kong–Macao Greater Bay Area, one of China’s most economi-
cally robust and dynamic regions, is experiencing rapid urbanization [1]. Nonetheless, this
swift progress is concurrently leading to a deterioration in air quality. The atmospheric
environmental conditions in this region significantly influence the air quality of the Hong
Kong and Macao Special Administrative Regions, demonstrating high sensitivity [2,3].
Situated in the subtropical monsoon climate zone, Hong Kong spans approximately 1114
square kilometers and is home to around 7.33 million people. In contrast, Macao, with
a population of nearly 670,000, covers a mere 33 square kilometers. Hong Kong, in par-
ticular, is grappling with escalating levels of nitrogen dioxide (NO2) pollution, which
is noted for its deleterious effects on the human respiratory system. This pollutant can
undermine the body’s resistance to diseases, exacerbating the condition of individuals
with chronic respiratory issues. In terms of NO2, the Causeway Bay Roadside Monitoring
Station has recorded both the highest 1 h average (301 µg/m3) and the highest annual
average (71 µg/m3), which serve as key Air Quality Indicators. Meanwhile, Macao faces a
significant challenge with ozone (O3) pollution. O3 can induce chronic or acute impacts
on human lung function, causing respiratory issues, diminished lung function, weakened
immune system capabilities, and cardiovascular problems. Notably, the Taipa High Density
Residential Area Station has recorded the most substantial annual average increase in O3
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concentration, followed by the Taipa General Station. The air quality in both Hong Kong
and Macao is a function of a myriad of complex factors.

The air quality of Hong Kong and Macao is influenced by several key parameters.
Firstly, their coastal locations along the South China Sea, situated at the confluence of
the tropics and subtropics, render them susceptible to climatic conditions stemming from
both the Pacific Ocean and mainland China [4]. Secondly, their unique topographical
features, characterized by abundant hills, valleys, and coastlines in Hong Kong and pri-
marily plains and hills with low-lying urban areas in Macao, impact the wind flow and
distribution of air pollutants. Moreover, air quality is also affected by variations in air
pressure, temperature, and humidity [5,6]. Elevated air pressure leads to air stability,
which can trap pollutants, while lower air pressure can cause air instability, facilitating
the dispersal of pollutants. Furthermore, high temperatures and humidity can amplify
surface-level photochemical reactions, promoting the formation of O3 [7]. Simultaneously,
the copious sunshine in both regions, paired with potent sunlight, intensifies photochemical
reactions, thereby affecting air quality. Lastly, wind patterns significantly influence air
quality. Hong Kong and Macao encounter the monsoon influence persistently throughout
the year. This meteorological phenomenon consists of two distinct phases: the summer
monsoon (southwest monsoon) and the winter monsoon (northern monsoon). From April
to September annually, the moist summer monsoon originating from the ocean leads to
recurrent rainfall. Consequently, this phenomenon exhibits the potential to enhance air
quality. Conversely, from October to March annually, the arid winter monsoon originating
from the mainland transports transboundary air pollutants originating from the Pearl River
Delta Industrial Zone. Urbanization, high population density, industrial activities, energy
consumption, traffic congestion, and dense construction significantly strain the air quality
in Hong Kong and Macao. The air quality in Hong Kong and Macao is subject to a range
of influencing processes, encompassing natural phenomena, climatic and meteorological
dynamics, atmospheric diffusion mechanisms, and chemical reactions. Therefore, decision-
making and management concerning the atmospheric environment in these regions carry
immense significance for air quality improvement, atmospheric environmental protection,
and sustainable development. However, this atmospheric environmental decision-making
is inherently complex and multifaceted, necessitating an integrated approach that considers
a broad spectrum of parameters and processes impacting air quality.

Liu et al. (2018) employed the ARIMAX research approach, amalgamating the au-
toregressive integrated moving average (ARIMA) technique with numerical prediction,
to formulate a predictive model for Hong Kong’s air quality [8]. They proposed a hybrid
predictive strategy that facilitated dynamic real-time prediction. Nevertheless, ARIMAX
rests on assumptions of linear trends and seasonality, and it inadequately articulates the
causal interplay among variables, leading to frailty in model interpretation. Lei et al. (2020)
harnessed the methodologies of multiple linear regression (MLR) and classification regres-
sion tree (CART) to establish an air quality prediction model for Macao [9]. They validated
this model concerning instances of elevated and diminished pollution occurrences in 2019,
encompassing the period coinciding with the outbreak of novel coronavirus pneumonia.
Mendes et al. (2022) employed multiple regression (MR) and CART techniques to fabricate
a predictive framework for air quality in Portugal and Macao [10]. This framework success-
fully anticipated pollution events, thus serving as a robust mechanism for safeguarding
public health. However, MLR and MR assume linear associations within data, rendering
them incapable of capturing intricate nonlinear relationships. Furthermore, these methods
are susceptible to the influences of outliers and multicollinearity, consequently impinging
on their predictive accuracy. Although CART can execute both classification and regres-
sion tasks, it lacks the capacity to offer probabilistic explanations, thereby constricting
its range of applications. Moreover, the inflexible structure of decision trees within the
CART model presents challenges in accommodating evolving information. Lei et al. (2023)
adopted a diverse spectrum of research methodologies, encompassing artificial neural
network (ANN), random forest (RF), extreme gradient boosting (XGBoost), support vector
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machine (SVM), and MLR, to fashion a predictive model for Macao’s air quality [11]. Their
model successfully anticipated air pollutant concentrations over 24 h and 48 h horizons.
However, it should be noted that ANN and XGBoost are susceptible to overfitting when
dealing with intricate models, thereby compromising their generalizability. Furthermore,
the computationally demanding nature of RF poses a challenge. SVM, while proficient in
prediction, lacks the ability to furnish probabilistic explanations, thus circumscribing its
scope of application and its intuitive interpretation. This study introduced the interpretable
dynamic Bayesian network (DBN) research approach to forge a dynamic causal model for
air quality in both Hong Kong and Macao.

