
Citation: Pinotti, E.; Longhi, S.

Accelerating Quantum Decay by

Multiple Tunneling Barriers. Entropy

2023, 25, 1345. https://doi.org/

10.3390/e25091345

Academic Editors: Micheline Soley

and Eric J. Heller

Received: 30 August 2023

Revised: 13 September 2023

Accepted: 14 September 2023

Published: 16 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Accelerating Quantum Decay by Multiple Tunneling Barriers
Ermanno Pinotti 1 and Stefano Longhi 1,2,*

1 Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, I-20133 Milano, Italy;
ermanno.pinotti@polimi.it

2 IFISC (UIB-CSIC), Instituto de Fisica Interdisciplinar y Sistemas Complejos, E-07122 Palma de Mallorca, Spain
* Correspondence: stefano.longhi@polimi.it

Abstract: A quantum particle constrained between two high potential barriers provides a paradig-
matic example of a system sustaining quasi-bound (or resonance) states. When the system is prepared
in one of such quasi-bound states, the wave function approximately maintains its shape but decays
in time in a nearly exponential manner radiating into the surrounding space, the lifetime being of
the order of the reciprocal of the width of the resonance peak in the transmission spectrum. Naively,
one could think that adding more lateral barriers would preferentially slow down or prevent the
quantum decay since tunneling is expected to become less probable and due to quantum backflow
induced by multiple scattering processes. However, this is not always the case and in the early stage
of the dynamics quantum decay can be accelerated (rather than decelerated) by additional lateral
barriers, even when the barrier heights are arbitrarily large. The decay acceleration originates from
resonant tunneling effects and is associated to large deviations from an exponential decay law. We
discuss such a counterintuitive phenomenon by considering the hopping dynamics of a quantum
particle on a tight-binding lattice with on-site potential barriers.

Keywords: quantum tunneling; quasi-bound states; tight binding lattices

1. Introduction

Quantum tunneling is ubiquitous in quantum mechanics where a particle has a non-
zero probability of passing through a classically forbidden energy barrier, even though it
does not have enough energy to overcome that barrier according to classical physics [1,2].
This behavior arises from the wave-like nature of particles at the quantum level, and can be
thus also observed for classical waves such as light and sound waves (see, e.g., [3–6]). One
of the main predictions of quantum tunneling is the instability and decay of a quantum
particle trapped by potential barriers of finite heights, a prototypal example being α-decay
in nuclear physics [7,8]. Perhaps the simplest one-dimensional quantum mechanical model
possessing quasi-stationary (resonance) states, decaying via tunneling leakage, is the double
rectangular potential barrier model [Figure 1a], which was introduced in a famous paper
by Gamov to model α decay [7]. When the barrier height V0 is infinite, the system sustains
a set of stationary (non-decaying) bound states at some quantized energies; however, when
the barrier height V0 is not infinite, some of these states, those with energies close to the
bottom of the barriers, become metastable, i.e., they become resonance states (also known
as Gamow or Siegert states, or quasi-bound states; see, e.g., [9–14] and references therein).
This means that an initial wave function prepared in a bound state of the infinite barrier
approximately maintains its shape but decays in time in a nearly exponential manner
through tunneling leakage across the barriers, generating small-amplitude outgoing waves
that spread outward the barrier region [9–11]. The signature of resonance states are the
characteristic Breit–Wigner resonance peaks in the transmission spectrum of the double
potential barrier, and the lifetimes of the resonance states are of the order of the reciprocal
of the widths of the Breit–Wigner resonances [11] [see Figure 1b].
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The quantum decay does not strictly follow a simple exponential decay law, and devi-
ations from an exponential decay universally arise in the short and long time scales [15–20],
leading to Zeno-like dynamics, i.e., the deceleration (Zeno effect) or the acceleration (anti-
Zeno effect) of the decay by frequent observations of the system (see, e.g., [21–25] and
references therein). Strong deviations from an exponential decay law are generally observed
due to interference between different decay pathways, strong coupling with a featureless
bath, or with an engineered bath, which introduce memory effects and non-Markovian
behavior, or in the presence of edge effects or localized states, such as in disordered systems,
leading to revivals and limited quantum decay [26–28].

Figure 1. (a) Schematic of a double rectangular potential barrier sustaining resonance (quasi-bound)
states at energies E = E1, E2, . . . . Barrier height is V0, barrier width is b, and barrier distance
is d = a + b. (b) Spectral transmittance |t(E)|2 of the two-barrier potential versus energy of the
incidence wave. Parameter values are a = b = 1, V0 = 20. The inset in (b) shows an enlargement of
the first resonance at energy E = E1, which is well approximated by a Lorentzian curve (Breit–Wigner
resonance). The two resonance peaks in (b) correspond to the quasi-bound states depicted in (a) by
the solid red curves. In the high potential barrier limit, the quasi-bound state can be approximately
written as in Equation (6), where θ(x, t) describes the small-amplitude outgoing waves escaping from
the barrier region, owing to evanescent tunneling (oscillating tails in the plots) and τ = 1/∆E is the
lifetime, which is the inverse of the width ∆E of the corresponding resonance peak in (b).

