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Abstract: To improve the accuracy of short-term multi-energy load prediction models for integrated
energy systems, the historical development law of the multi-energy loads must be considered.
Moreover, understanding the complex coupling correlation of the different loads in the multi-energy
systems, and accounting for other load-influencing factors such as weather, may further improve
the forecasting performance of such models. In this study, a two-stage fuzzy optimization method
is proposed for the feature selection and identification of the multi-energy loads. To enrich the
information content of the prediction input feature, we introduced a copula correlation feature
analysis in the proposed framework, which extracts the complex dynamic coupling correlation of
multi-energy loads and applies Akaike information criterion (AIC) to evaluate the adaptability of
the different copula models presented. Furthermore, we combined a NARX neural network with
Bayesian optimization and an extreme learning machine model optimized using a genetic algorithm
(GA) to effectively improve the feature fusion performances of the proposed multi-energy load
prediction model. The effectiveness of the proposed short-term prediction model was confirmed by
the experimental results obtained using the multi-energy load time-series data of an actual integrated
energy system.

Keywords: feature identification and extraction; Copula analysis; multi-energy loads; model fusion

1. Introduction

The safety, stability, and economic operations of traditional power systems depend on
the short-term forecasting of power load, which has been extensively studied [1,2]. Further,
other forms of load (cooling, heat, and gas energy) have some established foundations
for research, mostly based on the pertinent aspects of this type of load, to conduct a
single load prediction work. However, comprehensive energy system load forecasting for
integrated energy systems with diverse energy coupling characteristics is still in its nascent
exploration stage. Multi-energy load forecasting is an advanced field that builds upon
traditional load forecasting. It seeks to reveal the complex nonlinear patterns resulting
from the interconnected interplay between historical load trends and various influencing
factors. Additionally, this type of forecasting requires an understanding of energy-coupling
transformations and accounting for stochastic elements, such as integrating renewable
energy sources and adaptable user demand responses. Reference [3] employs a genetic
algorithm to refine a wavelet neural network, which is subsequently applied to optimize the
prediction of heating loads in centralized heating systems. Similarly, Reference [4] takes into
account building attributes such as construction year, dimensions, heat recovery ventilation,
and geographical location, along with meteorological and seasonal influences, to construct
a model that can predict building heating load demands. Reference [5] introduces a
high-precision forecasting model for daily natural gas consumption by fusing pattern
decomposition fusion techniques with integrated learning methods. Reference [6] refines
the fruit fly algorithm using simulated annealing and cross-factor optimization. This
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enhanced algorithm is then integrated with support vector machine models, resulting in
an elevated accuracy in forecasting urban natural gas loads. Diversifying the scope to
cooling load prediction, Reference [7] tackles the forecast of building cooling loads using a
non-linear autoregressive neural network with optimized parameters and external inputs.
Further innovations are explored in Reference [8], where an integrated learning framework
is proposed. This framework combines empirical mode decomposition and deep belief
networks to predict cooling loads.

While the aforementioned single-energy prediction models largely fulfill the fore-
casting needs for energy demands within independent energy systems, the trend is un-
doubtedly moving towards a unified forecasting of multi-energy loads in integrated energy
systems. This trend accounts for the evolving processes of cascaded utilization, optimized
allocation, and interdependence within energy synergistic systems [9]. Reference [10] em-
ploys data mining techniques to perform a joint prediction of cooling and heating demands
within buildings. This approach is utilized to evaluate energy-saving potential through
multiple prediction models. In [11], a framework is established using least squares support
vector machines combined with multi-task learning. This framework comprehensively
predicts electric, cooling, heating, and gas loads in a campus integrated energy system.
Furthermore, in [12], an unsupervised deep belief network (DBN) is fused with a super-
vised multi-task regression layer. This combined model is tested and validated using an
industrial park integrated energy system, showcasing the effectiveness of deep multi-task
learning approaches.

With the proliferation of artificial intelligence concepts and technological advance-
ments, machine learning methods have found extensive application in the field of short-
term load forecasting, particularly techniques like neural networks and support vector
regression [13–16]. These methods are rapidly advancing due to their exceptional data
mining abilities and their ability to tackle complex nonlinear problems. However, when
applying these methods to short-term load forecasting, certain challenges may arise:
(1) The enhancement of load information collection devices results in denser temporal
data. Concurrently, the number of data sources affecting short-term load forecasting is
increasing, including factors like weather, day types, economics, and societal influences.
Therefore, when training models for short-term load forecasting, large input vectors could
lead to diminished computational efficiency. (2) Models based on historical load data
may exhibit significant errors when predicting load curve features, especially at peaks and
valleys. This not only hampers the overall enhancement of predictive accuracy but may
also result in the loss of crucial information, adversely affecting both the stability of the
power grid and the long-term development of the electricity market.

The Douglas–Peucker (DP) algorithm, which is a classical method of curve feature
extraction and compression, has advantages such as a high computational efficiency and
strong visibility. Thus, it is appropriate for the curve feature extraction and dimensionality
reduction in the multi-energy loads. However, a challenge intrinsic to the DP algorithm
involves the judicious selection of an appropriate threshold. The threshold dictates the
maximal distance, or error, between the approximate curve and the original curve. Within the
context of multi-energy load forecasting, the application of the DP algorithm to primary load
curve feature extraction and data compression exhibits considerable promise. Nonetheless,
for optimal adaptation to distinct energy load curve nuances, prudent adjustments to
and refinements of the threshold are needed, catering to the specific requirements of the
analysis. Additionally, compared to the short-term prediction of a single energy load, the
computational complexity of the short-term multi-energy load prediction is considerably
higher. Hence, simple machine learning models are not suitable for the effective performance
of short-term multi-energy load prediction tasks. The concept of classical fusion in deep
learning can further improve the performance of the multi-energy load prediction systems.