The DBN constitutes an extension of the Bayesian network (BN) and is developed on
the foundation of the Bayesian theorem, integrating principles from probability theory and
graph theory, known as the probability graph model [12,13]. The DBN proves adept at
amalgamating diverse time series data types originating from heterogeneous data sources.
It excels in both modeling and reasoning about time-varying stochastic processes [14–16].
In the realm of atmospheric environment research, DBN stands as the principal modeling
framework and an effective approach for addressing intricate atmospheric environmental
decision-making and management quandaries. In the face of comprehensive modeling
challenges presented by atmospheric environment systems, which encompass time series,
multi-dimensionality, instability, and uncertainty, DBN circumvents the need for presump-
tions regarding data distribution and stationarity. It materializes expeditiously through
an intuitively structured graphical framework, enabling the exploration of potential in-
terplays among distinct variables. The causal relationships between nodes are estimated
through conditional probabilities. DBN amalgamates numerous advantages. Primarily, it
adeptly captures intricate nonlinear relationships and interaction effects, thus transcending
the limitations inherent in linear models. Secondly, DBN adeptly manages uncertainty,
demonstrating its prowess in handling outliers and noisy data. Consequently, it effectively
mitigates the impact of multicollinearity. Moreover, DBN enriches model interpretability
by offering a probabilistic framework that distinctly delineates causal relationships be-
tween variables. Simultaneously, DBN accommodates modular modeling with enhanced
flexibility, thereby manifesting robust generalization capabilities. Lastly, DBN integrates
prior knowledge, dynamically selects and adjusts parameters, and achieves computational
efficiency. Therefore, DBN emerges as a pivotal instrument for crafting a dynamic causal
model delineating air quality within Hong Kong and Macao. Its utility lies in its capacity to
elucidate and manage the intricate atmospheric environment system, thereby supporting
decision-making and management endeavors pertaining to the atmospheric environment
in both regions.

This study offers three key contributions: (1) It applied an interpretable DBN to
construct a dynamic causal model of air quality in Hong Kong and Macao, amidst com-
plex, unstable, multi-dimensional, and uncertain factors over time. (2) It investigated the
dynamic interaction between meteorology and air quality sub-networks, and both quali-
tatively and quantitatively identified, evaluated, and understood the causal relationships
between air pollutants and their determinants. (3) It facilitated an online collaborative
forecast of air pollutant concentrations, enabling pollution warnings. The insights gained
from this study may serve as a valuable reference for neighboring cities and regions sharing
similar geographical contexts with Hong Kong and Macao. The paper is structured as
follows: Section 2 introduces the study area and data sources, DBN, DBN modeling process,
DBN evaluation and validation; Section 3 discusses the results of DBN modeling and
prediction; Section 4 concludes this work.

2. Materials and Methods
2.1. Study Area and Data Sources

Situated on the southeastern coast of China, the Hong Kong Special Administrative
Region lies on the eastern bank of the Pearl River Estuary, across the sea to the west from
its counterpart, Macao. Encompassing an area of approximately 1114 square kilometers,
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Hong Kong comprises Hong Kong Island, the Kowloon Peninsula, the New Territories,
and an additional 262 islands. Home to a population of about 7.33 million, it boasts a
per capita GDP of USD49,800. Conversely, the Macao Special Administrative Region also
resides on China’s southeastern coast, positioned on the western bank of the Pearl River
Estuary, with the sea separating it from Hong Kong to the east. Macao, with an area of
about 33 square kilometers, comprises the Macao Peninsula, Taipa Island, Coloane Island,
and Cotai City. It sustains a population of approximately 670,000 and yields a per capita
GDP of USD43,900. Both Hong Kong and Macao are nestled within the subtropical region
and experience a marine monsoon climate characterized by high heat, ample water vapor,
elevated temperatures, and frequent rain. The annual average temperature in Hong Kong
is 23.9 ◦C, accompanied by an annual precipitation of 2205.4 mm. Macao, in contrast,
maintains an average annual temperature of 22.7 ◦C and sees an annual precipitation of
2030.8 mm. The typhoon season in both Hong Kong and Macao typically extends from
June to October.