Quantum leakage dynamics in the double-barrier potential is clearly modified when
lateral barriers are added. Such additional barriers introduce interference effects and make
the quantum decay greatly non-exponential rather generally. Naively, one could think
that additional barriers would preferentially slow down the decay, since the tunneling is
expected to become less probable and because of the back flow into the original excitation
region. For example, for stochastic barriers one expects Anderson localization [29,30],
leading to highly non-Markovian dynamics, Rabi-like oscillations, and limited quantum
decay [27,28,31]. However, this picture may fail in other cases as multiple interference
effects could play in a reversed way.

In this work, we unveil the rather counterintuitive effect of quantum decay acceleration of
a resonance state in the double-barrier model induced by additional later barriers: rather than
slowing down the decay, they can greatly accelerate the quantum decay, even when the heights
of the barriers are unbounded. This unusual phenomenon is explained in terms of resonant
tunneling (hopping) and studied by considering in details the decay of resonance states in
potential barriers on a tight-binding lattice, which can be emulated in photonic settings using
evanescently coupled optical waveguide lattices [32–34] or grating structures [35–37].

2. Acceleration and Deceleration of Quantum Decay in the Double-Barrier Model:
Some Preliminary Considerations

Before considering quantum decay in tight-binding models with on-site potential
barriers, it is worth presenting some preliminary results and discussion on the decay



Entropy 2023, 25, 1345 3 of 15

dynamics of resonance states in Gamov’s model for the continuous Schrödinger equation
in one spatial dimension, which is written in dimensionless units as

i
∂ψ

∂t
= −∂2ψ

∂x2 + V(x)ψ (1)

where ψ = ψ(x, t) is the wave function and V(x) is the potential. Let us first assume
that V(x) describes a double rectangular barrier, with barrier height V0, barrier width b,
and barrier distance d = b + a [Figure 1a]. Figure 1b shows a typical behavior of spectral
transmittance |t(E)|2 versus energy E of the incidence plane wave. The transmission
amplitude t(E) can be calculated by standard textbook methods and reads

t(E) =
t2
1 exp(ik0a)

1− r2
1 exp(2ik0a)

(2)

where r1(E) and t1(E) are the reflection and transmission amplitudes of the single barrier,
given by

t1(E) =
4k0k1 exp(ik1b)

(k0 + k1)2 − (k0 − k1)2 exp(2ik1b)
(3)

r1(E) =
(k2

0 − k2
1) sin(k1b)

(k2
0 + k2

1) sin(k1b) + 2ik0k1 cos(k1b)
(4)

and
k0 ≡

√
E , k1 ≡

√
E−V0. (5)

The spectral transmittance clearly shows resonance peaks at some energies (two peaks at
energies E = E1, E2 in the plot of Figure 1b), which correspond to quasi-bound states. In
the high-barrier limit, i.e., very narrow resonances (such as the first resonance at E = E1
shown in the inset of Figure 1b), the resonance curve is Lorentzian-shaped to a high degree
of approximation (Breit–Wigner resonance) and the corresponding quasi-bound state can
be roughly speaking written as

ψ(x, t) = ψ(x, 0) exp(−iEt− t/2τ) + θ(x, t) (6)

where ψ(x, 0), E are close to the bound state wave function and corresponding (possibly
shifted) eigenenergy in the infinite V0 = ∞ limit, τ = 1/∆E is the lifetime of the quasi-
bound state, ∆E is the full-width at half-maximum of the Breit–Wigner resonance, and
θ(x, t) describes the small-amplitude outgoing waves in the outer regions of the barriers
(see Figure 1a). An example of a nearly exponential decay of the lowest resonance state is
shown in Figure 2b, which depicts the decay behavior of the survival probability to find
the particle between the two barriers,

P(t) =
∫ a/2

−a/2
dx|ψ(x, t)|2, (7)

normalized to its initial value P(0). Here, ψ(x, 0) is assumed to be close to the lowest-
energy bound state of the same barrier model but with V0 = ∞, i.e., ψ(x, 0) ∝ cos(πx/a)
for |x| < a/2 and ψ(x, 0) = 0, otherwise propagated for a short time interval (∆t = 3)
to remove fast transient oscillations in the behavior of P(t). The results are obtained
by numerical integration of the time-dependent Schrödinger Equation (1) using an
accurate pseudospectral split-step method. The decay dynamics (solid curve 1 in
Figure 2b) is rather well fitted by an exponential curve (dashed curve 1 in Figure 2b)
with a lifetime close to the theoretical value τ = 1/∆E1 ' 322.6 predicted from the
spectral width ∆E1 ' 0.0031 of the lowest Breit–Wigner resonance peak. A similar
behavior is found when the system is initially prepared in the second resonance state,
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i.e., ψ(x, 0) ∝ sin(2πx/a) for |x| < a/2 and ψ(x, 0) = 0 otherwise, the exponential decay
displaying a much shorter lifetime (τ = 1/∆E2 ' 4.50), according to the larger width
∆E2 of the second resonance peak in Figure 1b.

