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Abstract: Networks are widely used to model the interaction between individual dynamic systems.
In many instances, the total number of units and interaction coupling are not fixed in time, and
instead constantly evolve. In networks, this means that the number of nodes and edges both change
over time. Various properties of coupled dynamic systems, such as their robustness against noise,
essentially depend on the structure of the interaction network. Therefore, it is of considerable interest
to predict how these properties are affected when the network grows as well as their relationship to
the growth mechanism. Here, we focus on the time evolution of a network’s Kirchhoff index. We
derive closed-form expressions for its variation in various scenarios, including the addition of both
edges and nodes. For the latter case, we investigate the evolution where single nodes with one or
two edges connecting to existing nodes are added recursively to a network. In both cases, we derive
the relations between the properties of the nodes to which the new node connects along with the
global evolution of network robustness. In particular, we show how different scalings of the Kirchhoff
index can be obtained as a function of the number of nodes. We illustrate and confirm this theory via
numerical simulations of randomly growing networks.

Keywords: randomly growing networks; Kirchhoff index; robustness

1. Introduction

Complex networks are broadly used to model interactions within natural and en-
gineered systems [1–3]. They describe the interactions taking place between individual
elements, such as the chemical bonds between atoms that form a molecules, or the com-
munications transmitted between neighboring individuals in flocks of birds or vehicular
platoons [4]. From their structure, important properties of coupled dynamic systems can be
deduced, such as the intrinsic natural frequencies or the stability and robustness against
external perturbations [5]. While in many instances both the structure of the coupling
network and the number of interacting elements composing the system remain constant
in time, this is typically not the case in a wide variety of coupled systems, such as social
networks, vehicular platoon formation, swarming autonomous robots, animal collective
behaviors, cells evolution, molecules interacting in chemical reactions, and more [6–10]. In
all of these examples, when an element (commonly represented as a node) or an interaction
(represented as an edge) is added to or removed from the system its overall dynamical
properties are modified. In particular, both the steady states and the corresponding tran-
sient stability are affected by the evolution of the system. Therefore, it is an important
task to predict how these properties change while the network evolves and to be able to
anticipate potential instabilities. More specifically, if it is necessary to sequentially add
agents to a system, it is important to understand how these interact with the existing units
to ensure that stability is preserved, or at least not excessively hindered. This is the main
question that we investigate in the present manuscript. Previous works have considered
the evolution of network properties such as the degree distribution in random growing
networks with preferential attachment [11,12] and the evolution of the Wiener index in
random recursive trees [13]. In this manuscript, we investigate the time evolution of the
Kirchhoff index [14–16], which has proven useful in chemistry [14,17,18] and networked
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dynamical systems [19,20]. For coupling networks that are not growing and which are
static in time, the robustness of diffusively coupled oscillators has been directly related to
the Kirchhoff index of the effective coupling network [19,21,22]; specifically, the larger the
Kirchhoff index, the more important the fluctuations within the dynamic system. Consider
a set of N oscillators, each with a continuous degree of freedom xi ∈ R that are diffusively
coupled together and subjected to noise as follows:

ẋi = −
N

∑
j=1

aij(xi − xj) + ηi , i = 1, . . . , N , (1)

where aij = aji > 0 are the elements of the adjacency matrix encoding the undirected cou-
pling network and ηi represents uncorrelated white noise inputs, i.e.,
〈ηi(t)ηj(t′)〉 = η2

0 δij δ(t − t). Then, the average variance in the long time limit is pro-
vided by [23]

1
N

N

∑
j=1
〈x2

j 〉 =
η2

0
2

K f1/N , (2)

with K f1 being the Kirchhoff index of the coupling network (see Section 2 for the defini-
tion). Similar relations can be obtained for deterministic perturbations that have a short
correlation time [19]. Considering this direct connection between the global network index
and the fluctuations of the dynamic system supported by the network, it is interesting to
investigate how the Kirchhoff index evolves as the network grows. For the evolution of the
network, we consider a simple growth algorithm in which a single new node that connects
to existing nodes is added in each iteration. We derive the analytical expression for the
time evolution of the Kirchhoff index for this scenario; in particular, when connecting the
new node to the existing ones, we identify which of their nodal properties influence the
scaling of the Kirchhoff index as a function of the total number of nodes. These properties
can be used when adding new nodes in order to achieve different scalings for the Kirchhoff
index as well as for the fluctuations.