Hong Kong’s air quality monitoring network, consisting of 18 stations—15 general
and 3 roadside—tracks the concentrations of major air pollutants. The primary source of
coarse particulate matter (PM10) and fine particulate matter (PM2.5) emissions in Hong
Kong originates from combustion processes. They encompass a range of sources, namely
traffic and marine emissions, industrial and power generation activities, culinary processes,
as well as biomass and open burning. PM10, associated with chronic or acute effects on lung
function, can instigate respiratory problems. However, due to its diminutive size, PM2.5,
capable of penetrating deep into the lungs, poses a more severe impact on human health.
The highest annual average concentration of PM10 was registered at the Causeway Bay
Roadside Monitoring Station, whereas the highest 24 h average for PM2.5 was recorded at
the Yuen Long General Monitoring Station, and its highest annual average was noted at the
Causeway Bay roadside station. Additionally, vehicular exhaust constitutes the principal
source of carbon monoxide (CO) emissions in Hong Kong. CO, upon entering human
blood vessels, may lessen the oxygen supply to various organs and tissues, resulting in
symptoms akin to poisoning such as dyspnea, chest pain, headaches, and coordination
loss—posing a heightened risk to individuals with heart diseases. The highest 8 h average
of CO was detected at the Central Roadside Monitoring Station. Similarly, combustion
processes are the leading sources of NO2 emissions in the city. NO2 is known to diminish
the human respiratory system’s resilience to diseases and exacerbate the condition of
those with chronic respiratory illnesses. The Causeway Bay Roadside Monitoring Station
reported the highest 1 h average (301 µg/m3) and annual average (71 µg/m3) for NO2.
Notably, all three roadside monitoring stations failed to meet the 1 h and annual air quality
targets for NO2.

Macao’s air quality monitoring network, encompassing 6 stations, assesses the con-
centrations of primary air pollutants. The construction industry and land transportation
contribute significantly to the emission of PM10 and PM2.5 in Macao, accounting for approx-
imately 40% and 25% of these particulates, respectively. The annual average concentration
of PM10 at the Taipa High Density Residential Area Station is measured at 52.3 (µg/m3),
surpassing the established standard of 50 (µg/m3). Meanwhile, the annual average con-
centration of PM2.5 at the Taipa General Station is measured at 14.9 (µg/m3), reflecting a
year-on-year increase of 9.6%. Land transportation predominates as the principal source
of CO emissions in Macao. Notably, O3 pollution remains significant in Macao, broadly
impacting air quality within the Guangdong–Hong Kong–Macao Greater Bay Area. O3 is
generated via a photochemical reaction involving oxygen (O2), nitrogen oxides (NOx), and
volatile organic compounds (VOC) under sunlight. Controlling VOC emissions emerges as
a critical approach to managing O3 and photochemical pollution. The primary emission
sources of non-methane volatile organic compounds (NMVOC) in Macao include organic
solvents, land transportation, fuel supply, marine transportation, and sewage treatment. O3
can exert chronic or acute effects on human lung function, leading to breathing problems,
diminished lung functionality, reduced immune system function, and cardiovascular issues.
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The annual average concentration of O3 at the Taipa High Density Residential Area Station
is measured at 42.7 (µg/m3), reflecting a year-on-year increase of 25.2%. Meanwhile, the
annual average concentration at the Taipa General Station is measured at 63.9 (µg/m3),
reflecting a year-on-year increase of 5.8%.

The air quality in Hong Kong and Macao is influenced by a multitude of complex
factors. Firstly, their geographical positioning at the junction of the tropics and subtropics,
bordering the Asian continent to the north and the tropical ocean to the south, exposes
them to both mid- and high-latitude atmospheric circulation from the mainland as well
as low-latitude circulation from the ocean. This distinct geographical location results
in conspicuous winter–summer circulation transitions, characterizing these regions as
typical monsoon climate zones. Secondly, topographical features such as hills, valleys, and
coastlines in Hong Kong, and plains, hills, and the predominantly low and flat urban areas
in Macao, affect wind flow patterns and the distribution of air pollutants. For instance,
valleys can generate a “tailpipe” effect, concentrating vehicle emissions and amplifying
air pollution in specific areas. Furthermore, fluctuations in air pressure, temperature,
and humidity also significantly impact air quality. High air pressure stabilizes the air,
allowing pollutants to linger, whereas low air pressure induces instability, enabling the
dispersion of pollutants. Concurrently, high temperature and humidity can augment
surface photochemical reactions, fostering the formation of O3. Hong Kong and Macao,
regions abundant in sunshine, experience intensified photochemical reactions due to strong
sunlight, further affecting air quality. Wind patterns also affect air quality, with the winter
monsoon importing transboundary air pollutants from the Pearl River Delta industrial
zone, while the summer monsoon, bringing frequent rainfall, aids in enhancing air quality.
Lastly, factors like urbanization, population density, industrial and energy consumption,
traffic congestion, and extensive construction activities exert substantial pressure on the air
quality of both Hong Kong and Macao. The Hong Kong air quality monitoring network is
shown in Figure 1. The Macao air quality monitoring network is shown in Figure 2.