Figure 2. (a) Schematic of a quasi-bound state in the double-barrier model (bold solid curve) that
radiates in space with additional later barriers (thin solid curves). All barriers are equally spaced by a
distance d. The size w and height W0 of the lateral barriers can differ from those of the two central bar-
riers. (b) Numerically computed decay behavior of the survival probability P(t) =

∫ a/2
−a/2 dx|ψ(x, t)|2,

normalized to its initial value P(0), for V0 = 20, a = b = 1, d = 2, and for a few different values
of w and W0. Curve 1: quasi-bound state radiating in free space (W0 = 0); the dashed curve is
the exponential decay law with lifetime τ = 1/∆E1 ' 322.6 predicted by the width of the first
resonance peak in the spectrum of Figure 1b. Curve 2: W0 = V0 = 20, w = b/2 = 0.5. Curve 3:
W0 = V0/5 = 4, w = b/2 = 0.5. Curve 4: W0 = V0 = 20, w = b = 1; the dashed curve 4 is the decay
behavior P(t) = |J0(2κt)|2 predicted by the tight-binding analysis of resonant tunneling [Equation
(10)]. (c) The Kronig-Penney model for W0 = V0 and w = b. The set of resonant quasi-bound states
trapped in adjacent double-barrier potentials form an energy band, and excitation can hop between
adjacent cells of the crystal with a hopping rate κ. (d) Geometrical construction of the energy bands
for the Kronig-Penney model. The solid curve shows the behavior of the function f (E) versus energy
E; the function f (E) is defined by Equation (8) in the main text. The allowed energy bands are
determined by the inequality | f (E)| ≤ 1 and are indicated as band 1, band 2, and band 3 in the figure.
The narrow band 1 arises from the hybridization of the lowest-energy resonant quasi-bound states
sustained by each double potential barrier (unit cell) in the crystal.

Clearly, the decay dynamics is greatly modified and can largely deviate from an
exponential law when we consider additional lateral barriers, because the outgoing waves
that escape via tunneling from the two barriers can be back-reflected and re-injected into
the original spatial region |x| < a/2. The final decay law P(t) is the result of a complex
multiple-interference process which, depending on the choice of the additional barriers,
can either decelerate or accelerate the decay. The fact that additional barriers can slow
down the decay of the survival probability is not surprising; however, it is more elusive
regarding how and why the decay can be accelerated in some cases. One of the main
mechanisms that explains decay acceleration is resonant tunneling (see e.g., [38]). This point
can be illustrated by considering, as an example, the case of an array of equally spaced
barriers; see Figure 2a. Besides the two barriers seen in Figure 1a, we now add a sequence
of equally spaced barriers of height W0, same space separation d = a + b, and barrier width
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w. Barrier height W0 and width w can be rather generally different than V0 and a. Curves 2
and 3 in Figure 2b show the decay dynamics of the survival probability when either or both
w and W0 differ from b and V0, clearly indicating that the additional barriers decelerate
the decay. However, a striking effect is observed when w = b and W0 = V0: the decay
of survival probability is much faster and the decay dynamics greatly deviates from an
exponential law (curve 4 in Figure 2b). The decay acceleration can be explained on the basis
of resonant tunneling (hopping) between resonant quasi-bound states that are sustained
by adjacent double-potential barriers, as schematically shown in Figure 2c. In fact, for
w = b and W0 = V0, the potential V(x) is strictly periodic with period d = a + b, and such
a periodic potential corresponds to the well-known Kronig–Penney model in solid-state
physics [39,40]. Basically, the various resonant quasi-bound states sustained in adjacent
double-barriers hybridize and give rise to a set of bands. The dispersion curves E = E(k)
of the various bands are defined implicitly by the relation (see e.g., [40])

cos(kd) = f (E)

where we have set

f (E) = cos(a
√

E) cos(b
√

E−V0)−
2E−V0

2
√

E(E−V0)
sin(a

√
E) sin(b

√
E−V0). (8)