The rest of this manuscript is organized as follows: in Section 2, we provide the
definition of the Kirchhoff index and discuss the previously derived bounds; in Section 3
we consider growing networks and provide expressions for the time evolution of the
Kirchhoff index when edges and nodes are added; finally, in Section 4 we provide our
conclusions and future outlook.

2. Kirchhoff Index
2.1. Definitions

Consider a graph G (called a network in the following) made up of vertices N (called
nodes in the following) and edges M. Each edge ε(ij) between two nodes i and j has an
associated weight aij > 0. The network Laplacian matrix is commonly defined as L, with
Lij = −aij if i 6= j and there exists an edge between nodes i and j; otherwise, Lij = 0 and
Lii = ∑N

k=1 aik for i = 1, . . . , N. The Kirchhoff index (K f1) of an undirected network is
provided by the sum of the effective resistance distances (Ωij) between all the nodes [14]:

K f1 = ∑
i<j

Ωij , (3)

while the resistance distance between nodes i and j is defined by

Ωij = [L†]ii − 2[L†]ij + [L†]jj , (4)

where L† denotes the pseudo-inverse of the Laplacian matrix L of the network. Using
the eigenvectors uα and eigenvalues λ1 = 0 < λ2 < · · · < λN of L, we can conveniently
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rewrite the resistance distance Ωij = ∑α>1(uα,i − uα,j)
2/λα, which for the Kirchhoff index

yields [24]

K f1 = N ∑
α>1

1
λα

= N Tr[L†] . (5)

Depending on the time scale of the noise input, the amplitude of the small fluctuations
of diffusively coupled oscillators can be expressed in terms of the Kirchhoff index or its
generalization, which reads [19]

K fp = N ∑
α>1

1
λ

p
α

= N Tr[L† p
] . (6)

For network models for which the spectrum is known, the Kirchhoff index can be
obtained analytically. For example, for a complete star network we have K f1

∼= N, N2, N3 as
the number of nodes N becomes large, while for a cycle network we have K f2 ∼= 1, N2, N5.
These network models prove useful below when we consider the limiting case of randomly
growing networks. In the specific case where the network is a tree, the resistance distance is
equal to the shortest path distance in the same network when all the weights on the edges
have been replaced by their inverse weights. In such a situation, the Kirchhoff index is
equal to the Wiener index [17], that is, it can be defined as the sum of all the shortest path
distances in the network. In the following, we only discuss the Kirchhoff index, as we do
not consider that growing networks need to be trees. From the resistance distance, it is
possible to define a centrality measure that reads

C(i) =

[
N

∑
j=1

Ωij/N

]−1

=
[
L†

ii + K f1/N2
]−1

, (7)

where C(i) is called the resistance centrality of node i.

2.2. Lower Bound on K f1

The Kirchhoff index has been extensively studied and many bounds have been derived
depending on the number of nodes N, edges ne, and other properties. Relevant for the
following is the lower bound obtained by Zhou and Trinajstić [25], which states that for a
connected network with N ≥ 3, ne edges, and a maximum degree ∆,

K f1(N) ≥ N
1 + ∆

+
N(N − 2)2

2Ne − 1− ∆
. (8)

From this inequality, it can be concluded that as long as ne ∝ N, it is the case that K f1/N
scales by at least N when the number of nodes becomes large. This is the case in the growth
algorithm we investigate below, in which a single new node is added at each iteration
such that ne ∝ N. Therefore, the lowest scaling achievable for K f1/N within our growing
algorithm is linear in N.