Entropy 2023, 25, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 1. Hong Kong air quality monitoring network. 

 
Figure 2. Macao air quality monitoring network. 

The present study utilized a composite dataset comprising meteorological 
parameters, air quality indices, and ancillary data, gathered from Hong Kong and Macao 
between 2016 and 2022. Meteorological measures from both regions encompass mean sea 
level pressure (MSLP)(hPa), highest, mean, and lowest temperatures (HT, MT, LT)(°C), 
dew point temperature (Td)(°C), relative humidity (RH)(%), average wind speed 
(AWS)(km/h), and precipitation (PR)(mm). In terms of air quality, Hong Kong’s dataset 
includes average concentrations of PM10, PM2.5, CO, and NO2 (µg/m3), whereas Macao’s 
dataset features average concentrations of PM10, PM2.5, CO, and O3 (µg/m3). Other data 
from both regions incorporate the sunshine duration (SSI)(h). In sum, this collective data 

Figure 1. Hong Kong air quality monitoring network.



Entropy 2023, 25, 1337 6 of 15

Entropy 2023, 25, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 1. Hong Kong air quality monitoring network. 

 
Figure 2. Macao air quality monitoring network. 

The present study utilized a composite dataset comprising meteorological 
parameters, air quality indices, and ancillary data, gathered from Hong Kong and Macao 
between 2016 and 2022. Meteorological measures from both regions encompass mean sea 
level pressure (MSLP)(hPa), highest, mean, and lowest temperatures (HT, MT, LT)(°C), 
dew point temperature (Td)(°C), relative humidity (RH)(%), average wind speed 
(AWS)(km/h), and precipitation (PR)(mm). In terms of air quality, Hong Kong’s dataset 
includes average concentrations of PM10, PM2.5, CO, and NO2 (µg/m3), whereas Macao’s 
dataset features average concentrations of PM10, PM2.5, CO, and O3 (µg/m3). Other data 
from both regions incorporate the sunshine duration (SSI)(h). In sum, this collective data 

Figure 2. Macao air quality monitoring network.

The present study utilized a composite dataset comprising meteorological parameters,
air quality indices, and ancillary data, gathered from Hong Kong and Macao between
2016 and 2022. Meteorological measures from both regions encompass mean sea level
pressure (MSLP)(hPa), highest, mean, and lowest temperatures (HT, MT, LT)(◦C), dew
point temperature (Td)(◦C), relative humidity (RH)(%), average wind speed (AWS)(km/h),
and precipitation (PR)(mm). In terms of air quality, Hong Kong’s dataset includes average
concentrations of PM10, PM2.5, CO, and NO2 (µg/m3), whereas Macao’s dataset features
average concentrations of PM10, PM2.5, CO, and O3 (µg/m3). Other data from both regions
incorporate the sunshine duration (SSI)(h). In sum, this collective data pool provided a com-
prehensive resource for a granular understanding of the regional atmospheric conditions
over the period of interest.

The data for Hong Kong were sourced from the Hong Kong Observatory and the
Hong Kong Environmental Protection Department. The latter included readings from
the Central Roadside Monitoring Station, the Yuen Long General Monitoring Station, and
the Causeway Bay Roadside Monitoring Station. Correspondingly, the Macao dataset
was obtained from the Macao Meteorological and Geophysical Bureau and the Macao
Environmental Protection Bureau, which involved measurements from the Macao High
Density Residential Area Station, the Taipa General Station, and the Coloane General
Station. The data type and source and variable selection and description is shown in
Table 1.

2.2. Dynamic Bayesian Network

BN is formulated on the foundations of the Bayesian theorem, intricately integrating
probability theory and the graphical model theory of probability [17,18]. DBN, a deriva-
tive of BN, is a probabilistic graphical model specifically tailored to process time series
data [19]. The term ‘dynamic’ in this context refers to a temporal sequence or process where
interdependencies among variables may extend across varying time steps, providing a
powerful tool to model and make sense of random processes that unfold over time. The
fundamental architecture of DBN comprises two structures: the internal structure and
the transfer structure [20]. The internal structure presupposes the existence of a BN at
every ‘time slice’, succinctly describing the probabilistic interrelationships among all the
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random variables present at that point in time. On the other hand, the transfer structure
encapsulates the modelling of transitions from one time slice to the subsequent one, eluci-
dating the temporal evolution of variables. DBN inherently possess a Markovian property,
implying that the current state, given a preceding state, is effectively independent of all past
states [21]. The learning methodology within DBN is bifurcated into structure learning and
parameter learning. While structural learning aims at establishing causal linkages among
variables, parametric learning is responsible for discerning the probabilistic relationships
among them. Given their capabilities, DBNs serve as vital theoretical apparatuses for the
representation and reasoning of uncertain knowledge.

