
Citation: Li, Z.; Zhong, W.; Liao, W.;

Zhao, J.; Yu, M.; He, G. A Novel

Clustering Method Based on

Adjacent Grids Searching. Entropy

2023, 25, 1342. https://doi.org/

10.3390/e25091342

Academic Editor: Sotiris Kotsiantis

Received: 3 July 2023

Revised: 6 September 2023

Accepted: 12 September 2023

Published: 15 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

A Novel Clustering Method Based on Adjacent Grids Searching
Zhimeng Li 1, Wen Zhong 1, Weiwen Liao 1, Jian Zhao 1, Ming Yu 2 and Gaiyun He 3,*

1 School of Control and Mechanical Engineering, Tianjin Chengjian University, Tianjin 300384, China;
lzmcxg@tcu.edu.cn (Z.L.)

2 School of Computer and Information Engineering, Tianjin Chengjian University, Tianjin 300384, China
3 School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
* Correspondence: hegaiyun@tju.edu.cn

Abstract: Clustering is used to analyze the intrinsic structure of a dataset based on the similarity
of datapoints. Its widespread use, from image segmentation to object recognition and information
retrieval, requires great robustness in the clustering process. In this paper, a novel clustering method
based on adjacent grid searching (CAGS) is proposed. The CAGS consists of two steps: a strategy
based on adaptive grid-space construction and a clustering strategy based on adjacent grid searching.
In the first step, a multidimensional grid space is constructed to provide a quantization structure of
the input dataset. The noise and cluster halo are automatically distinguished according to grid density.
Moreover, the adaptive grid generating process solves the common problem of grid clustering, in
which the number of cells increases sharply with the dimension. In the second step, a two-stage
traversal process is conducted to accomplish the cluster recognition. The cluster cores with arbitrary
shapes can be found by concealing the halo points. As a result, the number of clusters will be easily
identified by CAGS. Therefore, CAGS has the potential to be widely used for clustering datasets with
different characteristics. We test the clustering performance of CAGS through six different types of
datasets: dataset with noise, large-scale dataset, high-dimensional dataset, dataset with arbitrary
shapes, dataset with large differences in density between classes, and dataset with high overlap
between classes. Experimental results show that CAGS, which performed best on 10 out of 11 tests,
outperforms the state-of-the-art clustering methods in all the above datasets.

Keywords: unsupervised learning; clustering; grid-based method; high dimension; large scale; denoise

1. Introduction

As an unsupervised learning technique, clustering is widely used to explore the
structure of a given dataset [1–3]. Due to the growth of the Internet of Things, data is
generated every day across the globe [2]. Clustering techniques are required to unravel
important hidden facts and understand the massive data. In addition, clustering could also
be used in particular domains, such as gene expression profiles, where domain experts
often provide incomplete knowledge in the form of pairwise constraints [3].

Based on different strategies, the clustering methods can be mainly classified into
partition-based clustering, density-based clustering, hierarchical clustering and grid-based
clustering. The above clustering methods are usually offline, which needs to repeat the
whole clustering process when new data arrives. Partition-based clustering [4,5] assigns a
set of data points to k clusters by optimizing a criterion function, where k is the number of
clusters as an input parameter. The common problem with partition-based clustering is that
only hyperspherical-shaped clusters can be found by this kind of method. Compared with
partition-based clustering, density-based clustering [6] can find arbitrarily shaped clusters
in a spatial dataset. However, density-based clustering performs poorly for low signal to
noise Ratio (SNR) datasets and high dimensional datasets. Hierarchical clustering [7–10] is
another kind of clustering strategy that groups data through a sequence of nested partitions.
This kind of method can identify the nodes sparsely distributed in the dataset called outliers.

Entropy 2023, 25, 1342. https://doi.org/10.3390/e25091342 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25091342
https://doi.org/10.3390/e25091342
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e25091342
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25091342?type=check_update&version=2

Entropy 2023, 25, 1342 2 of 22

However, it is inefficient to handle the noise points with uniform distribution. A clustering
method called clustering by fast search and find of density peaks (CFSFDP) has been
proposed [11] that outperforms the above clustering methods on most datasets in terms of
clustering accuracy. However, the number of clusters could not be determined by CFSFDP,
and good performance depends on the manual selection of cluster centers through the
decision graph. There are a kind of clustering strategies that focus on data transformation
and use other clustering methods as the partition part, such as RDNNBMF [12], DGSCF [13],
and spectral clustering [14]. RDNNBMF is an algorithm that includes a multilayered
structure. Its objective function contains the regularization constraint term on the basis
images matrix, which is helpful for classification. The original samples are projected into a
high dimensional space by a nonlinear map to adapt to more complex data. DGSCF is a
dual graph-regularized sparse concept factorization algorithm. It adopts an optimization
framework that enhances the ability of feature selection and sparsity to eliminate the
influence of noise factors on the algorithm’s performance. Spectral clustering is proposed
to solve the problem of partition-based clustering in dealing with datasets with arbitrarily
shaped distributions. To complete the clustering process, a k-means clustering algorithm
should be performed at the end of this kind of method.

All of the above clustering methods deal directly with data points one by one. As
a result, the time complexity is at least O(N), and thus, they are limited to processing
large-scale datasets. This problem can be solved by grid-based clustering methods [15–20]
because the number of grids is independent of the scale of the dataset. Representative
grid-based clustering algorithms include GRIDCLUS [15], STING [16], WaveCluster [17],
CLIQUE [18], optimal grid-clustering [19], and GDILC [20]. Despite the high efficiency
of grid-based methods in processing large-scale data points, some drawbacks also exist
in these algorithms. GRIDCLUS and STING could not provide high clustering accuracy
when clustering datasets with arbitrary shapes. It is difficult for WaveCluster to be used
for datasets with three or higher dimensions. CLIQUE and optimal grid-clustering are
specially designed for high-dimension datasets. However, CLIQUE could only partition the
dataset in which the clusters do not overlap with each other, and optimal grid-clustering
could only find the hyperspherical clusters. GDILC needs the information of each data
point to construct the grid space, which greatly reduces algorithm efficiency.

In summary, it is very difficult for a clustering method to possess the following
properties simultaneously: (1) the ability to cluster on datasets with noise; (2) the ability to
cluster on large-scale datasets; (3) the ability to cluster on high-dimensional datasets; (4) the
ability of clustering on datasets with arbitrary shapes; (5) the ability of clustering on datasets
with large density contrast; (6) the ability of clustering on datasets with high-overlap
between classes. In this paper, we propose a clustering based on adjacent grid searching
(CAGS) to address the above challenges. In the CAGS, an adaptive multidimensional grid
generation method is established, which makes CAGS effectively achieve clustering on
large-scale datasets. A density-based noise threshold is used to handle both the outliers
and noise points contained in the dataset. A density-based halo threshold is applied to
identify boundary points whose densities are lower than those of center points of clusters,
by which clustering on the dataset with high overlap between classes can be accomplished.
Clustering principles based on adjacent grid operators and adjacent grid databases are
proposed to deal with low-dimensional and high-dimensional datasets, respectively. In the
recursive process of grid clustering, the algorithm can automatically detect the number of
clusters and find clusters with arbitrary shapes.

The major contributions of this paper can be described as follows.

1. We propose a novel grid-based clustering method that shows broad robustness in
clustering the above six types of datasets.

2. The proposed CAGS could automatically identify the number of clusters and detect
the center of each cluster.

3. We assign some key attributes, such as density, to cells in grid space so that the cluster
center can be found.

Entropy 2023, 25, 1342 3 of 22

4. In addition to randomly generated cluster labels, CAGS also outputs further intrinsic
information about the dataset, such as cluster density. This intrinsic information could
be used to indicate the real-world properties of each cluster.

The remainder of this paper is organized as follows. Section 2 presents related papers.
Section 3 provides the details of the CAGS clustering algorithm. To demonstrate the
validity of CAGS, comprehensive experiments on the international standard dataset and
the proposed synthetic dataset are performed in Section 4. Finally, some useful conclusions
of this paper are given in Section 5.

2. Related Work

Recently, some new grid-based clustering methods have been proposed to solve
the above problems [19–24]. These methods captured attention with the advantage over
other approaches because they process data with grid cells. Most grid-based methods
perform clustering through several main steps, such as grid space construction, grid cell
preprocess, and cluster generation. Grid space is generally composed of nodes, lines,
and cells. To the best of our knowledge, existing grid clustering algorithms work by
dealing with nodes and cells. The former mainly includes FDGB [21] and GCBD [22], while
the latter mainly includes GBCN [23], GCDPP [24], NGCGAL [25], and CMSPGD [26].
However, different grid-based clustering methods have their own considerations in grid
space, node or cell processing, and cluster generation strategies, resulting in differences in
clustering performance.

FDGB adopted a fuzzy-type membership function to define the relationship between
data points and nodes. In the grid space of FDGB, the raw data points were assigned to
neighbor nodes based on different weights. Then, the clusters could be found through the
method called finding mountain ridges. Some instances were given in two-dimensional
situations to verify the effectiveness of the algorithm. Different from FDGB, GCBD first
divided nodes into core nodes and boundary nodes by using a specific cut-off value. The
cluster-finding process was implemented through the connection strategy. The advantage
is that it can handle halo data points in the area where clusters come into contact. However,
from a geometric perspective, the number of nodes in a cell will increase exponentially with
dimensionality. As a result, computational costs will become unacceptable for clustering
high-dimensional datasets.

For algorithms that use cells as processing objects, the above problem does not exist.
GBCN provided a simple loop to construct each cluster by traversing the cells with non-
empty cells around themselves. It does not distinguish the rank of cells, so it cannot handle
clusters with overlapping regions. GCDPP counted the number of location points in each
grid and used it as grid density. Then, the discrete wavelet transform was employed so as
to classify the matrix formed via the grids’ density. Grids of different levels are merged
according to neighborhood similarity to form the final clusters. This method is very similar
to WaveCluster and will encounter difficulties when processing high-dimensional datasets.

Moreover, many grid-based clustering methods are proposed to solve problems in a
specific domain. NGCGAL is a grid clustering algorithm specifically designed for wireless
sensor localization, focusing on the integration of IoT and WSN for real-time localization
systems. CMSPGD is a clustering algorithm based on stay points and grid density that
can be used to extract urban hotspot areas from GPS data. Both methods limit the input to
two-dimensional datasets.