3. Robustness of Growing Networks

Networks can grow in two ways: (i) new nodes are connected to the existing network
nodes; and (ii) edges are added within the existing nodes. For (i), it is intuitive based
on the examples in Section 2 and Equation (8) that the Kirchhoff index increases at least
linearly with N. On the other hand, for (ii) it can be shown that the Kirchhoff index can
only decrease by adding a new edge in the network. Adding one edge with corresponding
weight akl > 0 between nodes k and l is a rank-1 modification of the Laplacian matrix, i.e.,
L(t + 1) = L(t) + aklekle>kl , where [ekl ]i = (δik − δil) ∈ RNt , with Nt being the number of
nodes at iteration t. Therefore, if the Kirchhoff index at iteration t is K f (t) then we can use
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the Sherman–Morrison–Woodbury formula [26,27] to obtain the Kirchhoff index at step
t + 1:

K fk(t + 1) = K f1(t)−
aklTr[L†ekle>klL

†]

1 + aklΩlk(t)
= K f1(t)−

aklΩ
(2)
kl (t)

1 + aklΩkl(t)
, (9)

where Ω(2)
kl (t) = ∑α>1(uα,i − uα,j)

2/λ2
α is a semi-metric [21]. As both Ω(2)

kl (t) and Ωkl(t)
are always positive, K f1 can only decrease when an edge is added to the existing network.
Below, we discuss how the Kirchhoff index is modified when a single node together with
m new edges is added to the existing network.

3.1. One New Node with a Single Connection (m = 1)

Below, we investigate the evolution of the Kirchhoff index for the growth process
depicted in Figure 1. When a new node connects to a single existing one, if we start with a
network that is a tree then the network will remain a tree as it grows. In addition, if the
selected existing node is uniformly chosen at random, the resulting tree called a random
recursive tree. In such a situation, the resistance distance can be replaced by the geodesic or
shortest path distance (i.e., the Kirchhoff index by the Wiener index), as discussed in [13,28].
In general, however, we do not assume that the starting network is a tree. At iteration t,
we has the Kirchhoff index K f1(t) = 1

2 ∑Nt
i,j=1 Ωij(t). If the new node at iteration t + 1 is

connected to node k, we have

K f1(t + 1) = K f1(t) +
Nt

∑
l=1

Ωkl(t) +
Nt

anew
, (10)

where ak(Nt+1)
= anew is the weight of the newly added edge between nodes k and Nt+1. In

this simple case, it can be observed that the modification of the Kirchhoff index is provided
by the sum of the resistance distances from node k to all the other already existing nodes in
the network plus Nt times the resistance of the newly added edge; see Figure 1. The less
central node k is in terms of its resistance distances from the existing nodes, the more the
Kirchhoff index grows. As expected, K f1(t) only increases with the number of iterations,
as no new path is created within the existing nodes. If the node to which the new node
connects is uniformly selected at random among the existing ones with each new iteration,
then on average the Kirchhoff index will increase as follows:

〈K f1(t + 1)〉 = 〈K f1(t)〉
(

1 +
2

Nt

)
+

Nt

anew
(11)

=
(N0 + t + 1)

anew

[
anew

K f1(0)(N0+2)
N0

(N0 + t + 2)− 2(N0 + 2)(t + 1)

(N0 + 1)(N0 + 2)

+ (N0 + t + 2)(HN0+t+1 − HN0)

]
(12)

=
(N0 + t + 1)

anew

[
anew

K f1(0)(N0+2)
N0

(N0 + t + 2)− 2(N0 + 2)(t + 1)

(N0 + 1)(N0 + 2)

+ (N0 + t + 2){ψ0(N0 + t + 1)− ψ0(N0)}
]

, (13)

where N0 and K f1(0) are the initial number of nodes and the initial Kirchhoff index,
respectively, and HN = ∑N

k=1 k−1 is the Nth harmonic number, which can be written as
HN = γ + ψ0(N + 1), where γ ∼= 0.577 is the Euler–Mascheroni number and
ψ0(n) = Γ′(n)/Γ(n) is the digamma function. As its integer argument becomes large,



Entropy 2023, 25, 1340 5 of 12

the digamma function satifies ψ0(n)
n→∞

∝ ln n. Therefore, when the number of iterations
becomes large, the last term in Equation (13) dominates such that

〈K f1(t)〉
t→∞

∝ N2
t log Nt . (14)

t t+1
k

Nt+1anew

Figure 1. Evolution of the network from iteration t to t + 1, where a new node (in red) connecting to
a single existing node k (in black) has been added. The label of the new node is Nt+1 = Nt + 1. No
new path is created within the existing nodes.