The intricate coupling relationships among multi-energy loads significantly impact
the accuracy and performance of short-term multi-energy load forecasting. By adapting
and enhancing load feature recognition and combined forecasting models based on fixed
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patterns, a fuzzy-optimized load feature recognition and combined forecasting model
better captures the precise characteristics of multi-energy loads, thus enhancing forecasting
accuracy. In the context of the evolving comprehensive energy system development,
the proposed fuzzy-optimized load feature recognition and combined forecasting model
effectively addresses diverse and specific requirements for multi-energy load forecasting.

Motivated by the aforementioned facts, this paper proposes a new short-term predic-
tion method for multi-energy loads based on the copula correlation feature analysis and
model fusion. The main contributions of the paper are summarized as follows:

(1) A two-stage approach to load feature identification and extraction is proposed. To
address the challenges associated with the cumbersome and intricate threshold selec-
tion in the conventional DP algorithm, which is difficult to quantify and necessitates
adaptive adjustments for different original datasets, the DP algorithm is improved
by a fuzzy optimization threshold. After the initial feature extraction, the concept
of statistical frequency distribution is applied to perform a secondary extraction of
the collective characteristics of this load curve cluster to enhance the process of load
feature identification and extraction.

(2) Through the utilization of dynamically optimized Copula correlation measures, the
input feature set of the multi-energy short-term forecasting model can be expanded.
This integration ensures the thorough inclusion of interrelated characteristics among
multi-energy loads into the predictive model, thereby effectively supplementing the
model’s input information.

(3) A multi-energy load forecasting model based on a model fusion framework is pro-
posed. A Bayesian regularization (BR)-NARX (BR-NARX) neural network is used for
the first prediction step, which uses BR to further optimize the performance of the
traditional NARX model. Subsequently, a secondary forecasting model builds on the
output of the primary model, utilizing a GA-optimized extreme learning machine
(ELM) for separate multi-energy, short-term predictions of electricity, heat, and cool-
ing loads. This approach ensures the comprehensive exploration of multi-energy load
characteristics and elevates the accuracy of multi-energy, short-term load forecasting.

The remainder of this paper is organized as follows. Section 2 discribes the materials and
methods used in the text, including a two-stage fuzzy-optimized load feature identification
and extraction method, a multi-energy load correlated feature analysis based on the Copula
method, and the construction of a multi-energy short-term forecasting framework through
model fusion. Numerical case studies are discussed in Section 3. Section 4 concludes.

2. Materials and Methods
2.1. Two-Stage Optimization Method for Features and Extraction for Multi-Energy Loads

In this study, to select the key features of the multi-energy loads, we combined a
fuzzy C-means (FCM) [17] with a two-stage fuzzy-improved Douglas–Peucker (TFIDP)
algorithm. This method includes a three-step process that can be applied to the feature
recognition and extraction of a load. The first step comprises performing FCM clustering on
the multi-energy loads. In the second step, based on similar load curves, the DP algorithm
improved by a fuzzy optimization threshold performs the initial feature extraction of the
load. Finally, by exploiting the concept of statistical frequency distribution, a second feature
extraction process is implemented based on the primary feature extraction.

2.1.1. Initial Feature Extraction Based on a Fuzzy Optimization-Enhanced DP Algorithm

The classic DP algorithm extracts the feature points of a curve by setting the threshold
value in advance. Further, the algorithm iteratively compares the vertical distance between
the points of the updated target curve, first and last points, and set threshold size [18–21].
However, in practical applications, the threshold value needs to be specified using complicated
factors that are difficult to quantify. Alternatively, the threshold value should be adjusted
adaptively for different original datasets. Hence, it was essential to include an adaptive
threshold to improve the TFIDP model.
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The threshold value ε in the classical DP algorithm is usually set in the interval [0, 1] based
on experience. For a series of curves with similar shape features, a reasonable threshold
value must be set based on practical requirements. Hence, the DP algorithm threshold
value can be set using fuzzy mathematics, which describes and models fuzzy concepts
accurately to properly solve realistic problems. To improve the classical DP algorithm
using the concept of fuzzy mathematics, we introduced a fuzzy optimized threshold value
ε in the DP algorithm, which is the fundamental control standard for the final feature set
extraction of curves. Further, by using the fuzzy mathematical concepts to optimize ε,
the curve feature recognition and extraction process performed by the DP algorithm may
improve in terms of generalizability.

The threshold value domain is defined as E ∈ [0, 1] for the DP feature extraction
algorithm. To simplify the operation, the threshold can assume a value in the range [0, 1] at
discrete intervals of 0.1. Sat(ε) represents the membership degree of the threshold value of
the DP algorithm for a cluster of similar curves and is expressed as follows:{

Sat(ε) = a ∗ D(ε) + b ∗ Z(ε)
a + b = 1

(1)

where D(ε) is the average matching degree between the curve features identified and extracted
from the specified similar curve cluster and original curve, thereby reflecting the similarity
between them. Z(ε) is the percentage value of the number of curve feature points divided by
the number of original curve points, which is the average percentage ratio of the original curve
extracted and compressed using curve features. a and b are the corresponding proportion
coefficients. The threshold value membership degree Sat(ε) in Equation (1) comprises the
sum of two parts and can be regarded as the overall curve feature extraction satisfaction for
the specified similar curve cluster for a certain threshold value.

Average Matching Degree D(ε)

Because the time dimension of the curve features is reduced compared to that of the
original curve, it is no longer a one-to-one mapping relationship. Thus, we introduced the
dynamic time warping (DTW) algorithm to calculate the matching degree between the
curve features and original curve [22]. DTW is often used in speech recognition tasks to
measure the similarity between two time series with different lengths by calculating the
DTW distance.