Table 1. Data type and source, variable selection and description.

Data Type Source Variables Description

Meteorological data for
Hong Kong and Macao

Hong Kong Observatory
Macao Meteorological and Geophysical Bureau

MSLP mean sea level pressure (hPa)
HT highest temperature (◦C)
MT mean temperature (◦C)
LT lowest temperature (◦C)
Td dew point temperature (◦C)
RH relative humidity (%)

AWS average wind speed (km/h)
PR precipitation (mm)

Air quality data for
Hong Kong

Hong Kong Environmental
Protection Department

(the Central Roadside Monitoring Station, the
Yuen Long General Monitoring Station, and the
Causeway Bay Roadside Monitoring Station)

PM10 coarse particulate matter (µg/m3)
PM2.5 fine particulate matter (µg/m3)

CO carbon monoxide (mg/m3)
NO2 nitrogen dioxide (µg/m3)

Air quality data for Macao

Macao Environmental Protection Bureau
(the Macao High Density Residential Area
Station, the Taipa General Station, and the

Coloane General Station)

PM10 coarse particulate matter (µg/m3)
PM2.5 fine particulate matter (µg/m3)

CO carbon monoxide (mg/m3)
O3 ozone (µg/m3)

Other data for Hong Kong
and Macao

Hong Kong Observatory
Macao Meteorological and Geophysical Bureau SSI sunshine duration (h)

DBNs offer significant advantages in tackling the timing, multi-dimensionality, insta-
bility, and uncertainty associated with the atmospheric environment system, facilitating
both systematic visualization and quantification [22,23]. Firstly, DBNs provide a compre-
hensive framework to comprehend and elucidate intricate atmospheric environmental
systems in atmospheric modeling. These systems are composed of multiple, interrelated
subsystems, each with its unique spatio-temporal dynamics. DBNs empower us to for-
mulate and test hypotheses addressing these complex interactions, fostering a profound
understanding of atmospheric environmental systems. Secondly, DBNs present an effica-
cious strategy to grapple with the uncertainties inherent in atmospheric environmental
data [24]. Such data are frequently influenced by a myriad of factors, including measure-
ment errors, model inaccuracies, and natural variability. The robustness of the model is
enhanced by DBNs through the incorporation of prior probabilities and the application
of Bayesian inference to accommodate these uncertainties. Lastly, DBNs also underpin
decision-making processes related to the atmospheric environment. They are capable of
predicting and quantifying the potential ramifications of specific decisions. Consequently,
DBNs emerge as indispensable tools for air-quality modeling and analysis. They not only
aid in demystifying the complexity of atmospheric environmental systems but also support
decision-making management in the atmospheric environment.
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2.3. Dynamic Bayesian Network Modeling Process

During the development of DBN models, the role of data preprocessing is paramount.
Regarded as the preliminary phase of data analysis, the purpose of data preprocessing is to
convert raw data into a format apt for subsequent analysis. The primary responsibilities
encompassed by data preprocessing consist of handling missing data and performing
data discretization.

Handling missing data is an essential aspect of data preprocessing. Missing data is a
prevalent issue in real-world data collection, with potential causes ranging from equipment
failure and lack of information to incomplete data acquisition. If such missing data remains
unaddressed, it may induce bias within the data distribution, adversely impacting the
accuracy of model training and prediction. The objective of missing data processing is
to maintain data integrity, thereby offering a more precise and comprehensive basis for
ensuing data analysis and model training. In this study, the K-nearest neighbor (KNN)
interpolation method was selected for processing missing data. KNN is an instance-
based learning approach that leverages data similarities to predict missing values. KNN
interpolation surpasses mean or median interpolation in efficiency as it captures the local
structural information inherent in the data, yielding more accurate predictions.

Data discretization is another pivotal step in data preprocessing. It aims to convert
continuous numerical data into discrete categorical data, thereby simplifying the compu-
tational process of the model and enhancing computational efficiency. DBNs are ideally
suited to process discrete data, operating under the assumption that input data are discrete.
Data discretization can diminish the influence of data noise to a certain degree and is
more adept at capturing nonlinear relationships. For data discretization in this study, the
K-means algorithm was employed, discretizing each variable into three status categories:
low (L), medium (M), and high (H). The K-means algorithm, a commonly used clustering
method, partitions the data into K clusters via an iterative process. This process minimizes
the sum of the distances from each data point to the centroid of its respective cluster. Dur-
ing data discretization, each cluster is treated as a discrete category. The K-means based
discretization method effectively accounts for the data distribution and can automatically
define the range of each category. It is well-suited to handle complex, non-uniformly
distributed data, thereby exhibiting excellent performance.