The scaling is confirmed numerically in Figure 2, where the solid green curves repre-
sent twenty realizations of a random growth process starting from ten connected nodes
and then adding one new node in each iteration that uniformly connects at random to
an existing node. It can be observed that the simulations follow the predicted scaling of
Equation (14) provided by the dashed black line. Note that this is the same scaling as in
the Wiener index for random recursive trees [13]. This random evolution of the network is
bounded by the two limiting cases that we now discuss.

Figure 2. Evolution of the Kirchhoff index divided by the number of nodes Nt when a new node is
connected to a single existing one at each new iteration. The initial network has ten nodes, and is
obtained from a Watts–Strogatz rewiring procedure using nearest neighbors coupling [29]. The green
curves correspond to twenty realizations starting from this initial network and recursively adding
nodes while selecting the existing nodes to which they connect uniformly and at random. For large
Nt, the green curves follow the scaling of Equation (14). The red and blue curves are obtained by
selecting the least and most central existing nodes, respectively, in each iteration. When Nt is large,
the curves follow the scalings in Equations (16) and (18). The dotted, dashed, and dash-dotted black
lines indicate N2

t , Nt logNt, and Nt, respectively.
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Instead of uniformly picking within the existing nodes, it is possible to instead use a
property of the nodes. Here, we discuss what happens when the most or least central node
in terms of resistance distance is selected. When the least central node k at each iteration t,
i.e., the one with largest ∑Nt

l=1 Ωkl(t), is chosen for connection to the new node, the network
tends to form a chain. Therefore, assuming that the weights on the edges are of order 1,
when Nt becomes large we have

Nt

∑
l=1

Ωkl(t) ∼=
Nt(Nt − 1)

2
. (15)

In this case, the Kirchhoff index grows as follows:

K f1(t + 1) ∼= K f1(t) +
Nt(Nt − 1)

2
+

Nt

anew

t→∞
∝ N3

t , (16)

which is faster than in the random uniform case in Equation (14). If we instead select
the most central node at each time step, then the network becomes star-like. Indeed, by
connecting a new node to the most central existing one, its centrality becomes even more
important. This means that all of the newly added nodes will connect to the same node.
Thus, assuming that the weights of the edges are of order 1, for large Nt we have

Nt

∑
l=1

Ωkl(t) ∼= (Nt − 1) , (17)

K f1(t + 1) ∼= K f1(t) + (Nt − 1) +
Nt

anew

t→∞
∝ N2

t . (18)

Interestingly, by selecting the most central node we achieve a scaling for K f1 with
Nt being only log Nt, which is better than in Equation (14), where the node is uniformly
chosen from among the existing ones.

Discussion

According to Equations (14), (16) and (18), the weakest growth in the Kirchhoff index
is obtained when the new nodes simply connect to the most central existing one in terms
of resistance distance. Using this mechanism to grow a network leads to a very specific
structure in which a single node is connected to almost all the other ones. While such a
structure enhances the transient stability of the system by minimizing the growth of the
small fluctuations, it makes the system very vulnerable to any failure of this most central
node. Indeed, if this node is removed from the system then most of its components become
disconnected as well. In light of this structural weakness, selecting nodes at random when
adding new nodes seems to be a more robust option; only when the growth of the Kirchhoff
index is log Nt is it worth selecting the most central one. Moreover, the connections within
the network are more uniformly distributed in the former situation, reducing the number
of disconnected components in case of failure. On the other hand side, if it is desirable
to increase the fluctuations in the system as much as possible, then new nodes should be
connected to the least central node in terms of resistance distance.