In the above equation, k is the Bloch wave number, which varies in the first Brillouin zone
−π/d < k ≤ π/d. The band dispersion curves, defined by the relation cos(kd) = f (E), can
be solved graphically, as shown in Figure 2d. The low-energy narrow-band in Figure 2d, in-
dicated as band 1 and centered at around E = E1 ' 4.589, arises from the weak overlapping
(hybridization) of resonant quasi-bound states with energies E1 in adjacent unit cells of the
crystal, and its bandwidth 4κ ' 0.1884 defines the hopping amplitude κ between adjacent
sites within a tight-binding description. In the nearest-neighbor approximation, an initial
excitation of one of such quasi-bound mode can jump from one unit cell to its neighbor in
either direction with a rate κ, and the spreading dynamics is ballistic and governed by the
set of coupled equations (see e.g., [40–42] )

i
dψn

dt
= −κ(ψn+1 + ψn−1) (9)

where ψn is the amplitude of the quasi-bound state at the n-th unit cell. The decay behavior of
the survival probability is then given analytically in terms of J0 Bessel function, namely [41]

P(t) = |J0(2κt)|2. (10)

The solid curve 4 in Figure 2b shows the numerically computed behavior of P(t) for
V0 = W0 = 20 and a = b = w = 1, which is very well fitted by the theoretical prediction
given by Equation (10) (dashed curve 4), in which the hopping rate κ ' 0.0471 is estimated
from the width of the narrow band of Figure 2d. Clearly, the decay of survival probability
greatly deviates from an exponential curve and, in the early stage, it is much faster than
other cases (curves 1–3 in Figure 2b), where resonant tunneling is prevented: the hopping
dynamics enabled by resonant tunneling makes the decay faster.

3. Decay Acceleration by Resonant Tunneling in Tight-Binding Lattices

The phenomenon of decay acceleration in the early stage of the dynamics mediated by
hopping between adjacent resonant quasi-bound states, discussed in the previous section,
suggests to re-examine quantum decay and tunneling effects in the framework of simple
tight-binding models [32,43,44]. Such models, besides being simpler to study and simulate,
can be readily implemented in photonic settings using engineered arrays of evanescently
coupled optical waveguides. In fact, they have served over the past two decades as feasible
laboratory tools for the observation of non-exponential decay features and Zeno dynamics
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with photons [5,33,34,45–47]. The simplest two-barrier system sustaining one resonance
state on a tight-binding lattice is described by the Hamiltonian [Figure 3a]

H = −κ ∑
n
(|n〉〈n + 1|+ |n + 1〉〈n|) + V0 ∑

n=±1
|n〉〈n| (11)

where κ is the hopping rate between adjacent sites of the lattice and V0 is the on-site
potential barrier at the two sites n = ±1. For the sake of definiteness, we assume V0 > 0;
however, on a lattice a quasi-bound state is also sustained for V0 < 0. Indicating by
ψn the wave amplitude at the n-th lattice site, i.e., after letting |ψ(t)〉 = ∑n ψn(t)|n〉, the
Schrödinger equation i∂t|ψ(t)〉 = H|ψ(t)〉 yields the set of coupled equations

i
dψn

dt
= −κ(ψn+1 + ψn−1) + V0(ψ1 + ψ−1). (12)

In the high-barrier limit V0 � κ, an initial excitation at time t = 0 of site n = 0,
trapped between the two high potential barriers, is metastable and the survival probability,
P(t) = |ψ0(t)|2, decays in time nearly exponentially, as observed in numerical simulations
of Equation (12) assuming the initial conditions ψn(0) = δn,0; see curve 1 in Figure 3c.
Note that a small-amplitude and fast oscillation is superimposed to the exponential decay,
the amplitude of the oscillations vanishing in the V0/κ → ∞ limit. The lifetime of the
quasi-bound state at site n = 0 can be readily estimated by adiabatic elimination from
the dynamics of the small amplitudes at the sites ψ±1. In fact, in the high barrier limit
V0/κ � 1 one can assume in Equation (12) |(dψ1,−1/dt)| � V0|ψ1,−1|, and thus

ψ1 '
κ

V0
(ψ0 + ψ2) , ψ−1 '

κ

V0
(ψ0 + ψ−2). (13)

Taking into account for symmetry reasons that ψ−n(t) = ψn(t), after letting ϕ0(t) =
ψ0(t) exp(iΩt) and cn(t) =

√
2ψn+1(t) exp(iΩt) for n ≥ 1, from Equations (12) and (13)

one obtains

i
dϕ0

dt
= Ωϕ0 − κ1c1

i
dc1

dt
= −κ1 ϕ0 − κc2 (14)

i
dcn

dt
= −κ(cn+1 + cn−1) (n ≥ 2)

where we have set

κ1 ≡
√

2κ2

V0
, Ω ≡ − κ2

V0
. (15)

The reduced model (14) can be cast in the standard Friedrichs–Lee (or Fano–Anderson)
model, describing the decay of a single bound state weakly coupled to a featureless tight-
binding continuum (see e.g., [34,48,49]), and in the Markovian approximation the survival
probability can be calculated as

P(t) = |ϕ0(t)|2 ' exp(−t/τ) (16)

where the lifetime τ is given by (see Appendix A for details)

τ =
κ

2κ2
1
=

V2
0

4κ3 . (17)