3. Principle of CAGS

In CAGS, data points in the same cell are considered members of the same cluster.
Then, two key parts of CAGS to ensure the effectiveness and robustness of our algorithm are
constructed. The first is an adaptive grid-space constructing strategy that fits both the large-
scale dataset and the high-dimensional dataset. The second is a clustering strategy based
on adjacent grid searching, which can find clusters with arbitrary shapes by processing
cells in the adaptive grid space.

Entropy 2023, 25, 1342 4 of 22

3.1. Construction of Adaptive Grid Space

Definition 1. Given a dataset with N instances that each instance has d attributes, we express it as
a multidimensional dataset Dd.

Dd =
{

Xd
1 , Xd

2 , · · · , Xd
N

}T
(1)

where Xd
i is the ith instance of Dd.

Xd
i =

〈
xd

i (1), xd
i (2), · · · , xd

i (d)
〉

(2)

The multidimensional dataset is processed in a multidimensional finite space with d
orthogonal continuous coordinates, which can be defined as

S = {S1, S2, · · · , Sd} (3)

where Si denotes the ith coordinate of the space. It can be constituted by a limited number
of right open intervals by taking the min and max value of a coordinate and then dividing
it into R intervals of the same length. The jth interval of the ith dimension can be defined as

uij =

{
[sci(j− 1), sci(j)) j < R
[sci(j− 1), sci(j)] j = R

(4)

where scD
i (j− 1) and scD

i (j) are the left and right boundaries of uij, respectively. Thus,
we have

Si = ∪
j∈Z

{
uij
}

(5)

Definition 2. In the ith dimension of the multidimensional finite space, a coordinate sequence SCd
i

is used to divide S, which can be expressed as

SCd
i =

{
scd

i (0), scd
i (1), · · · , scd

i (R)
}

(6)

Definition 3. To mesh the input data into hyperrectangle cells, an adaptive grid space Gd is
constructed by using SCd

i .

Gd =
{

Cd
1 , Cd

2 , · · · , Cd
M

}
(7)

where Cd
i is the ith cell of the grid space, M = Rd is the number of cells in the grid space.

For each cell, 3 properties are set to connect the grid space and the dataset.

CD
i = {location, member, density} (8)

The property location records the coordinate information of the cell, the member records
all data points contained in the cell, and density records the number of data points in a unit
volume. The location of CD

i can be expressed as

location
(

CD
i

)
= 〈ci1, ci2, · · · , cid〉 (9)

Entropy 2023, 25, 1342 5 of 22

where the subscript i can be calculated by

i =
d

∑
j=1

[(
cij − 1

)
Rj−1

]
+ 1 (10)

Using Equations (2), (6) and (9), all data points in Dd can be assigned to their grid cells.
When constructing a grid space, cell size has a significant impact on clustering performance.
A very large cell size will lead to insufficient cells to partition data points from different
clusters. On the contrary, a small cell size will lead to so many cells that the density of each
cell is too low. This will reduce the accuracy and efficiency of clustering. Furthermore, the
number of cells increases exponentially with the dimension of the dataset, resulting in the
curse of dimensionality. To solve the above problems, an adaptive grid-space generation
strategy is proposed in the CAGS. Firstly, the resolution R is determined according to the
scale of the input dataset by the following formula

R = Int(d√N · fR

)
+ 1 (11)

where Int(x) denotes the forward rounding function, N is the number of data points, fR
is the resolution coefficient. Secondly, in our algorithm, the grid space can be efficiently
constructed by scanning all data points at once. For a data point, it will be checked if it
belongs to any existing cell. If so, update the properties of this cell; otherwise, create a
new cell. It is noted that the grid space obtained by using our method is very economical
since only grid cells containing data points are recorded. Therefore, CAGS can effectively
deal with a high-dimensional clustering problem because a bulk of null cells are removed
in the grid space. However, the cell number of the null cells is reserved to reactivate
them if necessary. The pseudocode for the construction of adaptive grid space is listed in
Algorithm 1.

Algorithm 1: Pseudocode for construction of adaptive grid space.

Input: dataset Dd and resolution R and coordinate sequence SCD
i .

Output: Multidimensional grid space GD.
1: Begin
2: GD ← φ

3: N ← samples number of Dd

4: d← dimension of Dd

5: for k = 1 to N do
6: cellnum← 0
7: for i = 1 to d do
8: for j = 1 to R do
9: if scD

i (j− 1) ≤ xd
k (i) < scD

i (j) then
10: cellnum← cellnum + (j− 1)Rj−1

11: c(i)← j
12: location

(
CD

cellnum
)
← 〈c(1), c(2), · · · , c(d)〉

13: mumber
(
CD

cellnum
)
← mumber

(
CD

cellnum
)
∪Xd

k
14: density

(
CD

cellnum
)
← density

(
CD

cellnum
)
+ 1

15: if CD
cellnum /∈ GD then

16: GD ← GD ∪ CD
cellnum

The construction process of adaptive grid space will be demonstrated using a
2-dimensional dataset, as shown in Figure 1. The dataset contains 16 instances conforming
to Gaussian distributions, which are marked from 1 to 16 in Figure 1a. Then, the spatial
extent of the dataset is divided into a 4 × 4 grid through Algorithm 1 when the resolution
coefficient fR is set as 0.8, as shown in Figure 1b. Each cell has a different number of
instances in Figure 1c, and there are 4 empty cells. The meshing results of the 2-dimensional
dataset, cell number, location, density, and members of each nonnull cell, are listed in
Table 1.

Entropy 2023, 25, 1342 6 of 22Entropy 2023, 25, x FOR PEER REVIEW 6 of 24

13

15

1

3
7

4
12

10
6 17,18

19 20

14

11

8
16

9
2

5

S2
D

S1
D

S2
D

S1
D

(a) (c)

2

1

0

 1

 2
 2 1 0 1

S2
D

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

S1
D

(b)

 2 1 0 1

2

1

0

 1

 2

2

1

0

 1

 2
 2 1 0 1

Figure 1. Example of multidimensional grid space. (a) 2-dimensional Gaussian dataset; (b) cell num-

bering in uniform grid spaces; (c) partitioning in uniform grid space.

Table 1. Meshing result of a 2-dimensional dataset.

Cell Number Location Density Member

1 <1, 1> 1 15

2 <2, 1> 3 1, 3, 7

3 <3, 1> 1 12

5 <1, 2> 1 13

6 <2, 2> 2 4,6

7 <3, 2> 4 10, 17, 18, 19

8 <4, 2> 2 14, 20

11 <3, 3> 2 2, 5

12 <4, 3> 1 11

14 <2, 4> 1 16

15 <3, 4> 1 9

16 <4, 4> 1 8

3.2. Clustering Strategy Based on Adjacent Grids Searching

The clustering is accomplished by using adjacent grid searching. In the grid space

𝐺𝐷, the adjacent cells of a cell 𝐶𝑖
𝐷 is defined as 𝐴𝐶𝑖

𝐷 whose locations are

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝐴𝐶𝑖
𝐷) = 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝐶𝑖

𝐷) + 𝐴𝑜𝑝𝑡𝑑 (12)

Definition 4: In Equation (12), 𝐴𝑜𝑝𝑡𝑑 is a d-dimension adjacent operator that can be defined as

𝐴𝑜𝑝𝑡𝑑 = {𝐿1
𝑑 , 𝐿2

𝑑 , ⋯ , 𝐿𝑇
𝑑 } − 𝟎 (13)

where 𝐿𝑖 is the 𝑖𝑡ℎ coordinate vector ascending as ternary notation, 0 denotes the zero

vector. For example, the adjacent operator in the 2-dimension grid space, as shown in

Figure 2, can be written as

𝐴𝑜𝑝𝑡2 = {⟨−1,1⟩, ⟨−1,0⟩, ⟨−1,1⟩, ⟨0, −1⟩, ⟨0,1⟩, ⟨1, −1⟩, ⟨1,0⟩, ⟨1,1⟩} (14)

Figure 1. Example of multidimensional grid space. (a) 2-dimensional Gaussian dataset; (b) cell
numbering in uniform grid spaces; (c) partitioning in uniform grid space.

Table 1. Meshing result of a 2-dimensional dataset.

Cell Number Location Density Member
1 <1, 1> 1 15
2 <2, 1> 3 1, 3, 7
3 <3, 1> 1 12
5 <1, 2> 1 13
6 <2, 2> 2 4,6
7 <3, 2> 4 10, 17, 18, 19
8 <4, 2> 2 14, 20
11 <3, 3> 2 2, 5
12 <4, 3> 1 11
14 <2, 4> 1 16
15 <3, 4> 1 9
16 <4, 4> 1 8

3.2. Clustering Strategy Based on Adjacent Grids Searching

The clustering is accomplished by using adjacent grid searching. In the grid space GD,
the adjacent cells of a cell CD

i is defined as ACD
i whose locations are

location
(

ACD
i

)
= location

(
CD

i

)
+ Aoptd (12)

Definition 4. In Equation (12), Aoptd is a d-dimension adjacent operator that can be defined as

Aoptd =
{

Ld
1, Ld

2, · · · , Ld
T

}
− 0 (13)

where Li is the ith coordinate vector ascending as ternary notation, 0 denotes the zero vector.
For example, the adjacent operator in the 2-dimension grid space, as shown in Figure 2,
can be written as

Aopt2 = {〈−1, 1〉, 〈−1, 0〉, 〈−1, 1〉, 〈0,−1〉, 〈0, 1〉, 〈1,−1〉, 〈1, 0〉, 〈1, 1〉} (14)Entropy 2023, 25, x FOR PEER REVIEW 7 of 24

adjacent cell

processing cell

nonadjacent cell

Figure 2. Diagram of the 2-dimension adjacent operator.

The clustering process includes two stages called core cell traversal and peripheral

cell clustering, as shown in Algorithm 2. In the first stage, the core cell traversal starts with

the densest cell of unlabeled cells, and a new cluster is established. Meanwhile, the cell

with the highest density is labeled as the center of the cluster. The algorithm then seeks

the nonnull cell from the adjacent cells of each cell in the cluster and adds it to the current

cluster until the cluster cannot be expanded. At the end of this stage, each core cell will be

assigned a label corresponding to a cluster. In the second stage, peripheral cells will be

distributed to clusters established in the first stage. For a peripheral cell, the algorithm

finds the nonnull cells from its adjacent cells and then distributes them to the cluster of

the nearest adjacent cell. In particular, if a peripheral cell does not have nonnull cells from

its adjacent cells, the peripheral cell will be defined as a new cluster. To find the nearest

adjacent cell of a peripheral cell, the distance of two cells is the distance of their centers,

which can be calculated as follows:

𝑐𝑒𝑛𝑡𝑟𝑒(𝐶𝑖
𝐷) =

∑ 𝑋𝑗
𝐷𝑛

𝑗=1

𝑛
 (15)

where n is the point number of the cell 𝐶𝑖
𝐷. 𝑋𝑗

𝐷 is the ith instance of the multidimensional

dataset defined in Equation (2).