We define the original and characteristic sequences of the curve as X and Y, re-
spectively, with corresponding sequence lengths LX and LY, and the warped length
w = [w1, w2, · · · , wK], where wi = (pi, qi) ∈ [1 : LX ]× [1 : LY], 1 ≤ i ≤ K. To satisfy the
continuity and monotonicity at the boundary of the structured path, the main constraints
are expressed as follows: 

w1 = (1, 1), wK = (LX , LY)
pi+1 − pi ≤ 1, qi+1 − qi ≤ 1
p1 ≤ pi ≤ pLX , q1 ≤ qi ≤ qLY

(2)

The cumulative distance Fw(X, Y) of the warped length between the original sequence
X and feature sequence Y can be calculated using Equation (3). d(xp, yq) = (xp − yq)

2

Fw(X, Y) =
K
∑

i=1
d(xpi , yqi )

(3)



Entropy 2023, 25, 1343 5 of 21

The minimum value of the cumulative distance is reached for the optimal warped
length w* and corresponds, in this case, to the DTW distance Ddtw, which can be expressed
as follows: {

w* = argminFw(X, Y)
Ddtw(X, Y) = Fw*(X, Y)

(4)

Based on the concept of dynamic programming, the cumulative distance of the op-
timal warped length can be calculated recursively using Equation (5). Here, the value of
Ddtw(xLX , yLY ) calculated iteratively is equal to the DTW distance between X and Y.

Ddtw(xi, yj) = d(xi, yj) + min(Ddtw(xi−1, yj),
Ddtw(xi, yj−1), Ddtw(xi−1, yj−1))

(5)

In the limit case, the curve features only include the first and last points of the original
curve. Here, we denote the line connecting the first and last points of the original curve as
Y0. Further, the D(ε) between the curve features identified and extracted from the similar
curve cluster and original curve is calculated as follows:

D(ε) =

n
∑

i=1

(
1− Ddtw(Xi ,Yε,i)

Ddtw(Xi ,Y0
ε,i)

)
n

× 100% (6)

where n is the number of curves contained in the current similar curve cluster.

Average Compression Ratio Z(ε)

The average compression ratio Z(ε) between the curve features identified and ex-
tracted from the similar curve cluster and original curve is calculated as follows:

Z(ε) =

[
1−

n

∑
i=1

(
Num(Yε,i)

Num(Xi)

)/
n

]
× 100% (7)

where the function Num(·) represents the amount of data in the obtained sequence.

Proportion Coefficients a and b

The selection of the proportion coefficients a and b is related to the importance of the
terms D(ε) and Z(ε) in Equation (1). In this study, we set a = 0.7 and b = 0.3.

2.1.2. Secondary Feature Extraction Based on Statistical Frequency Distribution

After the DP algorithm based on the fuzzy-optimized threshold completes the initial
extraction of the characteristics of all the load curves in a certain load curve cluster, it
applies the concept of statistical frequency distribution to extract the overall characteristics
of this type of load curve cluster twice. All the non-repeated load characteristics, which
are generated in the process of the load feature identification and extraction from a load
curve cluster, are denoted as I = [I1, I2, · · · , Ii, · · · , Im], with corresponding frequencies
G = [g1, g2, · · · , gi, · · · , gm]. The statistical frequency fi of each load characteristic for each
load curve cluster can be calculated using Equation (8). Equation (9) is used to assess
whether this load feature is suitable as one of the overall characteristics for the selected
type of load curve cluster. If Equation (9) is satisfied, the corresponding Ii is added to the
feature number set I′ of the updated load curve cluster, that is, Ii ∈ I′.

fi =
Gi
Ii

(8)

fi ≥ 0.8×
(

m

∑
i=1

fi

/
m

)
(9)
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Finally, the set I′ obtained using the TFIDP, exploiting the properties of the statistical
frequency distribution, is used as the representative feature of the selected load curve cluster.

2.2. Analysis of Multi-Energy Load Correlation Characteristics Based on the Copula Method

To improve the final prediction accuracy of the short-term multi-energy load fore-
casting, several aspects must be considered, including the characteristics of the internal
load represented by the historical development laws of the multi-energy loads, coupling
conversion relationship of the load, characteristics of the external load, and meteorological
aspects. Compared to the number of studies on the historical development law of the
multi-energy loads and the correlation between the multi-energy loads and meteorological
factors, only a few studies address the characteristics of the complex and flexible coupling
conversion of the multi-energy loads. Hence, more accurate characterization methods
are needed to effectively optimize the overall performance of the proposed short-term
multi-energy load forecasting model. In this study, copula theory is used to model and
analyze the correlation characteristics of the non-linear coupling conversion of the time
series of multi-energy loads.

2.2.1. Definition of the Copula Function

The copula theory was developed to solve a joint distribution problem of random
variables when their marginal distributions are known. The formulation of Sklar’s theorem
introduced the concept of the copula function. Further, models based on the copula
function have been widely used in finance and economics, new energy output characteristic
analysis, and other fields owing to their ability to explain complex nonlinearities among
variables [23,24].

Sklar’s theorem proves that the joint distribution function of multiple n-dimensional
variables can be constructed by combining the marginal distribution function of these
variables and the associated copula function, which represents the complex correlation
among variables. Considering an n-dimensional variable x1, x2, · · · , xn with a marginal
distribution function in each dimension F1(x1), F2(x2), · · · , Fn(xn), the joint distribution
and density functions of the n-dimensional variable can be expressed as follows:

F(x1, x2, · · · , xn) = C[F1(x1), F2(x2), · · · , Fn(xn)] (10)

f(x1, x2, · · · , xn) = c( f (x1), f (x2), · · · , f (xn)) ·
n

∏
i=1

fi(xi) (11)

where F is the joint distribution function of the n-dimensional variable, C the copula
distribution function representing the complex correlation between n-dimensional variables,
Fi(xi) the density function of the variable in the ith dimension, f the joint density function
of the n-dimensional variable, and c the copula density function.