The exponential decay predicted by Equations (16) and (17) turns out to be in good agree-
ment with the exact decay behavior found by numerical simulations (compare solid and
dashed curves 1 in the inset of Figure 3c).
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When lateral barriers are introduced, the decay dynamics is rather generally modified
and does not follow anymore the exponential law from Equation (16). In order to observe
decay acceleration by resonant tunneling, as suggested in Section 2 above, the potential
barriers are added at odd potential sites solely; see Figure 3b. The Hamiltonian of the
system reads

H = −κ ∑
n
(|n〉〈n + 1|+ |n + 1〉〈n|) + ∑

n
Wn|n〉〈n| (18)

where Wn is the strength of the potential barrier at odd lattice sites, with W±1 = V0 and
Wn = 0 for n even. We mention that, in photonics, the tight-binding model (18) can
be implemented using arrays of evanescently coupled optical waveguides, in which a
uniform coupling constant κ and engineered propagation constant shifts Wn are realized
by judicious design of waveguide widths and spacing. For example, a linear gradient
potential was realized in semiconductor waveguide arrays to demonstrate optical Bloch
oscillations in Ref. [50].

Figure 3. (a) Schematic of a double-barrier potential on a tight-binding lattice. A quasi-bound
state trapped between the two high barriers radiates into the lattice. (b) The multi-barrier model.
Additional potential barriers are introduced at odd lattice sites. (c) Decay of the survival probability
P(t) = |ψ0(t)|2 for a few different settings of potential barriers and for κ = 1, V0 = 10. Curve 1 is
the nearly exponential decay behavior of the double-barrier model of panel (a), i.e., in the absence
of additional lateral barriers. The almost overlapped dashed curve is the exponential decay law
predicted by Equation (16). Curve 2 is the decay curve obtained for Wn = V0 = 10, and the almost
overlapped dashed curve is the theoretical prediction given by Equation (24). Curve 3 is the decay
behavior for the Bernoulli model with V1 = V0, V2 = V0/2, and p = 0.5. Curve 4 is the decay
behavior corresponding to the symmetric Stark potential barrier model with F = 1. Curve 5 is the
decay behavior for the parabolic potential barrier model with F = 0.1. The inset in (c) shows an
enlargement of the decay dynamics in the early stage.
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After adiabatic elimination of the small amplitudes ψ±1 as discussed above
[Equation (13)], the decay dynamics of ψ0(t) could be framed in the form of a single-level
Fano–Anderson model, wherein the additional barriers Wn clearly structure the continuum
of states into which the state |0〉 is coupled, and could induce localization phenomena
responsible for strong backflow and revivals in the dynamics [26–28]. It is precisely these
effects that make decay acceleration possible in the early stage of the dynamics. The canon-
ical Fano–Anderson form describing the decay process for the Hamiltonian (18) is detailed
in the Appendix A, which derives the general form of the memory function entering in
the integro-differential equation describing the decay dynamics of the amplitude ψ0(t).
The memory function basically includes all the multiple reflection phenomena and delay
effects arising from wave scattering of additional lateral barriers, which make the decay
strongly non-Markovian. The form of the memory function depends in a complex way on
the eigenstates of the bath Hamiltonian, and even if its form may be calculated analytically
in very special cases [51], it is hard to provide general insights into the decay dynamics
as governed by the integro-differential equation. However, for our purposes, we do not
need to resort to the canonical Fano–Anderson model and in the following analysis we will
provide some direct examples of quantum decay acceleration adopting the full Hamiltonian
(18). To this aim, it is worth noting that the system described by Equation (18) is bipartite,
and thus one can write the wave function as |ψ(t)〉 = ∑n(an(t)|2n〉+ bn(t)|2n + 1〉). The
evolution equations for the wave amplitudes an and bn at even and odd lattice sites read

i
dan

dt
= −κ(bn−1 + bn) (19)

i
dbn

dt
= −κ(an + an+1) + W2n+1bn (20)

which should be solved with the initial condition an(0) = δn,0 and bn(0) = 0.
Let us now discuss a few prototypal examples of decay acceleration, observed in the

early stage of the dynamics, induced by the additional lateral barriers.
(i) The first example of decay acceleration is obtained by assuming Wn = V0 for n odd,

which is the discrete analogue of the Kronig–Penney model considered in the previous
section [Figure 2c]. In this case, the Hamiltonian (18) describes a bipartite lattice sustaining
two bands. In the high barrier limit V0 � κ, to calculate the decay of the survival probability,
we can adiabatically eliminate the small amplitudes bn from the dynamics by letting

bn '
κ

V0
(an + an+1) (21)

so that from Equation (19) one obtains

i
dan

dt
= −κ1(an+1 + an−1 + 2an) (22)

where we have set

κ1 ≡
κ2

V0
(23)

The solution to Equation (22) with the initial condition an(0) = δn,0 is given in terms
of Bessel J0 function [41,42] and the corresponding decay behavior of the survival
probability reads