Algorithm 2: Pseudocode for low-dimensional clustering based on adjacent grid

searching.

Input: dataset 𝐷𝑑, noise cells NC, peripheral cells PC, core cells CC

Output: cluster label, cluster density, cluster number m

1: Initialization;

2: Find the adjacent cells for each nonnull cell in CC according to Equation (12);

3: Rank all cells in descending order of density;

4: CM←cells number of CC, m←0;

5: For i = 1 to CM Do

6: If the ith cell in CC is not handled, Then

7: m←m + 1, tempCluster←the ith cell in CC, j←1;

8: While not all cells in tempCluster are handled, Do

9: Label the jth cell in tempCluster to be the mth cluster;

10: Add the adjacent cells in CC of the jth cell to tempCluster ;

11: j←j + 1;

12: end While

13: end If

14: end For

15: PM←cells number of PC;

16: While not all cells in PC are handled, Do

17: For i=1 to PM Do

18: If the ith cell in PC is not handled, Then

Figure 2. Diagram of the 2-dimension adjacent operator.

Entropy 2023, 25, 1342 7 of 22

The clustering process includes two stages called core cell traversal and peripheral
cell clustering, as shown in Algorithm 2. In the first stage, the core cell traversal starts with
the densest cell of unlabeled cells, and a new cluster is established. Meanwhile, the cell
with the highest density is labeled as the center of the cluster. The algorithm then seeks
the nonnull cell from the adjacent cells of each cell in the cluster and adds it to the current
cluster until the cluster cannot be expanded. At the end of this stage, each core cell will
be assigned a label corresponding to a cluster. In the second stage, peripheral cells will
be distributed to clusters established in the first stage. For a peripheral cell, the algorithm
finds the nonnull cells from its adjacent cells and then distributes them to the cluster of
the nearest adjacent cell. In particular, if a peripheral cell does not have nonnull cells from
its adjacent cells, the peripheral cell will be defined as a new cluster. To find the nearest
adjacent cell of a peripheral cell, the distance of two cells is the distance of their centers,
which can be calculated as follows:

centre(CD
i) =

∑n
j=1 XD

j

n
(15)

where n is the point number of the cell CD
i . XD

j is the ith instance of the multidimensional
dataset defined in Equation (2).

Algorithm 2: Pseudocode for low-dimensional clustering based on adjacent grid searching.

Input: dataset Dd, noise cells NC, peripheral cells PC, core cells CC
Output: cluster label, cluster density, cluster number m

1: Initialization;
2: Find the adjacent cells for each nonnull cell in CC according to Equation (12);
3: Rank all cells in descending order of density;
4: CM← cells number of CC, m←0;
5: For i = 1 to CM Do
6: If the ith cell in CC is not handled, Then
7: m← m +1, tempCluster← the ith cell in CC, j← 1;
8: While not all cells in tempCluster are handled, Do
9: Label the jth cell in tempCluster to be the mth cluster;
10: Add the adjacent cells in CC of the jth cell to tempCluster;
11: j← j + 1;
12: end While
13: end If
14: end For
15: PM← cells number of PC;
16: While not all cells in PC are handled, Do
17: For i = 1 to PM Do
18: If the ith cell in PC is not handled, Then
19: Find its adjacent cells according to Equation (12);
20: Select the above adjacent cells which are in CC;
21: Calculate the distance between the cell and its adjacent cells in CC according to
Equation (15);
22: Label the ith cell in PC to be the same cluster with its nearest adjacent cell in CC;
23: end If
24: end For
25: end While
26: Label the data points according to their cells;
27: Calculate the mean density of the cells of each cluster;

When clustering a dataset with 5 or more dimensions, the adjacent operator is not
sufficient to find the adjacent cells. Therefore, the adjacent cells of CD

i are redefined by
constructing the k-adjacent vector of each cell in the grid in the space GD. Here, the
k-adjacent vector of the cell CD

i can be found by a threshold as follows

threshold =
√

k (16)

That is, CD
j is defined as the k-adjacent cell of CD

i if the distance between CD
i and CD

j
is less than the threshold. In this paper, the default value of k is 2. Then, the clustering
process could be accomplished by Algorithm 3 instead of Algorithm 2.

Entropy 2023, 25, 1342 8 of 22

Algorithm 3: Pseudocode for high-dimensional clustering based on k-adjacent cells searching.

Input: dataset Dd, multidimensional grid space Gd

Output: cluster label, cluster density, cluster number m
1: Initialization;
2: Rank all cells in descending order of density;
3: M← cells number of Gd;
4: Traverse all grids; for the ith cell, construct its k-adjacent vector from the (i + 1)th to Mth

cells according to Equation (16);
5: m← 0
6: For i = 1 to M Do
7: If the ith cell exists, Then
8: m← m + 1;
9: Label the ith cell to be the mth cluster;
10: Find the k-adjacent cells of the ith cell;
11: Label these k-adjacent cells to be the mth cluster;
12: Delete these k-adjacent cells and the current cell;
13: end If
14: end For
15: Label the data points according to their cells;
16: Calculate the mean density of the cells of each cluster;

According to Algorithms 1 and 2, the proposed algorithm is efficient with time com-
plexity less than O(M2), where M is the number of cells. The relationship between M and N
depends on the distribution density of the dataset. In most engineering applications, the
distribution density increases with the scale of the dataset. Therefore, the time complexity
of CAGS decreases with the number of data points. As a rule of thumb, M is usually less
than

√
N, thus, the time complexity of CAGS is less than O(N).

3.3. Selection and Calculation of the Input Parameters

In our method, the noise points could be distinguished by using a noise threshold

threN =
∑M1

i=1 density
(
CD

i
)

M1
fN (17)

where fN is the noise coefficient, M1 is the number of nonnull cells. The cells whose density
is smaller than threN will be defined as noise cells and not considered in the next step.

To identify overlap between two adjacent clusters, a halo threshold is proposed to
divide the cells into peripheral cells and core cells. If the density of a cell is smaller than
the halo threshold, it will be considered a peripheral cell; otherwise, it will be considered a
core cell. The halo threshold can be calculated as

threH =
∑M2

i=1 density
(
CD

i
)

M2
fH (18)

where fH is the halo coefficient, M2 is the total number of nonnull cells after denoising.
In CAGS, the number of clusters could be automatically recognized so that it is not

required as an input parameter. However, three essential input parameters need to be
determined before clustering. The first one is the resolution coefficient fR which determines
the level of detail of the grid space. The larger fR results from the denser grid space, which
means that more details of the dataset can be discovered. However, a very large fR may
lead to a decrease in clustering efficiency and fragmentation of clusters. The fR is usually
set from 0.3 to 3. The second parameter called the noise coefficient fN , needs to be set
according to the noise level of the dataset. The threshold to define the noise data is adapted
to the density distribution of the dataset so that the selection of fN is insensitive to the
dense level of the dataset. If a larger fN is given, data points with higher noise levels will
be detected, and vice versa. The fN is usually set from 0 to 1.5. The third parameter named
the halo coefficient fH is used to divide the cells into peripheral cells and core cells. If the
clusters of a dataset have no overlap, the fH can be set to 0, which means no peripheral
cells will be defined. The fH is usually set from 0 to 3.

Entropy 2023, 25, 1342 9 of 22

The visualization of the clustering process using CAGS and the influence of the noise
coefficient and halo coefficient are shown in Figures 3 and 4. In Figure 3a, we can see that
two classes of data points overlap with each other, as well as many noise points exist in the
background. The data points are first put in the grid space, as shown in Figure 3b. In our
method, noise points can be easily detected through the distribution density that is recorded
in the cells. When f N is set to 0.4, the noise points are well identified in Figure 3c. Then,
the meshing process is reused to the denoised data, and the new grid space is constructed.
A traversal strategy is adopted to find clusters with arbitrary shapes rather than the
iterative optimization strategy, such as that of k-means. However, overlapping parts will
bring challenges to clustering because the traversal strategy establishes undifferentiated
connectivity. That is, it is contradictory to simultaneously discover the clusters with
arbitrary shapes that overlap with each other. Therefore, we use the distribution density
again to identify the halo part of clusters. This is effective because overlapping parts
between clusters, namely the edges of clusters, often have a lower distribution density than
that of the cores of the clusters. When f H is set to 0.5, the halo points are well identified in
Figure 3e. In most cases, small changes in the noise coefficient and halo coefficient have
little impact on clustering results, as can be demonstrated in Figure 4. The larger the f N,
the more noise points are identified. However, it can be seen from Figure 4a–c that the
main parts of the two clusters have been preserved even if f N increases from 0.4 to 1.6. In
addition, identifying more or fewer halo cells does not change the clustering results, as the
cluster centers are successfully identified, as shown in Figure 4d,e.

Entropy 2023, 25, x FOR PEER REVIEW 10 of 24

(a) (b) (c)

(f) (e) (d)

overlapping

pointsperipheral cells

noise cell noise pointnoise point

overlapping

points

meshing denoising

meshing

clustering
identifying

halo

Figure 3. Visualization of clustering process using CAGS (a) raw data; (b) raw data in the grid space;

(c) data after denoise; (d) denoised data in the new grid space; (e) denoised data after identifying

halo; (f) clustering result.

(a) (b) (c)

fN=0.4 fN=0.8 fN=1.6

(d) (e) (f)

fH=0.5 fH=1.5 fH=3

Figure 4. Influence of the noise coefficient and halo coefficient (a) fN = 0.4; (b) fN = 0.8 ;(c) fN = 1.6; (d)

fH = 0.4; (e) fH = 1.5; (f) fH = 3.

An optional input parameter called the merger coefficient 𝑓𝑀 is proposed for the op-

timization of the clustering results. The purpose of clustering result optimization is to

merge the unnecessary small clusters into the main clusters. The 𝑓𝑀 could be set to 0 if

the clustering results need not be optimized. For a given cluster, the cluster scale is defined

as the number of cells, which can be written as 𝑠𝑐𝑎𝑙𝑒(𝑘). If this value is lower than the

given threshold, the corresponding cluster is considered an unnecessary, small cluster.