3.2. One New Node with Two Connections (m = 2)

The case in which one node with two edges is added in each new iteration is more
complex, as an increasing number of loops is introduced into the network. If the new node
is connected to existing nodes k and l, then the effective resistance along the new path from
k to l is

ωkl = a−1
k Nt+1

+ a−1
l Nt+1

. (19)
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This process is depicted on Figure 3. It is important to remark here that adding node
Nt+1 is not the same as adding an edge between nodes k and l, which would have a weight
of ω−1

kl . However, replacing the path on which the new node is located with an equivalent
edge provides a lower bound on the new Kirchhoff index. In this way, it is possible to
obtain the sum of new resistance distances between the already existing nodes:

K fk(t + 1) =
1
2

Nt

∑
i,j=1

Ωij(t + 1) +
Nt

∑
i=1

ΩiNt+1(t + 1) (20)

= K f1(t)−
ω−1

kl Ω(2)
kl (t)

1 + ω−1
kl Ωlk(t)

+
Nt

∑
i=1

ΩiNt+1(t + 1) . (21)

Figure 3. Evolution of the network from iteration t to t + 1, where a new node (in red) is added that
connects to two existing ones k and l (in black). The label of the new node is Nt+1 = Nt + 1. In this
case, a new path between k and l is created.

The variation of the Kirchhoff index is a function of Ω(2)
kl (t) and of how central the

new node is in terms of resistance distance; see last term in Equation (21). It is challenging
to find a closed form expression for the latter term; however, an estimate can be obtained
based on the resistance distance in the new network. When the new node is added, the
resistance distances between the existing nodes at iteration t become

Ωij(t + 1) = Ωij(t)−
ω−1

kl [e>ij L
†(t)ekl ]

2

1 + ω−1
kl Ωkl(t)

, i, j = 1, . . . , Nt , (22)

where we have replaced the new node with an equivalent edge between k and l using the
Sherman–Morrison–Woodbury formula, as in Equation (9). Using Equation (22), we can
approximate the last term in Equation (21) as the weighted average:

Nt

∑
i=1

ΩiNt+1(t + 1) ∼=
1

(ak Nt+1 + al Nt+1)

Nt

∑
j=1

[
akjΩkj(t + 1) + al jΩl j(t + 1)

]
. (23)

We expect this approximation to be valid when the edge weights surrounding the new
node, including ak Nt+1 and al Nt+1 , are homogeneous enough, or when ak Nt+1 and al Nt+1
are much larger than the surrounding edge weights. When ak Nt+1 and al Nt+1 are weak,
we can expect the centrality of the new node to be lower than that of k or l. Using this
approximation for Equation (21) together with Equation (23) yields the following:

K f1(t + 1) ∼= K f1(t) (24)

−
ω−1

kl

1 + ω−1
kl Ωkl(t)

Ω(2)
kl (t) +

∑Nt
j=1

[
ak Nt+1(e

>
kjL

†(t)ekl)
2 + al Nt+1(e

>
l j L

†(t)ekl)
2
]

(ak Nt+1 + al Nt+1)


+

1
(ak Nt+1 + al Nt+1)

Nt

∑
j=1

[
ak Nt+1 Ωkj(t) + al Nt+1 Ωl j(t)

]
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= K f1(t)−
ω−1

kl

1 + ω−1
kl Ωlk(t)

{
2Ω(2)

kl (t) (25)

+ Nt
ak Nt+1

[
L†

kk(t)−L†
kl(t)

]2
+ al Nt+1

[
L†

ll(t)−L†
lk(t)

]2
(ak Nt+1 + al Nt+1)

}

+ Nt
ak Nt+1 C−1(k, t) + al Nt+1 C−1(l, t)

(ak Nt+1 + al Nt+1)

= K f1(t)−
ω−1

kl

1 + ω−1
kl Ωlk(t)

{
2Ω(2)

kl (t) (26)

+Nt
ak Nt+1

[
Ωkl(t) + C−1(k, t)− C−1(l, t)

]2
+ al Nt+1

[
Ωkl(t) + C−1(l, t)− C−1(k, t)

]2
2(ak Nt+1 + al Nt+1)

}

+ Nt
ak Nt+1 C−1(k, t) + al Nt+1 C−1(l, t)

(ak Nt+1 + al Nt+1)

= K f1(t)−
ω−1

kl

1 + ω−1
kl Ωlk(t)

{
2Ω(2)

kl (t) + Nt
Ω2

kl(t)
2

+ Nt

[
C−1(k, t)− C−1(l, t)

]2
2

+ Nt
(ak Nt+1 − al Nt+1)