P(t) = |a0(t)|2 = J2
0 (2κ1t). (24)

Curve 2 in Figure 3c shows the numerically computed decay behavior of P(t) for
V0/κ = 10, which turns out to be rather well fitted by the theoretical prediction given
by Equation (24). Clearly, the decay largely deviates from an exponential law and, most
importantly, it is accelerated as compared to curve 1, at least in the early-to-intermediate
time scale of the decay.
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(ii) As a second example of decay acceleration, let us assume that at odd sites n, with
n 6= ±1, the potential Wn can take two possible values, either Wn = V1 or Wn = V2,
with probabilities p and 1− p, respectively (Bernoulli model [52]). Curve 3 in Figure 3c
shows the numerically computed decay behavior of the survival probability for V1 = V0,
V2 = V0/2, V0/κ = 10 and p = 1/2, averaged over 200 realizations. Also, in this case,
one can clearly observe an acceleration of the decay in the early stage of the dynamics, in
spite of Anderson localization being able to take place in this model (see Appendix B). This
means that, unlike the previous example (i), at long times the decay is not complete.

(iii) The third example of decay acceleration concerns deterministic potential barriers
with continuously increasing and unbounded heights, namely we assume symmetric Stark
potential barriers with W−n = Wn and

Wn =

{
F(n− 1) n ≥ 1, n odd

0 n even.
(25)

Curve 4 in Figure 3c shows the numerically computed behavior of the survival probability
P(t) = |a0(t)|2 for V0/κ = 10 and F = 1, clearly showing the acceleration of the decay
in the early stage of the decay. This is a rather striking and unexpected result, given that
the added barriers have a monotonously increasing and unbounded height and the corre-
sponding Hamiltonian (18) has an almost pure point spectrum with localized eigenstates
(see Appendix B and [53]).

(iv) The fourth example of decay acceleration is analogous to the previous case, but with a
quadratic (rather than linear) increase in barrier heights, i.e., we assume W−n = Wn and

Wn =

{
F(n− 1)2 n ≥ 1, n odd

0 n even.
(26)

Curve 5 in Figure 3c shows the numerically computed behavior of the survival probability
P(t) = |a0(t)|2 for V0/κ = 10 and F = 0.1, clearly showing the acceleration of the decay in
early stage, with strong revival at longer times.

It should be remarked that decay acceleration mediated by the resonant tunneling
effect, observed in all above models, occurs only in the early stage of the dynamics, as
shown in Figure 3c. In fact, at long times the survival probability P(t) can become smaller
when there are no additional lateral barriers, because the backflow arising from multiple
scattering processes and localization effects, responsible for strong non-Markovianity and
deviation of the decay from an exponential curve, induce revival effects in the survival
probability, which are prevented in the simple two-barrier case.

4. Conclusions

The decay of a resonance state trapped in a double potential barrier provides one of
the simplest models of unstable quantum systems, which was introduced in a landmark
paper by Gamov to explain α decay in nuclear physics. A main question, which has been
so far largely overlooked, is whether quantum decay of a metastable state in the double-
barrier model can be accelerated by additional lateral barriers. Such additional barriers
clearly induce multiple scattering and interference effects, which greatly modify the decay
dynamics: the outgoing waves that escape via tunneling from the two barriers can be back-
reflected and re-injected into the original spatial region by the later barriers. The resulting
decay behavior can strongly deviate from an exponential law and is the result of a complex
multiple-interference process which, depending on the choice of the additional barriers,
can either decelerate or accelerate the decay. The fact that additional barriers can slow
down the decay of the survival probability is not surprising; however, it is more elusive
regarding how and why the decay can be accelerated in some cases. In this work, we have
shown that a main mechanism that can induce decay acceleration, at least in the early stage
of the decay, is resonant tunneling. We have illustrated such a phenomenon by considering
in details the decay dynamics of resonant states in tight-binding models, showing that
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decay acceleration can be observed even when the later barriers are increasingly higher or
have some stochastic distribution. The predicted effects could be observable in photonic
tunneling experiments using engineered integrated waveguide array circuits.
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Appendix A. Fano–Anderson form of the Quantum Decay on the Lattice

In this Appendix, we derive the canonical Fano–Anderson (or Friedrichs–Lee) form
of the quantum decay on the lattice described by the Hamiltonian (18). After letting
|ψ(t)〉 = ∑n ψn(t)|n〉, the evolution equations for the amplitudes ψn(t) read

i
dψn

dt
= −κ(ψn+1 + ψn−1) + Wnψn. (A1)

For the sake of simplicity, we assume that the potential Wn is symmetric around n = 0,
i.e., W−n = Wn. In this case, for the initial condition ψn(0) = δn,0, the solution to Equation
(A1) satisfies the constraint ψ−n(t) = ψn(t), so that we can limit to consider the evolution
equations for the amplitudes ψ0, ψ1, ψ2, . . . which read explicitly

i
dψ0

dt
= −2κψ1 (A2)

i
dψ1

dt
= −κψ0 − κψ2 + V0ψ1 (A3)

i
dψ2

dt
= −κψ1 − κψ3 (A4)

i
dψn

dt
= −κ(ψn+1 + ψn−1) + Wnψn (n ≥ 3). (A5)