The scale threshold can be calculated as follows

𝑡ℎ𝑟𝑒𝑀 = 𝑓𝑀(𝑠𝑐𝑎𝑙𝑒𝑚𝑎𝑥 − 𝑠𝑐𝑎𝑙𝑒𝑚𝑖𝑛) (19)

where 𝑓𝑀 is the merger coefficient.

Figure 3. Visualization of clustering process using CAGS (a) raw data; (b) raw data in the grid space;
(c) data after denoise; (d) denoised data in the new grid space; (e) denoised data after identifying
halo; (f) clustering result.

An optional input parameter called the merger coefficient fM is proposed for the
optimization of the clustering results. The purpose of clustering result optimization is to
merge the unnecessary small clusters into the main clusters. The fM could be set to 0 if the
clustering results need not be optimized. For a given cluster, the cluster scale is defined as
the number of cells, which can be written as scale(k). If this value is lower than the given
threshold, the corresponding cluster is considered an unnecessary, small cluster. The scale
threshold can be calculated as follows

threM = fM(scalemax − scalemin) (19)

where fM is the merger coefficient.

Entropy 2023, 25, 1342 10 of 22

Entropy 2023, 25, x FOR PEER REVIEW 10 of 24

(a) (b) (c)

(f) (e) (d)

overlapping

pointsperipheral cells

noise cell noise pointnoise point

overlapping

points

meshing denoising

meshing

clustering
identifying

halo

Figure 3. Visualization of clustering process using CAGS (a) raw data; (b) raw data in the grid space;

(c) data after denoise; (d) denoised data in the new grid space; (e) denoised data after identifying

halo; (f) clustering result.

(a) (b) (c)

fN=0.4 fN=0.8 fN=1.6

(d) (e) (f)

fH=0.5 fH=1.5 fH=3

Figure 4. Influence of the noise coefficient and halo coefficient (a) fN = 0.4; (b) fN = 0.8 ;(c) fN = 1.6; (d)

fH = 0.4; (e) fH = 1.5; (f) fH = 3.

An optional input parameter called the merger coefficient 𝑓𝑀 is proposed for the op-

timization of the clustering results. The purpose of clustering result optimization is to

merge the unnecessary small clusters into the main clusters. The 𝑓𝑀 could be set to 0 if

the clustering results need not be optimized. For a given cluster, the cluster scale is defined

as the number of cells, which can be written as 𝑠𝑐𝑎𝑙𝑒(𝑘). If this value is lower than the

given threshold, the corresponding cluster is considered an unnecessary, small cluster.

The scale threshold can be calculated as follows

𝑡ℎ𝑟𝑒𝑀 = 𝑓𝑀(𝑠𝑐𝑎𝑙𝑒𝑚𝑎𝑥 − 𝑠𝑐𝑎𝑙𝑒𝑚𝑖𝑛) (19)

where 𝑓𝑀 is the merger coefficient.

Figure 4. Influence of the noise coefficient and halo coefficient (a) f N = 0.4; (b) f N = 0.8; (c) f N = 1.6;
(d) f H = 0.4; (e) f H = 1.5; (f) f H = 3.

4. Performance Evaluation
4.1. Datasets

As mentioned in the introduction, several typical problems have a significant impact
on performance in the clustering of most real-world datasets, so CAGS will be tested
on 6 different types of datasets, as shown in Table 2. Most of these datasets, with the
exception of Test V and Test X, are selected from the benchmark datasets and renowned
references. In Test V, we propose a type of synthetic high-dimensional dataset with a
dense distribution where clusters can be found in the same subspace. In Test X, we set the
distribution of clusters as a Gaussian distribution, which is very common in the real world.
The distribution density of adjacent clusters is quite different, which leads to a disturbance
from the higher-density cluster to the lower-density cluster in the clustering process. In
this section, a series of experiments are staged to study the performance of CAGS. All
experiments were run on a PC with a 2.40 GHz processor and 4 GB RAM.

When ground truth is available, the external clustering evaluation provides more
reliable results than the internal clustering evaluation by comparing cluster labels with
the class labels. In this paper, five external clustering evaluation indicators are adopted as
follows:

(1) Purity (PUR) [27]

PUR =
1
n

K

∑
k=1

max
1≤k∗≤K∗

nk,k∗ (20)

(2) Cluster similarity measure (CSM) [28]

CSM =
1
n

K

∑
k=1

max
1≤k∗≤K∗

2nk,k∗
nk + nk∗

(21)

(3) Normalized mutual information (NMI) [29]

NMI =

K
∑

k=1

K∗
∑

k∗=1
nk,k∗ log(n · nk,k∗/nk/nk∗)√(

K
∑

k=1
nk log(nk/n)

)(
K∗
∑

k∗=1
nk∗ log(nk∗/n)

) (22)

Entropy 2023, 25, 1342 11 of 22

(4) Cluster-based cross entropy (CluCE) [27]

CluCE = − 1
log K

K∗
∑

k∗=1

nk∗
n

K

∑
k=1

nk,k∗
nk∗

log
nk,k∗
nk∗

(23)

(5) Class-based cross entropy (ClaCE) [27]

ClaCE = − 1
log K∗

K

∑
k=1

nk
n

K∗
∑
k=1

nk,k∗
nk

log
nk,k∗
nk

(24)

where n is the number of data points, nk and nk* denote the number of data points in class
k and cluster k*, nk,k* denotes the number of data points in class k as well as in cluster k*.
The performance indexes PUR, CSM, and NMI are used to measure the effectiveness of
clustering. It illustrates a better clustering quality when the clustering result shows higher
PUR, CSM, and NMI. If nk,k* = nk = nk*, their scores will reach 1, indicating a perfect match
between the ground truth and clustering results. Conversely, they approach 0.

Table 2. Test data of 6 different types of datasets.

Symbol Data Set Description

Test I
Synthetic point distributions
with different levels of
white noise

The synthetic datasets with different levels of
white noise are proposed in clustering by fast
search and finding of density peaks [11].

Test II Large-scale datasets
The large-scale datasets are proposed in BIRCH,
an efficient data clustering method for very large
databases [7].

Test III Wine
The dataset wine is selected from the benchmark
datasets of the UCI machine learning
repository [30].

Test IV Grammatical facial expression
The dataset grammatical facial expression is
proposed in grammatical facial expression
recognition with machine learning [31].

Test V Synthetic high dimensional
dense datasets

The dataset has d + 1 clusters in an orthogonal
space with d dimensions. The ith cluster contains
Ni points with Gaussian distribution around a
center point whose ith coordinate is 1, and the
other coordinates are 0. In particular, all
coordinates of the center point of the 0th cluster
are 0.

Test VI Flame
The dataset flame is proposed in FLAME, a
novel fuzzy clustering method for the analysis of
DNA microarray data [32].

Test VII 3-spiral The dataset 3-spiral is proposed in robust
path-based spectral clustering [33].

Test VIII Jain The dataset Jain is proposed in Data Clustering:
A User’s Dilemma [34].

Test IX Sticks The dataset sticks are proposed in robust
path-based spectral clustering [33].

Test X Synthetic point distributions
with large density contrast

The dataset contains 4 clusters which have 100,
50, 200, and 5000 points from bottom left to top
right, respectively. The largest density contrast is
nearly 25 times.

Test XI Data set S3 This dataset is proposed in the iterative
shrinking method for clustering problems [35].

To make a valid comparison, we choose the best result of each algorithm under many
different input parameters in each test. All the parameters of the clustering algorithms are
classified into three types. The first type of parameters can correspond to the real world,
such as the actual number of clusters in k-means and CFSFDP. For this type of parameter, the

Entropy 2023, 25, 1342 12 of 22

proper values are adopted. The second type of parameter has a straightforward meaning
that corresponds to the clustering model, such as num_cells in WaveCluster, which denotes
the number of cells per dimension in the grid space. For this type of parameter, a wide range
of values are adopted to find the optimal clustering results. The standard for determining
boundary values is that as the parameter values increase (or decrease), the clustering
results continue to deteriorate. The third type of parameters are some key variables in the
clustering process that usually have complicated meanings, such as weights in WaveCluster
and eps in DBSCAN. For this type of parameter, the default values recommended by
algorithms are used.

4.2. Clustering Datasets with Noise

Most datasets in the real world contain noise, so the ability to process noise data will
greatly improve the recognition accuracy of the clustering algorithm. Synthetic datasets
with different levels of white noise (Figure 5) proposed in [11] are used to test the perfor-
mance of clustering datasets with noise. In this test, SNR is defined as the ratio of non-noise
points to all points. Table 3 shows the best-performing values of input parameters selected
for the algorithms in Test I. Table 4 shows the clustering results of k-means, DBSCAN,
CFSFDP, WaveCluster, FDGB, and CAGS on Test I. The best score of the indicator is marked
in bold, and the worst score is marked in italics. It can be seen that CAGS almost outper-
forms other algorithms at all levels of noise. Algorithms k-means, WaveCluster, and FDGB
are significantly affected by noisy data.

Entropy 2023, 25, x FOR PEER REVIEW 13 of 24

4.2. Clustering Datasets with Noise

Most datasets in the real world contain noise, so the ability to process noise data will

greatly improve the recognition accuracy of the clustering algorithm. Synthetic datasets

with different levels of white noise (Figure 5) proposed in [11] are used to test the perfor-

mance of clustering datasets with noise. In this test, SNR is defined as the ratio of non-

noise points to all points. Table 3 shows the best-performing values of input parameters

selected for the algorithms in Test Ⅰ. Table 4 shows the clustering results of k-means,

DBSCAN, CFSFDP, WaveCluster, FDGB, and CAGS on Test Ⅰ. The best score of the indi-

cator is marked in bold, and the worst score is marked in italics. It can be seen that CAGS

almost outperforms other algorithms at all levels of noise. Algorithms k-means, Wave-

Cluster, and FDGB are significantly affected by noisy data.

Figure 5. Clustering results for synthetic datasets with noise. (a–d) Point distributions for samples

of 5000 points and the SNR are 100%, 90%, 70%, and 50%, respectively.

Table 3. Best performing values of input parameters selected for the algorithms in Test Ⅰ.