Based on Equations (10) and (11), the copula density function can be obtained by
taking the derivative of the copula distribution function, as expressed in Equation (12).

c( f (x1), f (x2), · · · , f (xn)) =
∂nC[F1(x1), F2(x2), · · · , Fn(xn)]

∂F1(x1)∂F2(x2) · · · ∂Fn(xn)
(12)

By calculating the copula distribution and density functions, the complex correlation
between the multivariate random variables can be accurately described. Typical static
copula distribution functions include N-, T-, Gumbel, Clayton, and Frank copula functions.
Additionally, the dynamic N-, T-, Clayton, and SJC copula functions can be used to model
dynamic copula distribution functions. Hence, the correlation characteristics of the random
variables can be analyzed using different copula distribution functions, which can reflect
different perspectives.
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2.2.2. Correlation Analysis Based on Copula Functions

Generally, it is difficult to obtain a clear marginal distribution function because of the
complexity of the multi-energy load time-series data. Hence, we applied the maximum
likelihood estimation based on nonparametric kernel density (MLK) to estimate the correla-
tion coefficient of the copula function [25,26]. The MLK method is not limited by the exact
expression of the marginal distribution function. Instead, it uses the nonparametric kernel
density estimation function of the analyzed variables.

For the normalized variable sequences Lp and Lc, the corresponding nonparametric
kernel density estimation was conducted using the following equations:

fP(x1) =
1
T

T

∑
t=1

Kw(x1 − LP) (13)

fC(x2) =
1
T

T

∑
t=1

Kw(x2 − LC) (14)

where fP(x1) and fC(x2) represent the probability density functions of LP and LC, respec-
tively. Kw is the kernel function and T the size of the sequence of variables.

Using the MLK method, the static correlation coefficients can be obtained by substi-
tuting the marginal distributions with the probability density functions fP(x1) and fC(x2)
in the likelihood function expressed in Equation (15). Further, its extreme points can be
calculated using Equation (16).

S(θ) = ∑ lnc[ fP(x1), fC(x2)] (15)

θ̂ = argmaxS(θ) (16)

However, to calculate the dynamic time-varying correlation coefficient series, a dy-
namic copula function must be considered. Further, the likelihood function must be
obtained using the parameters of the dynamic distributions associated with the variables
and corresponding evolution equations. Hence, we define the dynamic N-copula function
using the dynamic distribution parameter ρN,t and dynamic T-copula function with param-
eters ρT,t and kt degrees of freedom. The correlation coefficient matrices of the dynamic N-
and T-copula functions based on the DCC (1,1) decomposition can be expressed as follows:

Rt = (Q*
t)
−1/2 ·Qt · (Q*

t)
−1/2

(17)

where Q*
t = diagQt and its evolution equation is expressed as follows

Qt = R(1− α− β) + α(εt−1ε′t−1) + βQt−1 (18)

where α and β represent the estimated evolution parameters, which satisfy the constraints
0 < α < 1, 0 < β < 1 and 0 < α + β < 1, respectively. εt is the pseudo-inverse of the
threshold distribution function.

The evolution equation of the dynamic Clayton copula function is defined as follows:

θC,t = Λ(ω + βθt−1 + α · 1
10

10

∑
j=1

(|LP,t−j − LC,t−j|) (19)

where ω, α, and β represent the estimated evolution parameters. Λ(x) = (1−e−x)
(1+e−x)

is the
restriction function.
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The evolution equation of the dynamic SJC copula function is expressed as follows:

τU
t = Λ̃(ωU + βUτU

t−1 + αU ·
1
10

10

∑
j=1
|LP,t−j − LC,t−j|) (20)

τL
t = Λ̃(ωL + βLτL

t−1 + αL ·
1

10

10

∑
j=1
|LP,t−j − LC,t−j|) (21)

where τU
t is the upper-tail dependence coefficient, ωU , αU , and βU the estimated parameters

of the upper-tail evolution, τL
t the lower-tail dependence coefficient, and ωL, αL, and βL

the estimated parameters of the lower-tail evolution. The restriction function
∼
Λ(x) satisfies

∼
Λ(x) = (1 + e−x)−1.

In this study, AIC was used to evaluate the adaptability of the different copula models
presented above. The AIC index is calculated as follows:

AIC = 2k− 2 ln S (22)

where k represents the number of parameters of the copula function and S the associated
maximum likelihood estimation.

2.2.3. Analysis of Multi-Energy Load Characteristics Based on Copula Methods

The steps of the analysis of the multi-energy loads using the copula method are
summarized in Table 1.

Table 1. Performance comparison of copula functions (obtained for electrical and cooling load data)
based on the AIC and maximum likelihood estimate values.

Types of Copula Function AIC Maximum Likelihood Estimate

Static N-copula 553.458 −311.165
Dynamic N-copula −1725.336 851.325

Static T-copula 366.878 −197.563
Dynamic T-copula −1935.928 937.112

Static Clayton copula 627.436 −407.601
Dynamic Clayton copula −2817.727 1329.752

Static SJC copula −1622.901 677.244
Dynamic SJC copula −3284.187 1648.263

Copula functions can accurately describe the complex non-linear coupling relation-
ship characterizing the multi-energy loads, which can considerably improve the overall
performance of the proposed short-term multi-energy load prediction model. As shown in
Figure 1, the copula function-based feature analysis process proposed in this study includes
the following steps:

• Multi-energy load data are normalized in the [0, 1] interval to ensure data uniformity.
• The kernel density estimation function is calculated using the MLK method, which

determines the marginal density function of the variable sequence.
• To obtain static correlation coefficients, the marginal density copula functions are used

to calculate the extreme points of the likelihood function.
• To obtain dynamic correlation coefficients, the dynamic copula distributions are used

to construct the likelihood function considering the corresponding evolution equation
parameters (ω, α, and β).

• Once the maximum likelihood estimates and the corresponding evolution equation
parameters are obtained, they are substituted into the evolution equation parameters
to calculate the required time-varying cross-correlation coefficients.
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• Simultaneously, the selected copula functions are optimized based on the maximum
likelihood estimate, and later the optimal copula model is obtained by comparing the
corresponding AIC indexes.
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2.3. Short-Term Forecasting Framework for Multi-Energy Loads Based on Model Fusion

The copula function-based analysis can effectively capture the intricate non-linear
coupling between multi-energy loads. Using the optimal copula correlation measure, the
input feature set of the proposed short-term prediction model for multi-energy loads can
be enhanced with the interrelated characteristics of the multi-energy loads.