Structure learning in DBNs forms the nucleus of the DBN modeling process, dictating
the basic architecture of the model. DBN structures are trained to infer causality from
data, typically employing either score-based or constraint-based methodologies. In this
study, we opted for the score-based approach, utilizing the Bayesian Information Criterion
(BIC) scoring method in conjunction with the hill-climbing algorithm for learning the DBN
structure. The fundamental principle of the BIC scoring method involves scoring potential
network structures. This scoring system strikes a balance between the goodness of fit and
the model dimension to avert overfitting, thereby facilitating a faster understanding of the
real network. BIC is represented by

SBIC(G, D) = SLL(G, D)− logN
2
·F, (1)

where SBIC(G, D) is the BIC score of the DBN structure G and data D, SLL is the log
likelihood score, N is the sample size, and F is the complexity penalty item. However,
pinpointing the highest scoring network structure is a computationally challenging task,
as the number of possible network structures escalates exponentially with the count of
variables. The hill-climbing algorithm, a local search algorithm, seeks a state with a
superior score in the vicinity of the current state, subsequently relocating the current state
to this newly found state. This process is repeated until a better state cannot be identified.
Although the hill-climbing algorithm may encounter local optima, it generally delivers
satisfactory results in practical applications.

Parameter learning in DBN represents a critical task within the DBN modeling process.
This study opted for the Bayesian estimation method and the Bayesian Dirichlet Equivalent
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Uniform Prior (BDeu) as the prior distribution to learn the parameters of the DBN. The
Bayesian estimation approach incorporates prior knowledge, and despite its higher compu-
tational complexity, it effectively circumvents the issue of overfitting, thereby bolstering the
stability and robustness of the model. BDeu priors are particularly beneficial for discrete
variables, operating under the assumption that all parameter values are equally probable.
As this prior does not rely on specific data, it proves suitable for scenarios characterized by
limited data or substantial data missingness. The basis of Bayesian estimation method is
Bayesian theorem, and its calculation formula is:

P(θ|X) =
P(X|θ)P(θ)

P(X)
(2)

2.4. Dynamic Bayesian Network Evaluation and Validation

While modeling the dynamic causality of air quality in Hong Kong and Macao, the
complexity is underscored by the characteristics of time series, multi-dimensionality, insta-
bility, and uncertainty. Accordingly, this study employed specific evaluation and validation
techniques for the DBN, including predictive performance and sensitivity analysis.

In evaluating predictive performance, this study employed a multi-faceted and multi-
tiered evaluation strategy to thoroughly assess the model’s performance. Firstly, data from
2016 to 2021 served as the training dataset, while the 2022 data functioned as the testing
dataset, thereby providing a reliable estimate of the model’s generalization capability.
This approach not only allowed for full data utilization, but it also ensured the model’s
predictive performance on unfamiliar data. Secondly, a confusion matrix was used to
elucidate the model’s predictive performance across different classes. The confusion matrix
mirrored the model’s performance concerning true positives, true negatives, false positives,
and false negatives, and was instrumental in evaluating key performance indicators such
as precision, recall, specificity, and F1 scores of the model.

In conducting sensitivity analysis, this study adopted a comprehensive and systematic
approach to quantify and comprehend the effect of changes in input parameters on the
model’s output, and to identify the parameters that exert a decisive influence on model
predictions. Initially, mutual information value analysis was employed to gauge the inter-
dependence between two random variables, thereby quantifying the degree of correlation
between the input and output of a DBN. Subsequently, the results from the mutual infor-
mation value analysis were used to delve into the parameters exhibiting higher sensitivity,
facilitating an understanding of these parameters’ influence mechanisms.

3. Results and Discussion

Considering the unique characteristics of the atmospheric environment in Hong Kong
and Macao, this study incorporated eight meteorological variables specific to both regions,
alongside four air quality variables for each territory, and an additional variable relevant
to both regions. The DBN modeling process was implemented in several stages. Initial
data cleaning was performed using the KNN interpolation technique for managing missing
data, followed by the K-means algorithm for data discretization. Once preprocessed, the
data were employed to construct the DBN structure via the BIC scoring method and the hill-
climbing algorithm. Bayesian estimation and BDeu were adopted as the prior distribution
for the learning of DBN parameters. As a result, two distinct DBNs were established
for Hong Kong and Macao air quality, respectively, each comprising 13 variables. These
DBNs were further divided into two sub-networks: the meteorological and air quality
sub-networks. These sub-networks interact dynamically, reflecting the multifaceted linkage
effects present within the atmospheric environments of Hong Kong and Macao.