Algorithm SNR = 100% SNR = 90% SNR = 70% SNR = 50%

k-means

k 4 4 4 4

DBSCAN

k 10 6 8 4

Eps Default Default Default Default

CFSFDP

k 4 4 4 4

WaveCluster

weights Default Default Default Default

num_cells 250 250 250 250

densitythreshold 0% 5% 25% 40%

level 1 1 1 1

FDGB

no_grid 20 20 20 20

thre_grid_length 1.1 1.1 1.1 1.1

cutoff_factor 0.21 0.21 0.21 0.21

noise_thre 0 1 1.5 2.5

CAGS

Nfac 0 0.35 0.7 1.6

Rfac 0.3 0.3 0.3 0.3

Hfac 0.5 0.5 0.5 0.5

Mfac 0 0 0 0

Figure 5. Clustering results for synthetic datasets with noise. (a–d) Point distributions for samples of
5000 points and the SNR are 100%, 90%, 70%, and 50%, respectively.

Table 3. Best performing values of input parameters selected for the algorithms in Test I.

Algorithm SNR = 100% SNR = 90% SNR = 70% SNR = 50%

k-means
k 4 4 4 4

DBSCAN
k 10 6 8 4

Eps Default Default Default Default

CFSFDP
k 4 4 4 4

WaveCluster
weights Default Default Default Default

num_cells 250 250 250 250
densitythreshold 0% 5% 25% 40%

level 1 1 1 1

FDGB
no_grid 20 20 20 20

thre_grid_length 1.1 1.1 1.1 1.1
cutoff_factor 0.21 0.21 0.21 0.21
noise_thre 0 1 1.5 2.5

CAGS
Nfac 0 0.35 0.7 1.6
Rfac 0.3 0.3 0.3 0.3
Hfac 0.5 0.5 0.5 0.5
Mfac 0 0 0 0

Entropy 2023, 25, 1342 13 of 22

Table 4. Clustering results of datasets with different levels of noise (Test I).

Algorithm SNR = 100% SNR = 90% SNR = 70% SNR = 50%

PUR
k-means 1.00 0.89 0.69 0.49

DBSCAN 0.99 0.97 0.89 0.72
CFSFDP 1.00 0.93 0.90 0.88

WaveCluster 0.80 0.75 0.55 0.34
FDGB 0.95 0.87 0.68 0.49
CAGS 1.00 0.96 0.92 0.88

CSM
k-means 1.00 0.80 0.71 0.58

DBSCAN 0.83 0.95 0.90 0.90
CFSFDP 1.00 0.87 0.90 0.88

WaveCluster 0.73 0.80 0.77 0.70
FDGB 0.97 0.95 0.92 0.87
CAGS 1.00 0.96 0.92 0.88

NMI
k-means 0.98 0.83 0.65 0.49

DBSCAN 0.98 0.92 0.80 0.64
CFSFDP 1.00 0.86 0.80 0.74

WaveCluster 0.75 0.77 0.74 0.68
FDGB 0.92 0.90 0.80 0.76
CAGS 1.00 0.92 0.81 0.77

CluCE
k-means 0.02 0.19 0.34 0.39

DBSCAN 0.01 0.07 0.17 0.10
CFSFDP 0.00 0.15 0.17 0.18

WaveCluster 0.17 0.14 0.14 0.14
FDGB 0.04 0.07 0.13 0.15
CAGS 0.00 0.07 0.17 0.14

ClaCE
k-means 0.02 0.11 0.29 0.46

DBSCAN 0.03 0.07 0.20 0.32
CFSFDP 0.00 0.11 0.21 0.26

WaveCluster 0.18 0.12 0.13 0.16
FDGB 0.10 0.11 0.18 0.24
CAGS 0.00 0.08 0.19 0.17

4.3. Clustering Large-Scale Datasets

The ability to process large-scale datasets determines the scope of application of a
clustering algorithm. This experiment is carried out on the dataset proposed in [6], as
shown in Figure 6. To study the changes in clustering performance with the increasing
scale of datasets, four datasets, each of which has 100 clusters, are set, and the total number
of points N is set as 1 × 104, 2 × 104, 5 × 104, and 10 × 104, respectively. Table 5 shows
the best-performing values of input parameters selected for the algorithms in Test II. From
the clustering results of large-scale datasets (Table 6), we can see that CAGS can give the
best clustering accuracy for each dataset. The highest clustering accuracy of different
algorithms is marked in bold, the lowest clustering accuracy is marked in italics, the highest
operating efficiency is marked in bold, and the lowest operating efficiency is marked in
italics. Although WaveCluster shows high efficiency in time, it obtains the worst accuracy.
For WaveCluster, clustering failed due to the connection between clusters in the dataset,
whereby the density difference between the cluster boundary and the cluster center is
weakened. Therefore, the wavelet algorithm cannot effectively detect boundaries. To
solve this problem, the points at the boundary of the clusters are set as noise to create
boundaries between clusters. The processing time of k-means, CFSFDP, and DBSCAN
increases rapidly due to their point-based clustering principle. When the total number
exceeds 2 × 104, CFSFDP cannot run on the computer since the processing data grows out
of memory. When the total number exceeds 10 × 104, CAGS outperforms other algorithms
except WaveCluster.

Entropy 2023, 25, 1342 14 of 22

Entropy 2023, 25, x FOR PEER REVIEW 15 of 24

whereby the density difference between the cluster boundary and the cluster center is

weakened. Therefore, the wavelet algorithm cannot effectively detect boundaries. To

solve this problem, the points at the boundary of the clusters are set as noise to create

boundaries between clusters. The processing time of k-means, CFSFDP, and DBSCAN in-

creases rapidly due to their point-based clustering principle. When the total number ex-

ceeds 2 × 104, CFSFDP cannot run on the computer since the processing data grows out of

memory. When the total number exceeds 10 × 104, CAGS outperforms other algorithms

except WaveCluster.

Figure 6. Large-scale dataset with 105 points.

Table 5. Best performing values of input parameters selected for the algorithms in Test Ⅱ.

Algorithm N = 1 × 104 N = 2 × 104 N = 5 × 104 N = 10 × 104

k-means

k 100 100 100 100

DBSCAN

k 1 1 1 1

Eps Default Default Default Default

CFSFDP

k 100 / / /

WaveCluster

weights Default Default Default Default

num_cells 110 110 110 110

densitythreshold 60% 60% 60% 60%

level 2 2 2 2

FDGB

no_grid 30 30 30 30

thre_grid_length 1.5 1.5 1.5 1.5

cutoff_factor 0.5 0.5 0.5 0.5

noise_thre 1 1 1 1

CAGS

Nfac 0 0 0 0

Rfac 0.5 2^(−0.5)/2 5^(−0.5)/2 10^(−0.5)/2

Hfac 1 1 1 1

Mfac 0 0 0 0

Figure 6. Large-scale dataset with 105 points.

Table 5. Best performing values of input parameters selected for the algorithms in Test II.

Algorithm N = 1 × 104 N = 2 × 104 N = 5 × 104 N = 10 × 104

k-means
k 100 100 100 100

DBSCAN
k 1 1 1 1

Eps Default Default Default Default

CFSFDP
k 100 / / /

WaveCluster
weights Default Default Default Default

num_cells 110 110 110 110
densitythreshold 60% 60% 60% 60%

level 2 2 2 2

FDGB
no_grid 30 30 30 30

thre_grid_length 1.5 1.5 1.5 1.5
cutoff_factor 0.5 0.5 0.5 0.5
noise_thre 1 1 1 1

CAGS
Nfac 0 0 0 0
Rfac 0.5 2ˆ(−0.5)/2 5ˆ(−0.5)/2 10ˆ(−0.5)/2
Hfac 1 1 1 1
Mfac 0 0 0 0

Table 6. Clustering results of large-scale datasets (Test II).

Algorithm N = 1 × 104 N = 2 × 104 N = 5 × 104 N = 10 × 104

PUR
k-means 0.87 0.88 0.91 0.86

DBSCAN 0.84 0.87 0.86 0.85
CFSFDP 0.43 / / /

WaveCluster 0.78 0.81 0.81 0.82
FDGB 0.91 0.92 0.91 0.92
CAGS 0.95 0.96 0.97 0.97

CSM
k-means 0.85 0.87 0.87 0.87

DBSCAN 0.86 0.92 0.91 0.90
CFSFDP 0.57 / / /

WaveCluster 0.79 0.81 0.82 0.82
FDGB 0.92 0.93 0.93 0.94
CAGS 0.96 0.97 0.97 0.97

NMI
k-means 0.93 0.94 0.94 0.93

DBSCAN 0.90 0.90 0.89 0.87
CFSFDP 0.85 / / /

WaveCluster 0.76 0.77 0.78 0.78
FDGB 0.94 0.94 0.93 0.93
CAGS 0.96 0.96 0.96 0.96

Entropy 2023, 25, 1342 15 of 22

Table 6. Cont.

Algorithm N = 1 × 104 N = 2 × 104 N = 5 × 104 N = 10 × 104

CluCE
k-means 0.08 0.07 0.07 0.07

DBSCAN 0.12 0.10 0.11 0.12
CFSFDP 0.21 / / /

WaveCluster 0.31 0.30 0.29 0.29
FDGB 0.07 0.07 0.07 0.08
CAGS 0.04 0.04 0.04 0.04

ClaCE
k-means 0.06 0.06 0.06 0.06

DBSCAN 0.07 0.08 0.09 0.09
CFSFDP 0.07 / / /

WaveCluster 0.13 0.14 0.14 0.14
FDGB 0.05 0.06 0.06 0.07
CAGS 0.04 0.04 0.04 0.04

Time (s)
k-means 0.66 1.37 4.02 19.35

DBSCAN 2.39 8.77 52.6 456
CFSFDP 13.86 / / /

WaveCluster 0.009 0.006 0.011 0.021
FDGB 0.11 0.10 0.17 0.31
CAGS 11.0 13.2 15.5 18.5

4.4. Clustering High Dimensional Dataset

Generally, a dataset with more than 10 dimensions can be considered a high-dimensional
dataset [31]. The high-dimensional datasets can be divided by the distribution of data
points in high-dimensional space into two types: high-dimensional sparse datasets and
high-dimensional dense datasets. The data points of a high-dimensional sparse dataset
present a distribution in which the clusters are highly fragmented in space with a tremen-
dous number of grids. Conversely, the data points of high-dimensional dense datasets are
spatially concentrated through which some clusters could be found in the grid cells. In
this paper, two high-dimensional sparse datasets selected from the benchmark datasets
of the UCI machine learning repository are used for the test, called wine [30] and gram-
matical facial expression [31], respectively. The dataset wine has 178 instances of 3 types
of wines distributed in a 13-dimensional space with at least 8192 grid cells. The dataset
grammatical facial expression has 7580 instances of 5 types of expressions distributed in a
300-dimensional space with at least 2 × 1090 grid cells. Therefore, for grid-based clustering
methods, the data points are very sparse in high-dimensional grid space. Meanwhile, other
grid-based methods do not adaptively generate cells but rather generate all the cells in
the grid space. This results in the grid space occupying more memory than the computer
can handle. Therefore, in this section, WaveCluster and FDGB cannot be considered in
the comparison. For the clustering methods that directly address the data points, such as
k-means, DBSCAN, and CFSFDP, the clustering depends on the distances between data
points by which the attributes of each dimension are averaged. This is not conducive to
clustering. Table 7 shows the best-performing values of input parameters selected for the
algorithms in Test III to Test V. The results in Tables 8 and 9 show that CAGS outperforms
other algorithms in terms of overall performance.