In the large V0/κ � 1 limit, we can adiabatically eliminate from the dynamics the amplitude
ψ1 by assuming |d(ψ1/dt)| � V0ψ1 in Equation (A3). This yields

ψ1(t) '
κ

V0
(ψ0 + ψ2). (A6)

After letting

ψ0(t) = ϕ0(t) exp(iκ2t/V0), ψn(t) =
1√
2

cn−1 exp(iκ2t/V0) (n ≥ 2) (A7)

from Equations (A1)–(A7), one obtains

i
dϕ0

dt
= Ωϕ0 − κ1c1 (A8)

i
dc1

dt
= −κ1 ϕ0 − κc2 (A9)

i
dcn

dt
= −κ(cn+1 + cn−1) + Vncn (n ≥ 2) (A10)
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where we have set

κ1 ≡
√

2κ2

V0
, Ω ≡ − κ2

V0
, Vn ≡Wn+1 +

κ2

V0
= Wn+1 −Ω. (A11)

To obtain the canonical form of the Fano–Anderson model, let us indicate by

u(α) = (u(α)
1 , u(α)

2 , u(α)
3 , . . . )T

and ωα the eigenvectors and corresponding eigenvalues (energies) of the semi-infinite
matrix HamiltonianH, defined by

H =



0 −κ 0 0 0 0 0 . . .
−κ V2 −κ 0 0 0 0 . . .
0 −κ V3 −κ 0 0 0 . . .
0 0 −κ V4 −κ 0 0 . . .
0 0 0 −κ V5 −κ 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . .

 (A12)

where α is a discrete index (for localized states) or a continuous variable (for extended
states). The eigenstates are assumed to satisfy the orthonormal condition 〈u(α)|u(β)〉 = δα,β

for discrete indices (point spectrum), or 〈u(α)|u(β)〉 = δ(α − β) for continuous indices
(continuous spectrum). After expanding the amplitudes cn(t) as a series (or integral) of the
eigenstates ofH, i.e., after letting

cn(t) = ∑
α

θα(t)u
(α)
n , (A13)

from Equations (A8)–(A10) and (A13), one readily obtains the following set of evolution
equations:

i
dϕ0

dt
= Ωϕ0 −∑

α

gαθα (A14)

i
dθα

dt
= ωαθα − g∗α ϕ0 (A15)

where we have set
gα ≡ κ1u(α)

1 .

In Equations (A13) and (A14), it is understood that the sum over α should be replaced
by an integral over α for the continuous part of the spectrum of H. In their present
form, Equations (A14) and (A15) can be derived from the single-level Fano–Anderson (or
Friedrichs–Lee) Hamiltonian [24,48,49]

ĤFA = Ω|0〉〈0|+ ∑
α

ωα|α〉〈α| −∑
α

(gα|0〉〈α|+ H.c.) (A16)

which describes the decay of a single level |0〉 of frequency Ω coupled to a discrete or
continuous set of states |α〉 (the bath), with frequencies ωα, by a spectral coupling function
gα. We mention that, in the most general case where the parity condition W−n = Wn is
not satisfied, one can still obtain a Fano–Anderson Hamiltonian as Equation (A16), but the
level |0〉 turns out to be coupled to two baths with different spectral coupling functions.

After eliminating from the dynamics the variables θα(t) by formally solving Equation (A15)
with the initial condition θα(0) = 0 and after letting ϕ0(t) = A(t) exp(−iΩt), from Equation
(14) one obtains the following integro-differential equation describing the decay dynamics of
the amplitude A(t)

i
dA
dt

=
∫ ∞

0
dξG(t− ξ)A(ξ) (A17)
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where G(τ) is the memory function, defined by

G(τ) = −i ∑
α

|gα|2 exp[−i(ωα −Ω)τ]. (A18)

Only when the single level |0〉 is weakly coupled to a featureless continuum of states with a
short memory time τm—the memory time τm is the characteristic decay time of the memory
function G(τ)—one can use the Markovian (or Weisskopf–Wigner) approximation [22], and
the decay dynamics is well described by an exponential law. In this case, Equation (A18)
reduces to a simple differential equation, i.e.,

i
dA
dt
' A(t)(∆R − i∆I) (A19)

where we have set ∆R − i∆I ≡
∫ ∞

0 dτG(τ) defining the Lamb shift (∆R) and decay rate (∆I).
After letting ∑α →

∫
dα in Equation (A18) and following a standard procedure, the explicit

form of the decay rate ∆I and Lamb shift ∆R can be calculated as

∆I = π|g(Ω)|2ρ(Ω) , ∆R = −P
∫

dω
|g(ω)|2ρ(ω)

ω−Ω
(A20)

where g(ω) = gα=α(ω) is the spectral coupling function and ρ(ω) ≡ 1/(dω/dα) is the
density of states.