(ak Nt+1 + al Nt+1)

[
C−1(k, t)− C−1(l, t)

]
Ωkl(t)

}

+ Nt
ak Nt+1 C−1(k, t) + al Nt+1 C−1(l, t)

(ak Nt+1 + al Nt+1)
(27)

where we use the relationship between L†
ii and the resistance centrality of node i (see

Equation (7)). This expression provides an approximation of K f1(t + 1) based only on
quantities at iteration t. Therefore, in order to reduce the increase of K f1 we should find
nodes k and l such that Ω(2)

kl (t) and Ωkl(t) are large and have very different resistance
centralities, e.g., k being part of the most central nodes while l belongs to the least central
ones. We group together the terms in Equation (27) as follows:

µkl(t) =
ω−1

kl

1 + ω−1
kl Ωlk(t)

{
2Ω(2)

kl (t) + Nt
Ω2

kl(t)
2

+ Nt

[
C−1(k, t)− C−1(l, t)

]2
2

+ Nt
(ak Nt+1 − al Nt+1)

(ak Nt+1 + al Nt+1)

[
C−1(k, t)− C−1(l, t)

]
Ωkl(t)

}
, (28)

ρkl(t) = Nt
ak Nt+1 C−1(k, t) + al Nt+1 C−1(l, t)

(ak Nt+1 + al Nt+1)
. (29)

Now, we can choose nodes k and l that minimize/maximize the latter quantities.
More intuitively, we can numerically investigate Equations (28) and (29). In particu-
lar, we consider the maximization or minimization at each iteration of µkl(t), ρkl(t), and
ρkl(t) − µkl(t). This is shown in Figure 4. We consider edge weights such that
ak Nt+1 = al Nt+1 = 1, meaning that the last term in µkl(t) vanishes. As expected, maximizing
µkl(t) + ρkl(t) (the red curve) in each iteration provides the most important increase in
K f1(t)/Nt, which scales as N2

t . The same scaling is obtained if we maximize only ρkl(t)
(the orange curve). The minimization of µkl (the yellow curve) does not produce a similar
increase in the Kirchhoff index, which seems to remain linear, i.e., K f1(t)/Nt ∝ Nt, as t
becomes large. Similar linear scaling is observed for the minimization of ρkl(t)− µkl(t)
(the blue curve) and ρkl(t) (the cyan curve) as well as for the maximization of µkl(t) (the
green curve). Interestingly, it can be observed that the maximization of µkl(t) provides a
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lower Kirchhoff index than the minimization of ρkl(t)− µkl(t); therefore, it is possible to
tune the increase of the Kirchhoff index by choosing one or another quantity to optimize at
each iteration.

Figure 4. Evolution of the Kirchhoff index divided by the number of nodes Nt when a new node is
connected to two existing ones (k and l) in each new iteration. Two nodes are selected by minimiz-
ing/maximizing µkl(t), ρkl(t), and ρkl(t)− µkl(t) for each new iteration. The meaning of each curve
is shown in the legend. The initial network has ten nodes, and is obtained from a Watts–Strogatz
rewiring procedure with nearest-neighbors coupling [29]. The black dash-dotted and dashed lines
show the scalings Nt and N2

t , respectively. Note that in our simulations we ensured that k 6= l;
however, we found similar scalings when relaxing this condition.

Figure 5 shows the simulation results for the case where k and l are uniformly chosen
at random in each new iteration. It can be observed that the twenty realizations of the
process yield a linear scaling of K f1(t)/Nt with Nt.

Figure 5. Evolution of the Kirchhoff index divided by the number of nodes Nt when a new node is
connected to two existing ones at each iteration. The two nodes are selected uniformly at random
among the existing ones in each new iteration. Each grey line (twenty in total) is one realization of the
process. The initial network has ten nodes and is obtained from a Watts–Strogatz rewiring procedure
with nearest-neighbors coupling [29]. The black dashed line shows the linear scaling with Nt.
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3.2.1. Discussion