Table 7. Best performing values of input parameters selected for the algorithms in Test III to Test V.

Algorithm Test III Test IV
Test V (Dimension Number)

10 20 30 40

k-means
k 3 5 11 21 31 41

DBSCAN
k 2 4 10 10 10 10

Eps Default Default Default Default Default Default

Entropy 2023, 25, 1342 16 of 22

Table 7. Cont.

Algorithm Test III Test IV
Test V (Dimension Number)

10 20 30 40
CFSFDP

k 3 5 11 21 31 41

CAGS
Nfac 0 0 0 0 0 0
Rfac 1.5 5 0.5 0.5 0.5 0.5
Hfac 0 0 0 0 0 0
Mfac 0.4 0.5 0 0 0 0

Table 8. Clustering results of high dimensional sparse dataset: wine (Test III).

Algorithm PUR CSM NMI CluCE ClaCE Time

k-means 0.70 0.70 0.43 0.56 0.56 0.09
DBSCAN 0.02 0.37 0.05 0.77 0.05 0.02
CFSFDP 0.71 0.71 0.42 0.57 0.58 0.26
CAGS 0.74 0.74 0.36 0.64 0.63 0.63

Table 9. Clustering results of high dimensional sparse dataset: grammatical facial expression (Test IV).

Algorithm PUR CSM NMI CluCE ClaCE Time

k-means 0.40 0.43 0.18 0.81 0.66 0.08
DBSCAN 0.27 0.33 err 0.98 0 203
CFSFDP 0.38 0.38 0.18 0.84 0.44 3.15
CAGS 0.62 0.64 0.56 0.54 0.19 0.54

In this paper, a simple model for generating high-dimensional dense datasets is
proposed. Using this model, a d-dimensional dataset with d + 1 clusters can be generated.
All clusters have Gaussian distribution with the same σ2 = 0.1, as well as the (i + 1)th cluster
has a µ = 〈0, 0, ..., 1, 0, ..., 0〉 that the ith coordinate value is 1 and other coordinate values are
0. Each cluster has 100 instances. For visualization, scatter plots of 2-dimensional dataset
and 3-dimensional dataset are provided, as shown in Figure 7.

Entropy 2023, 25, x FOR PEER REVIEW 18 of 24

In this paper, a simple model for generating high-dimensional dense datasets is pro-

posed. Using this model, a d-dimensional dataset with d + 1 clusters can be generated. All

clusters have Gaussian distribution with the same 𝜎2 = 0.1, as well as the (i + 1)th cluster

has a 𝜇 = 〈0,0, . . . ,1,0, . . . ,0〉 that the ith coordinate value is 1 and other coordinate values

are 0. Each cluster has 100 instances. For visualization, scatter plots of 2-dimensional da-

taset and 3-dimensional dataset are provided, as shown in Figure 7.

(a) (b)

Figure 7. Visualization of high-dimensional dense datasets. (a) scatter plot of 2-dimensional dataset

(b) scatter plot of 3-dimensional dataset.

The results of Test V, as shown in Table 10, demonstrate that CAGS provides the best

clustering accuracy when the dimensions number 𝑑 are 10, 20, 30, and 40, respectively.

In this test, CAGS achieves clustering by generating a few grids, so the processing speed

is very fast. Through Test Ⅲ, Test Ⅳ, and Test V, the effectiveness of CAGS can be found

in both high dimensional sparse datasets and dense datasets.

Table 10. Clustering results of high dimensional dense datasets (Test V).

Algorithm
Dimension

Number
PUR CSM NMI CluCE ClaCE Time

k-means

10 0.74 0.82 0.91 0.13 0.05 0.03

20 0.61 0.68 0.86 0.21 0.06 0.03

30 0.86 0.91 0.97 0.04 0.02 0.08

40 0.56 0.64 0.86 0.21 0.06 0.08

DBSCAN

10 0.09 0.16 err 1 0 0.12

20 0.05 0.09 err 1 0 1.42

30 0.03 0.06 err 1 0 4.81

40 0.02 0.05 err 1 0 27.5

CFSFDP

10 1 1 1 0 0 0.13

20 0.72 0.75 0.87 0.21 0.03 0.55

30 0.55 0.65 0.86 0.23 0.03 1.37

40 0.54 0.63 0.87 0.23 0.02 2.58

CAGS

10 1 1 1 0 0 0.01

20 1 1 1 0 0 0.01

30 1 1 1 0 0 0.01

40 1 1 1 0 0 0.02

4.5. Clustering Dataset with Arbitrary Shapes

The datasets with arbitrary shapes are common to be seen in the pixel distribution,

and the clustering of these datasets contributes to image processing. Four typical datasets

0 1

0

1

0

1

0
1 1

0

the first
cluster

the second
cluster

the third
cluster

the first
cluster

the second
cluster

the third
cluster

the fourth
cluster

Figure 7. Visualization of high-dimensional dense datasets. (a) scatter plot of 2-dimensional dataset
(b) scatter plot of 3-dimensional dataset.

The results of Test V, as shown in Table 10, demonstrate that CAGS provides the best
clustering accuracy when the dimensions number d are 10, 20, 30, and 40, respectively. In
this test, CAGS achieves clustering by generating a few grids, so the processing speed is
very fast. Through Test III, Test IV, and Test V, the effectiveness of CAGS can be found in
both high dimensional sparse datasets and dense datasets.

Entropy 2023, 25, 1342 17 of 22

Table 10. Clustering results of high dimensional dense datasets (Test V).

Algorithm Dimension
Number PUR CSM NMI CluCE ClaCE Time

k-means

10 0.74 0.82 0.91 0.13 0.05 0.03
20 0.61 0.68 0.86 0.21 0.06 0.03
30 0.86 0.91 0.97 0.04 0.02 0.08
40 0.56 0.64 0.86 0.21 0.06 0.08

DBSCAN

10 0.09 0.16 err 1 0 0.12
20 0.05 0.09 err 1 0 1.42
30 0.03 0.06 err 1 0 4.81
40 0.02 0.05 err 1 0 27.5

CFSFDP

10 1 1 1 0 0 0.13
20 0.72 0.75 0.87 0.21 0.03 0.55
30 0.55 0.65 0.86 0.23 0.03 1.37
40 0.54 0.63 0.87 0.23 0.02 2.58

CAGS

10 1 1 1 0 0 0.01
20 1 1 1 0 0 0.01
30 1 1 1 0 0 0.01
40 1 1 1 0 0 0.02

4.5. Clustering Dataset with Arbitrary Shapes

The datasets with arbitrary shapes are common to be seen in the pixel distribution,
and the clustering of these datasets contributes to image processing. Four typical datasets
with arbitrary shapes (as shown in Figure 8) called Flame [32], 3-spiral [33], Jain [34], and
Sticks [33] are chosen to test the clustering performance. Table 11 shows the best-performing
values of input parameters selected for the algorithms in Test VI to Test IX. The results in
Table 12 demonstrate that CAGS can successfully process the datasets with different kinds
of complex shapes. Obviously, k-means are ineffective when processing spiral-shaped data.
For DBSCAN, clustering failed due to the connection between two clusters in the dataset
Flame. It is notable that CFSFDP performs poorly on the dataset Sticks because the density
contrast between different clusters is too large. In addition, despite extensive attempts, we
have not yet found the optimal parameters for FDGB to successfully cluster datasets of
Test VI and Test VII, as mentioned in [21].

Entropy 2023, 25, x FOR PEER REVIEW 19 of 24

with arbitrary shapes (as shown in Figure 8) called Flame [32], 3-spiral [33], Jain [34], and

Sticks [33] are chosen to test the clustering performance. Table 11 shows the best-perform-

ing values of input parameters selected for the algorithms in Test VI to Test IX. The results

in Table 12 demonstrate that CAGS can successfully process the datasets with different

kinds of complex shapes. Obviously, k-means are ineffective when processing spiral-

shaped data. For DBSCAN, clustering failed due to the connection between two clusters

in the dataset Flame. It is notable that CFSFDP performs poorly on the dataset Sticks be-

cause the density contrast between different clusters is too large. In addition, despite ex-

tensive attempts, we have not yet found the optimal parameters for FDGB to successfully

cluster datasets of Test VI and Test VII, as mentioned in [21].

Figure 8. Distribution of datasets with complex shapes. (a) Flame (b) 3-spiral (c) Jain (d) Sticks (Test

VI to Test IX).

Table 11. Best performing values of input parameters selected for the algorithms in Test VI to Test

IX.

Algorithm Flame 3-Spiral Jain Sticks

k-means

k 2 3 2 4

DBSCAN

k 2 2 2 2

Eps Default Default Default Default

CFSFDP

k 2 3 2 4

WaveCluster

weights Default Default Default Default

num_cells 100 100 100 100

densitythreshold 0% 20% 30% 30%

level 1 2 2 2

FDGB

no_grid 20 20 20 10

thre_grid_length 1.1 1.1 1.1 1.1

cutoff_factor 0.95 0.21 0.21 0.21

noise_thre 0 0 0 0

CAGS

Nfac 0 0 0 0

Rfac 0.5 1.5 0.8 0.5

Hfac 0.9 0 1.2 0

Mfac 0.1 0 0 0

Table 12. Clustering results of the dataset with arbitrary shapes (Test VI to Test IX).