To further improve the performance of multi-energy load forecasting, we developed
an approach that exploits model fusion in this study. For the first prediction step, we
introduced a Bayesian regularization NARX (BR-NARX) neural network to predict the
characteristics of the electrical, heating, and cooling loads. Based on the output of this
primary prediction model, the secondary prediction is obtained using a GA-optimized
ELM model that returns the final short-term prediction of electricity, heat, and cooling
loads. Owing to this two-step process, the characteristics of the multi-energy loads are fully
explored, enhancing the accuracy level of the proposed short-term prediction model.

2.3.1. BR-NARX Model

Owing to its reasonable structural performance, the NARX neural network model
effectively captures the nonlinearity of the time series. Further, its parallel distribution
training mode improves fault tolerance and stability, making this model more competitive
than other typical machine learning approaches [27,28]. In this study, we introduced BR to
further optimize the performance of the traditional NARX model.

Traditional neural network models often adopt the backpropagation algorithm to
adjust network parameters during the training process. Here, the error performance
function Ed is usually defined as the sum of the mean squared errors, as expressed below:

Ed =
1
n

n

∑
i=1

(ti − pi)
2 =

1
n

n

∑
i=1

(ei)
2 (23)

where ti is the expected value of the ith actual target, pi the ith output value predicted by
the neural network, ei the ith absolute error of prediction, and n the total number of input
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samples trained by the neural network. By introducing the regularization optimization
method for weight coefficients and threshold parameters, the performance of the neural
network models can be enhanced in terms of the limited overall parameter scale and
improved generalization ability.

Based on the regularization optimization concept [29], the regularization optimization
error performance function Ergl of the neural network is modified as follows:

Ergl = αEω + βEd (24)

Eω =
n

∑
i=1

ω2
i (25)

where ωi is the weight coefficient of the neural network, Eω the sum of the squares of
weight coefficients, and α and β the regularization optimization parameters weighting
the contribution of Eω and Ed, respectively. The more Eω is restricted, the stronger the
generalization performance of the neural network will be. If α� β, the purpose of neural
network training is to limit the size of network parameters, which may result in large
training errors. On the contrary, if α� β, Equation (24) describes the typical mean squared
error performance function, which may lead to overfitting. However, it is often difficult to
practically determine the optimal size of the network parametersω.

For specific neural networks aimed at real-world problems, determining the appropri-
ate network parameter scaleω can often be challenging. BR optimization theory, rooted
in Bayesian probability formulas, can leverage actual target expectations and Bayesian
probability estimation to infer and analyze unknown regularization parameters α and β in
a rational manner. The BR optimization framework assumes that the weight coefficients
of the neural network are stochastic variables. Given a training dataset D and the neural
network’s structural form M, the posterior probability of the neural network’s weight
coefficients can be derived using Bayesian probability formulas as follows:

P(ω|D, α, β, M) =
P(D|ω, β, M)P(ω|α, M)

P(D|α, β, M)
(26)

where ω represents the weight coefficient vector of the neural network. P(D|ω,β,M)
denotes the observed probability of the dataset D given the neural network’s weight
coefficient vector ω. P(ω|α,M) is the prior probability of the network’s weight coefficients
before considering the training data, given the structural form M. P(D|α,β,M) represents
the validation probability of the dataset D in the neural network model with the given
hyperparameters α and β, determined by Equation (27):

P(D|α, β, M) =
∫

P(D|ω, β, M)P(ω|α, M)dω (27)

Assuming that the noise in the training dataset and the prior probability of network
weight coefficients follow Gaussian distributions, we have:{

P(D|ω, β, M) = 1
ZD(β)

e−βEd

ZD(β) = (π
β )

n
2

(28)

{
P(ω|α, M) = 1

ZW (α)
e−αEd

ZW(α) = (π
α )

n
2

(29)
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where n represents the number of samples in the training dataset D. Therefore, by using
the equation above, we can derive: P(ω|D, α, β, M) = 1

ZErgl
(α,β) e−Ergl(ω)

ZErgl (α, β) = ZD(β)ZW(α)P(D|α, β, M)
(30)

BR optimization theory aims to maximize the posterior probability of neural network
weight coefficients to estimate the network parameter scale. Thus, minimizing Ergl(ω) is
equivalent to maximizing P(ω|D,α,β,M), which means that Ergl(ω) reaches its minimal
value at the point ωminP. As for the regularization parameters, their posterior probability is
represented as shown in Equation (31):

P(α, β|D, M) =
P(D|α, β, M)P(α, β|M)

P(D|M)
(31)

Assuming a uniform distribution for the prior probability P(α,β|M), maximizing
the posterior probability P(α,β|D,M) of the regularization parameters is equivalent to
maximizing P(D|α,β,M). From the previous equation, it can be deduced that:

P(D|α, β, M) =
ZErgl (α, β)

ZD(β)ZW(α)
(32)

Furthermore, due to the quadratic shape of the objective function of BR optimization
near the minimization point ωminP, and the fact that its gradient is zero, it is possible to
estimate it using a Taylor series expansion.

ZErgl (α, β) = (2π)
n
2
[
det(HminP)

−1
] 1

2 e−Ergl(ωminP) (33)

H = α · ∇2Eω + β · ∇2Ed (34)

where H represents the Hessian matrix of the objective function in BR optimization, and
HminP is the Hessian matrix evaluated at the minimization point ωminP.