In accordance with the unique atmospheric characteristics of Hong Kong and Macao,
this study formulated a DBN model to assess air quality. It incorporated targeted variables
such as PM10, PM2.5, CO, and NO2 for both regions, designating these as research nodes.
In Hong Kong, PM10 concentrations were primarily influenced by MT and LT, while PM2.5
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levels were chiefly determined by MT and Td. CO concentrations were significantly affected
by MT and LT, whereas NO2 levels largely depended on MT and SSI. Conversely, in Macao,
PM10 concentration was predominantly influenced by MT and RH. The concentration of
PM2.5 was largely determined by MT and Td, while CO levels were primarily influenced
by MT and Td. Lastly, O3 concentration was primarily affected by MT and SSI.

The interplay between atmospheric temperature and the generation and diffusion
of airborne particulates and gases such as PM10, PM2.5, CO, NO2, and O3 was notable.
High temperatures can expedite chemical reactions, thereby enhancing the formation of
these substances. Conversely, lower temperatures can inhibit these reactions, subsequently
diminishing the generation of these pollutants. Furthermore, elevated temperatures aug-
ment atmospheric convection, which, in turn, stimulates the diffusion of PM10, PM2.5,
CO, and NO2. On the other hand, a decrease in temperature fosters air stability, thus
inhibiting the diffusion of the aforementioned pollutants. Atmospheric humidity also
significantly influences the creation and metamorphosis of PM10. With higher humidity,
PM10 particles grow in size and their sedimentation rate escalates. Humidity, by mediating
atmospheric chemical reactions, consequently impacts the concentration of PM10. Td, a
measure of air humidity, is a critical factor in the production and transformation of PM2.5
and CO. Should the ambient temperature dip below the dew point, water vapor in the air
condenses on PM2.5 surfaces, enlarging the particles and increasing their sedimentation
rate. A surge in humidity stabilizes the air and constrains the dispersion of CO, and by
governing atmospheric chemical reactions, it influences the concentration of PM2.5 and
CO. Additionally, the duration of sunlight affects the concentration of NO2 and O3, as it
influences photochemical reactions in the atmosphere. Extended sunshine can deplete NO2
concentration while boosting O3 levels. In contrast, a reduction in daylight hours could
result in an increase in NO2 levels and a concurrent decrease in O3 concentration. The
dynamic causal model of air quality in Hong Kong is shown in Figure 3. The dynamic
causal model of air quality in Macao is shown in Figure 4. Figures 3 and 4 illustrate the
internal structure of a DBN, represented in terms of time slices.
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The evaluation and validation of a DBN encompass both predictive performance and
sensitivity analysis. During the assessment of predictive performance, the data from 2016
to 2021 were initially used as the training dataset, while the data from 2022 served as the
testing dataset. This strategy ensured a dependable estimation of the model’s ability to
generalize. Following this, a confusion matrix was employed to shed light on the model’s
predictive performance across diverse classes. For sensitivity analysis, mutual information
value analysis was first applied to measure the interdependence between pairs of variables,
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thereby quantifying their degree of association. The results of this mutual information
value analysis were then used to delve into a detailed examination of the parameters
demonstrating high sensitivity, with the objective of gaining a clear comprehension of these
parameters’ influence mechanisms.
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Considering the unique atmospheric environmental traits of Hong Kong and Macao,
this study established a DBN model for air quality, selecting target variables PM10, PM2.5,
CO, NO2, and O3 as the research nodes. Confusion matrices were constructed, classification
reports were generated, and sensitivity analyses were conducted. The dynamic causal
model performed well overall for assessing air quality in Hong Kong and Macao. Specifi-
cally, the Hong Kong Central Roadside Monitoring Station and Causeway Bay Roadside
Monitoring Station predicted the accuracy of PM2.5 as 0.88, while the Macao Taipa General
Station and Coloane General Station predicted the accuracy of PM10 as 0.86, respectively
showcasing the best results. Notably, the weighted average of individual target variables
exceeded the macro average, suggesting that the model performed more efficiently in
categories with substantial sample sizes. In the Hong Kong air quality dynamic causal
model, the variables exhibiting the highest correlation with CO were MT and LT. Sensitivity
analysis graphs presented horizontal broken lines, speculated to arise due to non-linearity
or randomness within the DBN, suggesting a complex relationship between CO and MT
and between CO and LT. Conversely, in the Macao air quality dynamic causal model, the
variables demonstrating the highest correlation with CO were LT and Td. The sensitivity
analysis diagram of CO and LT generally exhibited a linear shape, indicating a relatively
straightforward relationship between CO and LT. The confusion matrix of CO predicted by
the dynamic causal model of air quality in Hong Kong and Macao is shown in Figure 5.
The sensitivity analysis of CO predicted by the dynamic causal model of air quality in
Hong Kong and Macao is shown in Figure 6. The classification report of the dynamic causal
model of air quality in Hong Kong is shown in Table 2. The classification report of the
dynamic causal model of air quality in Macao is shown in Table 3.
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Table 2. The classification report of the dynamic causal model of air quality in Hong Kong.