Algorithm Flame 3-Spiral Jain Sticks

Figure 8. Distribution of datasets with complex shapes. (a) Flame (b) 3-spiral (c) Jain (d) Sticks
(Test VI to Test IX).

Table 11. Best performing values of input parameters selected for the algorithms in Test VI to Test IX.

Algorithm Flame 3-Spiral Jain Sticks

k-means
k 2 3 2 4

DBSCAN
k 2 2 2 2

Eps Default Default Default Default

CFSFDP
k 2 3 2 4

Entropy 2023, 25, 1342 18 of 22

Table 11. Cont.

Algorithm Flame 3-Spiral Jain Sticks

WaveCluster
weights Default Default Default Default

num_cells 100 100 100 100
densitythreshold 0% 20% 30% 30%

level 1 2 2 2

FDGB
no_grid 20 20 20 10

thre_grid_length 1.1 1.1 1.1 1.1
cutoff_factor 0.95 0.21 0.21 0.21
noise_thre 0 0 0 0

CAGS
Nfac 0 0 0 0
Rfac 0.5 1.5 0.8 0.5
Hfac 0.9 0 1.2 0
Mfac 0.1 0 0 0

Table 12. Clustering results of the dataset with arbitrary shapes (Test VI to Test IX).

Algorithm Flame 3-Spiral Jain Sticks
PUR

k-means 0.84 0.35 0.79 0.75
DBSCAN 0.44 1 0.93 1
CFSFDP 0.79 1 0.86 0.41

WaveCluster 0.59 1 0.89 1
FDGB 0.64 0.60 0.91 0.99
CAGS 0.98 1 1 1

CSM
k-means 0.84 0.35 0.77 0.75

DBSCAN 0.42 1 0.61 1
CFSFDP 0.79 1 0.84 0.50

WaveCluster 0.75 1 0.87 1
FDGB 0.67 0.75 0.90 0.99
CAGS 0.98 1 1 1

NMI
k-means 0.43 0.00 0.37 0.70

DBSCAN 0.46 1 0.87 1
CFSFDP 0.41 1 0.51 0.42

WaveCluster 0.55 1 0.76 1
FDGB 0.65 0.78 0.90 0.95
CAGS 0.87 1 1 1

CluCE
k-means 0.53 1 0.49 0.31

DBSCAN 0.61 0 0.13 0
CFSFDP 0.12 0 0 0

WaveCluster 0.03 0 0 0
FDGB 0.59 0 0 0
CAGS 0.12 0 0 0

ClaCE
k-means 0.58 1 0.66 0.26

DBSCAN 0.13 0 0 0
CFSFDP 0.59 0 0.52 0.49

WaveCluster 0.43 0 0.15 0
FDGB 0.54 0.37 0.14 0
CAGS 0.11 0 0 0

4.6. Clustering Dataset with Large Differences in Density between Classes

If clusters in a dataset are of significant difference in density, clusters with high density
will have an impact on clusters with low density in the clustering process. Many algorithms
are ineffective for these kinds of datasets. In this section, we propose a synthetic dataset
containing four clusters that have 100, 50, 200, and 5000 points from bottom left to top
right, respectively. All clusters have Gaussian distribution, as well as the first cluster has
µ = 〈0, 0〉 and σ2 = 3, the second cluster has µ = 〈3, 3〉 and σ2 = 3, the third cluster has

Entropy 2023, 25, 1342 19 of 22

µ = 〈4, 17.3〉 and σ2 = 2, and the fourth cluster has µ = 〈10, 17.3〉 and σ2 = 3. Table 13
shows the best-performing values of input parameters selected for the algorithms in Test
X. From the clustering results listed in Figure 9; it is clear that only CAGS and DBSCAN
could recognize all clusters successfully. However, DBSCAN confronts problems when
classifying the bottom left two clusters due to the small distance between them. For
k-means and CFSFDP, the correct number of clusters is provided to them. However,
clustering performance is undesirable, which can be attributed to the distance-based
clustering strategy. For FDGB, clustering performance is impacted by the large density
difference. Specifically, when looking for mountain ridges, all of them appeared in the
cluster in the upper right corner, resulting in clusters with low density being undetectable.

Table 13. Best performing values of input parameters selected for the algorithms in Test X.

Algorithm Parameters

k-means k
4

DBSCAN k Eps
9 Default

CFSFDP k
4

WaveCluster weights num_cells densitythreshold level
Default 100 50% 2

FDGB no_grid thre_grid_length cutoff_factor noise_thre
10 2 0.21 1.5

CAGS Nfac Rfac Hfac Mfac
0 0.2 0.2 0

Entropy 2023, 25, x FOR PEER REVIEW 21 of 24

tering strategy. For FDGB, clustering performance is impacted by the large density differ-

ence. Specifically, when looking for mountain ridges, all of them appeared in the cluster

in the upper right corner, resulting in clusters with low density being undetectable.

Table 13. Best performing values of input parameters selected for the algorithms in Test X.

Algorithm Parameters

k-means
k

4

DBSCAN
k Eps

9 Default

CFSFDP
k

4

WaveCluster
weights num_cells densitythreshold level

Default 100 50% 2

FDGB
no_grid thre_grid_length cutoff_factor noise_thre

10 2 0.21 1.5

CAGS
Nfac Rfac Hfac Mfac

0 0.2 0.2 0

(a)

the first

cluster

the second

cluster

the third cluster

the fourth

cluster

the

first

cluster

the second

cluster

the third

cluster

the fourth

cluster

the first

cluster

the second

cluster

the third cluster

the fourth

cluster

the first

cluster

the second

cluster

the first

cluster

the second cluster

the

first

cluster

the second

cluster

the third

cluster
the fourth

cluster

(b) (c)

(d) (e) (f)

0 10 10 20 0 10 10 20 0 10 10 20

0 10 10 20 0 10 10 20 0 10 10 20

Figure 9. Clustering results of the dataset with large differences in density between classes. (a–f)

Clustering results obtained using k-means, DBSCAN, CFSFDP, WaveCluster, FDGB, and CAGS,

respectively.

4.7. Clustering Dataset with High Overlap between Classes

In this section, a dataset [35] with 15 strongly overlapping clusters is selected to test

clustering performance on datasets with high overlap between classes. Table 14 shows the

best-performing values of input parameters selected for the algorithms in Test XI. The

original distribution of the dataset and the clustering results are shown in Figure 10a–f.

Figure 9. Clustering results of the dataset with large differences in density between classes.
(a–f) Clustering results obtained using k-means, DBSCAN, CFSFDP, WaveCluster, FDGB, and
CAGS, respectively.

4.7. Clustering Dataset with High Overlap between Classes

In this section, a dataset [35] with 15 strongly overlapping clusters is selected to test
clustering performance on datasets with high overlap between classes. Table 14 shows
the best-performing values of input parameters selected for the algorithms in Test XI. The
original distribution of the dataset and the clustering results are shown in Figure 10a–f.

Entropy 2023, 25, 1342 20 of 22

The results show that only CAGS and CFSFDP could successfully identify all 15 clusters.
For DBSCAN, WaveCluster, and FDGB, clusters can only be identified when the halo data
are processed as noise data. Thus, they are ineffective for this kind of dataset. For k-means,
only when the input number of clusters is 14 can each cluster be well identified.

Table 14. Best performing values of input parameters selected for the algorithms in Test XI.

Algorithm Parameters

k-means
k

15

DBSCAN
k Eps

2 Default

CFSFDP
k

15

WaveCluster
weights num_cells densitythreshold level

Default 50 90% 1

FDGB
no_grid thre_grid_length cutoff_factor noise_thre

40 1.5 0.21 1.5

CAGS
Nfac Rfac Hfac Mfac

0 0.7 6 0.1

Entropy 2023, 25, x FOR PEER REVIEW 22 of 24

The results show that only CAGS and CFSFDP could successfully identify all 15 clusters.

For DBSCAN, WaveCluster, and FDGB, clusters can only be identified when the halo data

are processed as noise data. Thus, they are ineffective for this kind of dataset. For k-means,

only when the input number of clusters is 14 can each cluster be well identified.

Table 14. Best performing values of input parameters selected for the algorithms in Test XI.

Algorithm Parameters

k-means
k

15

DBSCAN
k Eps

2 Default

CFSFDP
k

15

WaveCluster
weights num_cells densitythreshold level

Default 50 90% 1

FDGB
no_grid thre_grid_length cutoff_factor noise_thre

40 1.5 0.21 1.5

CAGS
Nfac Rfac Hfac Mfac

0 0.7 6 0.1

(a) (b) (c)

(d) (e) (f)

Figure 10. Distribution and clustering results of the dataset with high overlap between classes. (a–

f) Clustering results obtained using k-means, DBSCAN, CFSFDP, WaveCluster, FDGB, and CAGS,

respectively.

5. Conclusions

In this paper, a new grid-based clustering method called CAGS is proposed. Our al-

gorithm has two main innovations compared to current grid-based clustering methods.

Firstly, an adaptive grid-space constructing strategy is established to generate the mini-

mum cell set that covers all data points. Thus, it can prevent the sharp rise of cell numbers

when the range of point distribution or the dimension number of the dataset is too large.

Secondly, a clustering strategy based on adjacent grid searching is constructed to expand

the clusters with arbitrary shapes. CAGS can recognize noise cells and peripheral cells at

Figure 10. Distribution and clustering results of the dataset with high overlap between classes.
(a–f) Clustering results obtained using k-means, DBSCAN, CFSFDP, WaveCluster, FDGB, and
CAGS, respectively.

5. Conclusions

In this paper, a new grid-based clustering method called CAGS is proposed. Our
algorithm has two main innovations compared to current grid-based clustering methods.
Firstly, an adaptive grid-space constructing strategy is established to generate the minimum
cell set that covers all data points. Thus, it can prevent the sharp rise of cell numbers when
the range of point distribution or the dimension number of the dataset is too large. Secondly,
a clustering strategy based on adjacent grid searching is constructed to expand the clusters

Entropy 2023, 25, 1342 21 of 22

with arbitrary shapes. CAGS can recognize noise cells and peripheral cells at different levels
based on two adaptive parameters fN and fH , which ensures the successful performance
for clustering the dataset with noise and the dataset with high overlap between classes. The
CAGS is then tested using six different types of datasets, as mentioned in the introduction.
Several typical clustering methods, such as k-means, DBSCAN, CFSFDP, WaveCluster, and
FDGB, are used for comparison. The results show that CAGS can successfully deal with
all the above types of datasets, demonstrating the satisfactory robustness of CAGS for
future practical applications. However, the proposed algorithm will encounter a challenge
if a dataset with a small number of data points has complex shapes. In this case, the cell
density is very low, so the location of a single data point significantly impacts the cell.
Thus, such datasets often require specific grid sizes to achieve good clustering. In future
work, an improved grid space construction strategy that determines the cell size based
on data distribution will be adopted to address this problem. In addition, we will use
CAGS to resolve the issues in image processing, unsupervised pattern recognition, and big
data analysis.