Substituting the estimated value from Equation (33) into Equation (32), and taking the
logarithm on both sides while setting the value to zero, the optimal Bayesian regularized
optimization parameter at ωminP can be obtained as follows [30]:

α∗ = γ
2Eω(ωminP)

β* = n−γ
2Ed(ωminP)

γ = n− 2α∗ · tr(HminP)
−1

(35)

where α* and β* represent the optimal regular optimization parameters, ωminP the minimum
point of the network weight coefficient, HminP the Hessian matrix of the BR objective function
when the value of HminP is minimal, γ the number of effective parameters of the neural
network, and tr(·) the trace of the matrix. During the neural network training, the regularized
optimization parameters α and β are dynamically adjusted based on the above BR approach,
thereby implementing an adaptive learning method that improves the overall generalization
ability of the neural network using a limited training dataset. After the objective function is
defined, the Levenberg–Marquardt algorithm is used to minimize it.

2.3.2. Combined Genetic Algorithm and Extreme Learning Machine Model

The ELM model introduces the concept of stochastic optimization in neural network
applications. In this framework, the connection weights between the input and hidden
layers and the bias values of the neurons in the hidden layers can be randomly generated.
As opposed to the repeated training and adjustment that is typical of the gradient descent
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methods, the only parameter that needs to be set in the training of the ELM algorithm is
the number of neurons of the hidden layer. The optimal solution under the corresponding
conditions can be simply obtained by calculating the generalized inverse matrix, resulting
in several application advantages. Hence, the introduction of ELM has considerable
advantages in terms of the training performance. However, it is difficult to ensure that the
optimal parameters are selected for the actual prediction under the influence of unknown
features. Moreover, the generalization ability of the model needs to be further improved.

Figure 2 summarizes the above optimization process of the ELM model using GA.
The obtained GA-ELM optimization model represents the output layer of the proposed
short-term multi-energy load prediction model.
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2.3.3. Overall Modeling Framework

The complete framework of the proposed multi-energy load forecasting model, which
was developed using copula-function-based feature analysis and model fusion, is shown in
Figure 3.
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(1) Feature Extraction: The electric, heating, and cooling load sequence data are sub-
jected to feature extraction using the FCM-TFIDP method. Meteorological data, day type,
and other load-influencing-factor data are extracted using PCA. The joint features are
combined to form the input vector of the first-layer BR-NARX prediction model, which
performs feature prediction for electric, thermal, and cooling load sequences. (2) Expansion
of Features: Based on the output features of the first-layer BR-NARX prediction model for
electric, thermal, and cooling loads, additional features derived from PCA-extracted meteo-
rological and day type factors, as well as optimal Copula-dynamic-related features among
multi-energy loads, are incorporated. These fused features become the input vector for the
second-layer GA-ELM prediction model. (3) Model Fusion and Optimization: Through
the fusion between the first-layer and second-layer prediction models and individual pa-
rameter optimization of each layer’s models, the optimal predictive model is derived. This
process leads to the separate prediction of multi-energy load values for cooling, thermal,
and electric loads.

This framework significantly enhances adaptability by combining load feature recog-
nition with pattern-based predictive models. The fuzzy-optimized load feature recognition
model improves the identification and prediction of precise features for multi-energy loads.
The dynamic Copula-related feature analysis comprehensively captures complex nonlinear
coupling relationships among multi-energy loads. By incorporating dynamically optimized
Copula-related measures into the model, the input feature set of the multi-energy load short-
term prediction model is expanded, effectively integrating correlated features between
different types of energy loads. Furthermore, the framework considers meteorological, day
type, and other influencing factors. It applies Bayesian regularization optimization and
genetic algorithm optimization to improve the NARX and ELM prediction models in the
two layers. By leveraging the model fusion framework, the predictive strengths of different
model structures are efficiently harnessed, enhancing the overall model’s ability to learn
and process fused features of multi-energy loads. This enhancement improves the practical
performance of multi-energy load forecasting models in real-world applications.

3. Results and Discussion

The original data used for the experiment performed in this study were obtained
from the operating load data of the integrated energy system in a similar actual park from
August 2019 to October 2020. Particularly, we used the total daily curve data of the electrical,
heating, and cooling loads in the energy supply area of the system. The sampling interval
of the multi-energy load data was set to 15 min (the daily load curve comprised 96 load
points acquired from 00:00 to 23:45). To simplify the analysis, the measurement units of the
cooling and heating loads were converted into MW (the unit of the electrical load). The load-
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influencing factors mainly included the meteorological information and other daily varying
information. The meteorological data generally include daily temperature, humidity, air
pressure, wind direction and speed. The daily varying data include information on working
and rest days, and holidays.

In the proposed framework, data preprocessing was performed to convert the units
of the other loads to that of the electrical load. Here, data cleaning is performed on the
original data. The data are then normalized to obtain values in the interval [0, 1]. Additional
required data can be found in Table 2. The relevant content will be provided as an addition
in the revised manuscript. For our experiment, we used a 3.00 GHz Intel Core I7 with
16 GB memory. The proposed model was implemented using MATLAB R2018b. This
article references the comprehensive park data of Guizhou Power Grid Co., Ltd. (Guiyang,
China)’s technological project: 061000KK52180003.

Table 2. Key data of the model components.

Data The Content of the Data

Sampling interval of load data The sampling interval is 15 min, and the daily load
curve is composed of 96 load points from 00:0 to 23:45.

Factors affecting the load

(1) Meteorological information
Daily temperature, humidity, air pressure, wind

direction and wind speed
(2) Working days, rest days and holidays information

Training set 80% of the previous data
Testing set 20% of the previous data

The reference input of the load at time t
to be predicted

(1) The load at time t of the preceding 3 days with the
same load category (considering similar days)

(2) The load at time t − 7 to t − 1 (considering the
relevant time)

(3) Other energy load characteristic information from
similar days

(4) Meteorological information and day type rule
information for both similar days and forecasted days

3.1. Copula-Related Characteristic Analysis Based on Multi-Energy Loads

Copula function-based characteristic analysis is considered from the perspective of
multi-energy loads. Particularly, it is expected that the correlation between the multi-energy
loads and external factors can be reasonably quantified through the optimal copula correla-
tion coefficient under a certain measurement index. Consequently, the new characteristic
connotation information can be introduced to provide a better reference, thus improving
the accuracy of the proposed multi-energy load prediction model. To exploit the copula
function correlation analysis, the optimal copula function between the electrical and cool-
ing load series was selected among eight alternative copula functions based on the AIC
criterion and maximum likelihood estimate values reported in Table 1.