In Section 3.1, we have seen that selecting the existing node to which the new one
connects uniformly and at random is more worthwhile compared to selecting the most
central one when the growth of the Kirchhoff index is log Nt. Interestingly, when the new
nodes connect to two existing ones, selecting them uniformly at random produces the same
scaling as when minimizing the relevant quantity ρkl(t)− µkl(t). Therefore, when growing
a network by connecting the new node to two existing ones, to achieve the best scaling it is
only necessary to ensure that the nodes are selected uniformly and at random. Of course,
the latter is only true as long as the approximation in Equation (23) holds. If the goal is
to disrupt the system, a scaling of the Kirchhoff index Nt is worthwhile compared to the
previous situation, and is obtained by maximizing either ρkl(t)− µkl(t) or ρkl(t). The latter
can be achieved by choosing nodes that are close in terms of Ωkl(t) and Ω(2)

kl (t) while being
rather peripheral in the network, i.e., small C(k, t) and C(l, t).

3.2.2. Remark

It is important to be careful when interpreting Equations (21) and (24), as well as to
note that on average the Kirchhoff index increases at least linearly with Nt, as can be seen
from Equation (8). More intuitively, in the case with m = Nt (meaning that the number
of edges added in each iteration grows with the system size), when assuming an initial
all-to-all network we have

K f1(t + 1) = Nt , (30)

which increases monotonically. In this situation, as many new paths as possible should
be added between the existing nodes when introducing a single new node. Therefore, the
Kirchhoff index must increase for any m < Nt. In Equation (21), we might instead reduce
the amplitude of the increase, or sometimes even decrease K f1 by carefully selecting k and
l; however, this can only remain true for a few iterations.

4. Conclusions

In this paper, we have considered the evolution of random networks in which a new
node is added in each new iteration and connected to one or two existing nodes. When the
new nodes are only connected to a single existing node, the scaling of K f1(t)/Nt with the
number of nodes is between Nt and N2

t as the number of iterations becomes large. When
the existing node is randomly and uniformly chosen, the scaling is only logarithmically

worse than the lower bound, i.e., K f1(t)/Nt
t→∞

∝ Nt log Nt. In the more complex situation
in which the new nodes are connected to two existing nodes, a recursive expression is
derived for the evolution of K f1(t). The latter is essentially provided by ρkl(t)− µkl(t),
which can be expressed in terms of the resistance distances and centralities, i.e., Ωkl , Ω(2)

kl ,
C−1(k, t), and C−1(l, t); see Equations (28) and (29). We show that by introducing a bias in
the selection of k and l towards the minimum/maximum of these quantities, it is possible
to tune the increase of K f1(t)/Nt from linear to quadratic in Nt. For m > 2, it is much more
challenging to obtain analytical expression for the evolution of K f1. The same applies to
the case in which m is a function of the number of nodes. Nonetheless, using the lower
bound in Equation (8) allows the minimal scaling of the Kirchhoff index to be obtained by
correctly choosing ne(N).

The scenario we have considered here applies to evolving systems in which a single
new node is added at each iteration and connects to existing nodes. This can represent
situation such as a new molecule forming bonds with another group of molecules, or an
autonomous vehicle joining a platoon by interacting with one or many of its members.
Using the results presented here, it is possible to anticipate the scaling of the Kirchhoff index
based on how new units connect to the existing ones. Thus, our results provide insights
into the evolution of fluctuations in networked systems such as consensus dynamics and
synchronized systems that are diffusively coupled.
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Outlook

In this manuscript, we have considered two fundamental mechanisms for growing
a networked systems: (i) adding edges to an existing system, and (ii) adding nodes that
connect to one or two existing units in the system. We investigated these two scenarios
independently, finding that different scalings for the Kirchhoff index are achievable. In
order to describe realistic systems such as swarm formation in groups of animals or
autonomous robots, it is necessary to consider both of these scenarios, with one potentially
occurring immediately after or even simultaneously with the other. Future research should
consider the extension of our results to cases in which multiple connected nodes are added
at the same time. Additionally, future research could investigate how other properties are
modified by the growth of the network. Notably, the Kirchhoff index is directly related
to the small fluctuations of networked oscillators; however, other system characteristics,
such as the ability of a network to synchronize, typically depend on the maximum and
minimum eigenvalues of the Laplacian matrix.
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