Author Contributions: Conceptualization, Z.L.; Formal analysis, Z.L. and W.Z.; Funding acquisition,
Z.L.; Investigation, Z.L.; Methodology, Z.L. and M.Y.; Software, Z.L. and W.L.; Validation, Z.L.;
Visualization, Z.L.; Writing—original draft, Z.L.; Writing—review and editing, Z.L., J.Z. and G.H. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by financial support from the Special Fund for Technology
Innovation Guidance (22YDTPJC00850) and the Scientific Research Project of Tianjin Education
Commission (No. 2019KJ098).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data, code, and other materials can be made available on request.

Acknowledgments: All the authors have consented to gratefully acknowledge the helpful comments
and suggestions of the reviewers, which have improved the quality of the work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Iintroduction to Cluster Analysis; John Wiley & Sons: Hoboken, NJ, USA,

2009; pp. 85–96.
2. Martín Merino, M.; López Rivero, A.J.; Alonso, V.; Vallejo, M.; Ferreras, A. A Clustering Algorithm Based on an Ensemble of

Dissimilarities: An Application in the Bioinformatics Domain. Int. J. Interact. Multimed. Artif. Intell. 2022, 7, 6–13. [CrossRef]
3. Seal, A.; Herrera Viedma, E. Performance and convergence analysis of modified C-means using jeffreys-divergence for clustering.

Int. J. Interact. Multimed. Artif. Intell. 2021, 7, 141–149. [CrossRef]
4. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley

Symposium on Mathematical Statistics and Probability, San Diego, CA, USA, 21 June–18 July 1965; p. 281.
5. Bezdek, J.C.; Ehrlich, R.; Full, W. FCM: The fuzzy c-means clustering algorithm. Comput. Geosci. 1984, 10, 191–203. [CrossRef]
6. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise.

Kdd 1996, 96, 226–231.
7. Zhang, T.; Ramakrishnan, R.; Livny, M. BIRCH: An efficient data clustering method for very large databases. ACM Sigmod Rec.

1996, 25, 103–114. [CrossRef]
8. Liu, B.; Xia, Y.; Yu, P.S. Clustering through decision tree construction. In Proceedings of the Ninth International Conference on

Information and Knowledge Management, McLean, VA, USA, 6–11 November 2000; pp. 20–29.
9. Xie, W.B.; Liu, Z.; Srivastava, J. Hierarchical clustering by aggregating representatives in sub-minimum-spanning-trees. arXiv

2021, arXiv:2111.06968.
10. Xie, W.B.; Liu, Z.; Das, D.; Chen, B.; Srivastava, J. Scalable clustering by aggregating representatives in hierarchical groups. Pattern

Recognit. 2023, 136, 109230. [CrossRef]
11. Rodriguez, A.; Laio, A. Clustering by fast search and find of density peaks. Science 2014, 344, 1492–1496. [CrossRef]
12. Zhao, Y.; Wang, H.; Pei, J. Deep non-negative matrix factorization architecture based on underlying basis images learning. IEEE

Trans. Pattern Anal. Mach. Intell. 2019, 43, 1897–1913. [CrossRef]
13. Wang, D.; Li, T.; Deng, P.; Wang, H.; Zhang, P. Dual graph-regularized sparse concept factorization for clustering. Inf. Sci. 2022,

607, 1074–1088. [CrossRef]

https://doi.org/10.9781/ijimai.2022.09.007
https://doi.org/10.9781/ijimai.2021.04.009
https://doi.org/10.1016/0098-3004(84)90020-7
https://doi.org/10.1145/235968.233324
https://doi.org/10.1016/j.patcog.2022.109230
https://doi.org/10.1126/science.1242072
https://doi.org/10.1109/TPAMI.2019.2962679
https://doi.org/10.1016/j.ins.2022.05.101

Entropy 2023, 25, 1342 22 of 22

14. Filippone, M.; Camastra, F.; Masulli, F.; Rovetta, S. A survey of kernel and spectral methods for clustering. Pattern Recognit. 2008,
41, 176–190. [CrossRef]

15. Schikuta, E. Grid-clustering: An efficient hierarchical clustering method for very large data sets. In Proceedings of the 13th
International Conference on Pattern Recognition, Vienna, Austria, 25–29 August 1996; Volume 2, pp. 101–105.

16. Wang, W.; Yang, J.; Muntz, R. STING: A statistical information grid approach to spatial data mining. In Proceedings of the VLDB,
Athens, Greece, 26–29 August 1997; Volume 97, pp. 186–195.

17. Sheikholeslami, G.; Chatterjee, S.; Zhang, A. WaveCluster: A wavelet-based clustering approach for spatial data in very large
databases. VLDB J. 2000, 8, 289–304. [CrossRef]

18. Agrawal, R.; Gehrke, J.; Gunopulos, D.; Raghavan, P. Automatic subspace clustering of high dimensional data for data mining
applications. In Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, Seattle, WA, USA, 1–4
June 1998; pp. 94–105.

19. Hinneburg, A.; Keim, D.A. Optimal grid-clustering: Towards breaking the curse of dimensionality in high-dimensional cluster-
ing. In Proceedings of the 25th International Conference on Very Large Data Bases (VLDB), Edinburgh, UK, 7–10 September
1999; pp. 506–517.

20. Yanchang, Z.; Junde, S. GDILC: A grid-based density-isoline clustering algorithm. In Proceedings of the 2001 International
Conferences on Info-Tech and Info-Net, Beijing, China, 9 October–1 November 2001; Volume 3, pp. 140–145.

21. Wu, B.; Wilamowski, B.M. A fast density and grid-based clustering method for data with arbitrary shapes and noise. IEEE Trans.
Ind. Inform. 2016, 13, 1620–1628. [CrossRef]

22. Du, M.; Wu, F. Grid-Based Clustering Using Boundary Detection. Entropy 2022, 24, 1606. [CrossRef] [PubMed]
23. Starczewski, A.; Scherer, M.M.; Książek, W.; Dębski, M.; Wang, L. A novel grid-based clustering algorithm. J. Artif. Intell. Soft

Comput. Res. 2021, 11, 319–330. [CrossRef]
24. Yan, Y.; Sun, Z.; Mahmood, A.; Xu, F.; Dong, Z.; Sheng, Q.Z. Achieving Differential Privacy Publishing of Location-Based

Statistical Data Using Grid Clustering. ISPRS Int. J. Geo-Inf. 2022, 11, 404. [CrossRef]
25. Chen, J.; Sackey, S.H.; Ansere, J.A.; Zhang, X.; Ayush, A. A Neighborhood Grid Clustering Algorithm for Solving Localization

Problem in WSN Using Genetic Algorithm. Comput. Intell. Neurosci. 2022, 2022, 8552142. [CrossRef]
26. Wang, X.; Zhang, Z.; Luo, Y. Clustering Methods Based on Stay Points and Grid Density for Hotspot Detection. ISPRS Int. J.

Geo-Inf. 2022, 11, 190. [CrossRef]
27. Song, M.; Zhang, L. Comparison of cluster representations from partial second-to full fourth-order cross moments for data

stream clustering. In Proceedings of the 2008 8th IEEE International Conference on Data Mining, Pisa, Italy, 15–19 December
2008; pp. 560–569.

28. Zhang, H.; Ho, T.B.; Zhang, Y.; Lin, M.S. Unsupervised feature extraction for time series clustering using orthogonal wavelet
transform. Informatica 2006, 30, 305–319.

29. Strehl, A.; Ghosh, J. Cluster ensembles—A knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res.
2002, 3, 583–617.

30. UCI Machine Learning Repository. Available online: http://archive.ics.uci.edu/ml/index.php (accessed on 10 May 2023).
31. De Almeida Freitas, F.; Peres, S.M.; de Moraes Lima, C.A.; Barbosa, F.V. Grammatical facial expressions recognition with machine

learning. In Proceedings of the 27th International Flairs Conferenc, Pensacola Beach, FL, USA, 21–23 May 2014.
32. Fu, L.; Medico, E. FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinform. 2007, 8, 3.

[CrossRef] [PubMed]
33. Chang, H.; Yeung, D.Y. Robust path-based spectral clustering. Pattern Recognit. 2008, 41, 191–203. [CrossRef]
34. Jain, A.K.; Law, M.H. Data clustering: A user’s dilemma. In Pattern Recognition and Machine Intelligence: First International Conference,

PReMI 2005, Kolkata, India, 20–22 December 2005; Proceedings: 3776; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–10.
35. Fränti, P.; Virmajoki, O. Iterative shrinking method for clustering problems. Pattern Recognit. 2006, 39, 761–775. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.patcog.2007.05.018
https://doi.org/10.1007/s007780050009
https://doi.org/10.1109/TII.2016.2628747
https://doi.org/10.3390/e24111606
https://www.ncbi.nlm.nih.gov/pubmed/36359696
https://doi.org/10.2478/jaiscr-2021-0019
https://doi.org/10.3390/ijgi11070404
https://doi.org/10.1155/2022/8552142
https://doi.org/10.3390/ijgi11030190
http://archive.ics.uci.edu/ml/index.php
https://doi.org/10.1186/1471-2105-8-3
https://www.ncbi.nlm.nih.gov/pubmed/17204155
https://doi.org/10.1016/j.patcog.2007.04.010
https://doi.org/10.1016/j.patcog.2005.09.012

	Introduction
	Related Work
	Principle of CAGS
	Construction of Adaptive Grid Space
	Clustering Strategy Based on Adjacent Grids Searching
	Selection and Calculation of the Input Parameters

	Performance Evaluation
	Datasets
	Clustering Datasets with Noise
	Clustering Large-Scale Datasets
	Clustering High Dimensional Dataset
	Clustering Dataset with Arbitrary Shapes
	Clustering Dataset with Large Differences in Density between Classes
	Clustering Dataset with High Overlap between Classes

	Conclusions
	References