The optimal copula function of the multi-energy loads is selected based on the AIC
criterion and maximum likelihood estimate. Under optimal conditions, the AIC value of
the optimal copula function must be as small as possible, whereas the maximum likelihood
estimate value must be as large as possible. From Table 1, the optimal copula function of the
electrical and cooling loads series based on the selected criteria is the SJC copula function.
In fact, its AIC value of −3284.187 is the smallest, and its maximum likelihood estimate
value of 1648.263 is the largest among the values of all the other copula functions. Hence,
it is reasonable and efficient to choose the SJC copula function to analyze the correlation
characteristics of the electrical and cooling loads series.

The above optimization analysis of the copula functions for the electrical–heating and
heating–cooling load series shows that the optimal copula functions for the multi-energy
load series based on the selected criteria are the SJC copula functions. The SJC copula
function reflects the static correlation characteristics of the multi-energy loads and provides
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an improved representation of their dynamic correlation characteristics. By analyzing the
main dynamic distribution parameters and evolution equations of the SJC copula function,
it can be observed that the dynamic coefficient of the tail dependence reflects the dynamic
relationship of the time series, which is suitable for the extended input of multi-energy
load forecasting. Hence, it provides a reference for the prediction model that considers the
coupling characteristics of the multi-energy loads.

3.2. Model Parameter

To improve the prediction accuracy of the final prediction model, the parameters of
each sub-model were optimized. The key parameters of the proposed model are summa-
rized in Table 3.

Table 3. Key parameters of the model components.

Model Parameter Parameter Settings

BR-NARX
Total number of layers 3

Number of neurons in hidden layer 18
Order of time delay 7

GA

Population size 40
Number of iterations 200
Crossover probability 0.85
Mutation probability 0.1

ELM
Number of neurons in input layer 190

Number of neurons in hidden layer 25
Number of neurons in output layer 96

For the BR-BARX neural network model in the first layer, a trial optimization method
was adopted to determine the number of neurons in the key hidden layer and delay order.
For the GA-ELM model in the second layer, the number of neurons in the hidden layer was
determined using a method that combines trial optimization and GA algorithms.

3.3. Evaluation of the Model Performance

The performance evaluation metrics of the proposed prediction model adopted in this
study include the relative error rate Ei at the ith point of the load prediction, root-mean-
squared error ERMSE of total load prediction, and rate of the mean absolute error EMAPE,
accuracy of prediction Acc, overall mean absolute error of multi-energy loads ESUMMAPE,
and overall prediction accuracy of the multi-energy loads AccSUM. These metrics are
defined in Equations (27)–(32), where x̂i represents the predicted value of the electrical load
at the ith point and xi the actual value of the electrical load at a similar point. EMAPE,P,
EMAPE,H , and EMAPE,C represent the rate of the overall mean absolute error of the electrical,
heating, and cooling loads, respectively. AccP, AccH , and AccC represent the rate of the
overall prediction accuracy of the electrical, heating, and cooling loads, respectively. ωP,
ωH , and ωC are the energy allocation proportion coefficients of the electrical, heating, and
cooling loads, respectively, which satisfy the relationship ωP + ωH + ωC = 1. In this study,
the ratio coefficient of the electrical, heating, and cooling loads was set to 0.4:0.4:0.2 based
on the actual energy configuration of the examined system.

Ei =
x̂i − xi

xi
× 100% (36)

ERMSE =

√
1
n

n

∑
i=1

(x̂i − xi)
2 (37)

EMAPE =
1
n

n

∑
i=1
|Ei| × 100% (38)
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Acc =

1−

√√√√ 1
n

n

∑
i=1

(
x̂i − xi

xi

)2
× 100% (39)

ESUMMAPE = ωPEMAPE,P + ωHEMAPE,H + ωCEMAPE,C (40)

AccSUM = ωP AccP + ωH AccH + ωC AccC (41)

3.4. Results

The daily electrical, heating, and cooling loads in a typical week of September 2020 (13
September 2020.) were selected as the prediction objects. Using the copula function feature
analysis and model fusion layer of the proposed short-term multi-energy load prediction model,
the multi-energy load prediction was performed. To analyze the prediction performance of
the proposed model, we applied three other models to the collected dataset to compare the
multi-energy load predictions in the selected period. The first model (group 1) was obtained
considering the modules TFIDP, PCA, and BR-NARX only. The second model (group 2)
included a similar module to the first one with the addition of the copula function-based
characteristic analysis of the multi-energy loads. The third model (group 3) was obtained by
adding the model fusion method to the second model, with GA-ELM as the second layer of
the prediction model. The fourth comparison model (group 4) was the complete short-term
multi-energy load prediction model proposed in this study.

For the quantitative analysis, the metrics presented in Section 3 were used to evaluate
the multi-energy load prediction performance of the comparison models. Further, to
evaluate the differences in the prediction performance on weekdays and rest days, we
performed a separate experiment using the four comparison models to objectively and
comprehensively evaluate the utility of the model components.

From the evaluation of the multi-energy load prediction results of weekdays reported
in Table 4, the overall effect on the predictions of the electrical and cooling loads is better
than that of heating. In fact, the electrical and cooling loads often show a relatively stable
evolution trend, while the heating load is driven by random energy demand and has the
characteristics of time lag, thereby making the rule of change difficult to control.

Table 4. Performance metric evaluation of the multi-energy load prediction results on weekdays.