As an example of a nearly exponential decay, let us consider the quantum decay in the
absence of lateral barriers, i.e., with Wn = 0, corresponding to Vn = −Ω in Equation (A12).
In this case, the spectrum of the matrix Hamiltonian H [Equation (A12)] is absolutely
continuous, and neglecting the small defect (impurity potential) at the edge, its energy
spectrum and corresponding eigenfunctions read (see e.g., [49])

ωα = −Ω− 2κ cos α , u(α)
n =

√
2
π

sin(αn) (A21)

where 0 < α < π is a continuous parameter. In this case, the spectral coupling function
and density of states are readily calculated as

g(ω) =

√
1

2π

κ1

κ

√
4κ2 − (ω + Ω)2 , ρ(ω) =

1√
4κ2 − (ω + Ω)2

. (A22)

Taking into account that |Ω| � κ, from Equations (A20) and (A22) one obtains

∆I '
κ2

1
κ

(A23)

and thus the lifetime τ reads
τ =

1
2∆I
' κ

2κ2
1

(A24)

which is Equation (17) given in the main text.

Appendix B. Some Qualitative Properties of the Energy Spectrum and
Weak Localization

In this Appendix, we present some discussion about the energy spectrum of the tight-
binding bipartite Hamiltonian H defined by Equation (18) in the main text. After letting
(an(t), bn(t))T = (A, B) exp(−iEt), from Equations (19) and (20) one obtains the spectral
problem

Ean = −κ(bn + bn−1) (A25)

Ebn = −κ(an + an+1) + W2n+1bn. (A26)
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It can be readily shown that the energy E = 0 belongs to the spectrum of H with wave
function in one sublattice solely

an = (−1)n , bn = 0 (A27)

corresponding to an extended (improper) eigenstate. For E 6= 0, from Equation (A25) one
can express the amplitudes an in one sublattice in terms of the amplitudes bn in the other
sublattice, i.e.,

an = − κ

E
(bn + bn−1). (A28)

With the substitution of Equation (A28) into Equation (A26), after letting bn = (−1)n ϕn,
one obtains

−κ(ϕn+1 + ϕn−1 − 2ϕn) +

(
E
κ

)
W2n+1 ϕn =

E2

κ
ϕn. (A29)

Equation (A29) can be regarded as the spectral problem on a tight-binding lattice in the
potential Vn = (E/κ)W2n+1 with an energy-dependent amplitude, vanishing as E→ 0.

Clearly, if W2n+1 is constant, like in the example (i) considered in Section 3, or a periodic
function of index n, the energy spectrum is absolutely continuous and H does not sustain
any localized state. In this case, we expect the decay of survival probability to be complete.
Conversely, if W2n+1 describes some disordered potential, such as the Anderson–Bernoulli
model [52] considered in the example (ii) of Section 3, or a deterministic potential with
|W2n+1|monotonously increasing and unbounded as |n| → ∞, such as the symmetric Stark
potential or the parabolic potentials discussed in the examples (iii) and (iv) of Section 3,
all eigenstates with E 6= 0 are strictly speaking localized. This is because any uncorrelated
disordered potential of arbitrarily small amplitude in one dimension, or any unbounded
potential of small amplitude which is monotonously increasing with |n|, have all eigenstates
localized. However, an infinitely countable set of eigenenergies, with weakly extended
eigenstates, accumulate toward the zero energy point E = 0 of the extended state, with a
diverging localization length of corresponding eigenstates. Such a property can be proven
rigorously in some special potential models, such as the Stark potential model [53] or other
integrable models such as the Maryland model [54]. More generally, for small energies
|E/κ| → 0, the potential entering in Equation (A5) is almost vanishing and thus we expect
that any eigenstate, if localized, should have a large localization length, diverging as E→ 0.
For random potentials, this result, i.e., the divergence of the localization length as E→ 0, is
rigorously proven in [55]. Interestingly, from Equation (A28), it follows that the occupation
of the eigenstates with energy close to zero is mostly restricted to one sublattice, namely
|an| � |bn|. Such weakly localized eigenstates are nearly resonant with the quasi-bound
state localized at site n = 0, between the two high barriers. The quasi-bound state can thus
couple with such weakly localized states, while other strongly localized states with high
energy do not play any main role in the decay dynamics. This means that the decaying
quasi-bound state couples to a set of discrete and weakly localized states of the bath, which
is responsible rather generally for memory (non-Markovian) effects and strong deviations
from an exponential decay law. This explains why the long-time dynamics displays strong
revival effects and also limited decay, such as those observed in models (iii), (iv), and (v)
discussed in the main text (see Figure 3c).
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