Hongkong Target BIAS Accuracy Macro Avg Weighted Avg
Precision Recall F1-Score Precision Recall F1-Score

the Central Roadside
Monitoring Station

PM10 0.01 0.85 0.77 0.90 0.82 0.87 0.85 0.86
PM2.5 −0.03 0.88 0.91 0.78 0.82 0.89 0.88 0.88

CO 0.26 0.74 0.79 0.81 0.79 0.79 0.74 0.75
NO2 0.10 0.78 0.76 0.72 0.78 0.80 0.78 0.78

the Yuen Long General
Monitoring Station

PM10 0.15 0.77 0.73 0.78 0.76 0.82 0.77 0.79
PM2.5 −0.04 0.82 0.85 0.73 0.77 0.83 0.82 0.81

CO −0.05 0.82 0.81 0.79 0.79 0.82 0.82 0.82
NO2 −0.09 0.77 0.70 0.58 0.70 0.78 0.77 0.76

the Causeway Bay
Roadside Monitoring

Station

PM10 0.00 0.86 0.82 0.90 0.85 0.87 0.86 0.86
PM2.5 0.19 0.88 0.87 0.86 0.85 0.91 0.88 0.89

CO 0.09 0.78 0.75 0.74 0.75 0.78 0.78 0.76
NO2 −0.14 0.79 0.78 0.70 0.79 0.81 0.79 0.80

Table 3. The classification report of the dynamic causal model of air quality in Macao.

Macao Target BIAS Accuracy Macro Avg Weighted Avg
Precision Recall F1-Score Precision Recall F1-Score

the Macao High
Density Residential

Area Station

PM10 −0.06 0.84 0.79 0.84 0.81 0.85 0.84 0.84
PM2.5 0.25 0.79 0.79 0.72 0.74 0.83 0.79 0.80

CO 0.00 0.85 0.82 0.82 0.82 0.85 0.85 0.85
O3 −0.07 0.79 0.81 0.78 0.79 0.80 0.79 0.79

the Taipa
General Station

PM10 −0.05 0.86 0.83 0.77 0.79 0.86 0.86 0.86
PM2.5 −0.04 0.85 0.81 0.81 0.81 0.85 0.85 0.85

CO 0.00 0.79 0.78 0.78 0.78 0.79 0.79 0.79
O3 0.02 0.78 0.77 0.75 0.76 0.78 0.78 0.78

the Coloane
General Station

PM10 −0.06 0.86 0.79 0.80 0.79 0.86 0.86 0.86
PM2.5 0.22 0.83 0.76 0.71 0.71 0.86 0.83 0.84

CO −0.06 0.79 0.80 0.79 0.79 0.80 0.79 0.79
O3 0.05 0.73 0.76 0.72 0.73 0.75 0.73 0.74

4. Conclusions

This study’s future research directions and potential applications are as follows: (1) In-
depth research on data and models entails several pivotal approaches. Firstly, researchers
explored a range of data preprocessing methods, assessing the impact of data cleaning,
conversion, and feature selection on the predictive accuracy of the DBN model. Secondly,
various DBN structure learning and parameter learning methods were implemented to
elevate the model’s overall performance. Lastly, the intricacies of complex nonlinear
relationships were delved into, aiming to offer a more precise and nuanced prediction.
(2) In this research, factors beyond meteorology were explored to understand their influence
on air quality. For the dynamic causal model focused on Hong Kong and Macao, various
non-meteorological factors were incorporated. These included emissions from traffic,
ships, and industries; energy production and consumption; regional collaboration and
transboundary pollution; regulatory policies; building construction; residential emissions;
tourism; urbanization and land use shifts; waste disposal and burning; as well as underlying
socio-economic factors. (3) In research comparing other geographical regions. Firstly, select
cities or regions with geographical and climatic characteristics similar to Hong Kong and
Macao. Assess their similarities and differences in a range of influential factors, aiming
to understand how these variables manifest in diverse geographical settings. Secondly,
take into account unique regional influences such as population density and economic
development. Refine and broaden the DBN accordingly to delve deeper into the decision-
making and atmospheric environment management in these varying regions. Lastly,
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establish a continuous monitoring and feedback mechanism, ensuring periodic evaluation
of model management strategies to cater to the needs of other geographical regions. Each
of these strategies has the potential to contribute significantly to the field and warrants
further research.

This study offers three key contributions: (1) It applied an interpretable DBN to
construct a dynamic causal model of air quality in Hong Kong and Macao, amidst com-
plex, unstable, multi-dimensional, and uncertain factors over time. (2) It investigated the
dynamic interaction between meteorology and air quality sub-networks, and both quali-
tatively and quantitatively identified, evaluated, and understood the causal relationships
between air pollutants and their determinants. (3) It facilitated an online collaborative fore-
cast of air pollutant concentrations, enabling pollution warnings. The findings corroborate
the potency of a DBN-based dynamic causal model in explaining and managing complex
atmospheric environmental systems. Such a model has significant referential value not
only for decision-making and atmospheric environmental management in Hong Kong
and Macao but also for neighboring cities and regions with geographical environments
analogous to these areas.
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