Prediction Model

Evaluation Index ERMSE
(Electrical/Heating/Cooling)

(MW)

EMAPE
(Electrical/Heating/Cooling)

(%)

ESUMMAPE
(%)

AccSUM
(%)

Group 1 1.077/0.066/1.816 3.280/4.212/3.411 3.519 96.329
Group 2 1.078/0.065/1.761 3.340/4.137/3.301 3.484 96.381
Group 3 0.928/0.053/1.533 2.831/3.411/2.905 2.977 96.892
Group 4 0.747/0.047/1.101 2.268/2.962/1.998 2.299 97.544

Comparing the prediction results of groups 1–3 to those of the complete proposed
model (group 4) confirmed that the copula-function-based, BR-NARX, and GA-ELM mod-
ules fully benefitted from the feature-extraction ability of the TFIDP–PCA method. Ad-
ditionally, the copula correlation coefficient feature was introduced to expand the fusion
feature, while the model fusion design was added simultaneously. The GA-ELM strong gen-
eralization ability was used for the analytic learning of fusion features. Thus, the prediction
accuracy of the multi-energy load forecasting on weekdays is effectively improved.

The results reported in Table 5 show that, on rest days, the variation trend of the
multi-energy loads is more random.
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Table 5. Performance metric evaluation of multi-energy load prediction results on rest days.

Prediction Model

Evaluation Index ERMSE
(Electrical/Heating/Cooling)

(MW)

EMAPE
(Electrical/Heating/Cooling)

(%)

ESUMMAPE
(%)

AccSUM
(%)

Group 1 1.390/0.078/2.044 4.811/4.751/4.596 4.713 95.199
Group 2 1.320/0.070/1.669 4.590/4.267/3.667 4.156 95.760
Group 3 0.975/0.074/1.488 3.308/4.483/3.276 3.530 96.371
Group 4 0.816/0.053/0.870 2.725/3.189/1.705 2.410 97.431

Hence, the accuracy of the multi-energy load prediction results on rest days is worse
than that on weekdays. However, for the group 4 model, the values of the ERMSE and
EMAPE of the cooling load prediction results were lower on rest days than on weekdays.
To a certain extent, these results confirm that the proposed model has good generalization
and strong anti-fluctuation abilities regardless of the type of day, which proves its practical
effectiveness. Figures 4–6 show the prediction results of the electrical, heating, and cooling
loads of the integrated energy system considered in this study over one week for the
four groups, further confirming that the complete prediction model of the multi-energy
loads proposed in this study has the best performance. A high prediction accuracy was
achieved for the electrical and cooling loads by all the groups owing to their relatively
stable variation trend. The heating load, which is characterized by a more random variation
trend compared to that of the other loads, was tracked more effectively by the full model,
which provided improved prediction results compared to those obtained by groups 1–3.
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prediction on both working and rest days, as confirmed by our experimental results.

In order to further evaluate and compare the short-term prediction results of the multi-
energy load proposed in this chapter and the control model, the prediction accuracy of various
multi-energy load short-term prediction models is analyzed by using the absolute value of
the relative error rate of electric, heat and cold loads in the form of box plot. As shown
in Figures 7–9, model 1 is TFIDP-PCA-BRNARX model, model 2 is Copula-TFIDP-PCA-
BRNARX model, model 3 is Copula-TFIDP-PCA-BRNARX-ELM model and model 4 is the
Copula-TFIDP-PCA-BRNARX-GAELM model proposed in this chapter. It can be seen from
Figure 7 that, for the comparison of the prediction errors of the electric load, the mean value
of the absolute value of the relative error rate of the model 4 proposed in this chapter is the
smallest among all the prediction models, and the shape of the box is relatively flat, reflecting
that the prediction error is at a small level. It is relatively more concentrated, so the overall
prediction performance is the best. Meanwhile, by comparing the predictive errors of the
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From the analysis of the experimental results, we can conclude that the introduction of
previous knowledge represents a key aspect of the improvement in the prediction accuracy
of the multi-energy load forecasting. In fact, the multi-energy load characteristic correlation
analysis considerably enhanced the multi-energy load prediction accuracy of the integrated
energy system. Additionally, owing to the combined effect of the TFIDP–PCA method
and BRNARX model, the proposed short-term prediction model effectively predicts the
features of each load of the multi-energy integrated system independently.

4. Conclusions

In this paper, the key features of the multi-energy load curve are selected by the two-
stage load feature recognition and extraction method, and the coupling nonlinear feature
relationship between the multi-energy loads is quantified based on the Copula correlation
analysis to introduce the Copula correlation analysis feature results and expand the feature
input. At the same time, the model fusion framework is used to construct a short-term
multi-energy load forecasting model with better prediction accuracy. Our experimental
results confirmed that the copula correlation analysis could effectively quantify the coupling
relationship of the multi-energy loads. Additionally, the time-varying copula correlation
coefficient effectively enhanced the feature input of the multi-energy load prediction model
by enriching the associated information content, thereby improving the prediction accuracy
of the model. Lastly, by exploiting the model fusion, the advantages of the predictive
models with different structures were effectively combined to improve the learning and
processing ability in the multi-energy load feature fusion and generalization performance
in practical applications of the proposed multi-energy load prediction model.

In follow-up studies, the following points should be considered:
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(1) At present, the existing short-term multi-energy load prediction research is mostly
modeled from the perspective of a single energy form output, and in future compre-
hensive energy system multi-energy load forecasting research, the multi-objective
prediction should be studied accordingly, so as to better link the coupling characteris-
tics between multi-energy loads to improve the corresponding prediction effect.

(2) The multi-energy load represented by the intelligent building building is transmitted,
distributed and converted by the energy topology network architecture and energy
coupling conversion device equipment in the park, so there are not only correlation
characteristics at the time scale, but also correlation characteristics at the spatial
scale, and the next step is to analyze the load characteristics from the perspective of
spatiotemporal correlation to more accurately characterize the coupling conversion
characteristics of multi-energy loads.

(3) The existing short-term multi-energy load forecasting research has less analysis and
less consideration from the perspective of multi-energy marketization. In the new
environment of the development of a multi-energy market mechanism, how to con-
sider the characteristics of multi-energy load brought by marketization will be the
next meaningful research direction.
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