
Citation: Zhang, J.; Yang, L.; Tang, Y.;

Jin, M.; Wang, S. A Novel Edge

Cache-Based Private Set Intersection

Protocol via Lightweight Oblivious

PRF. Entropy 2023, 25, 1347. https://

doi.org/10.3390/e25091347

Academic Editors: Eirik Rosnes and

Hsuan-Yin Lin

Received: 12 June 2023

Revised: 1 September 2023

Accepted: 12 September 2023

Published: 16 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

A Novel Edge Cache-Based Private Set Intersection Protocol via
Lightweight Oblivious PRF
Jing Zhang, Li Yang, Yongli Tang *, Minglu Jin and Shujing Wang

College of Software, Henan Polytechnic University, Jiaozuo 454000, China
* Correspondence: yltang@hpu.edu.cn

Abstract: With the rapid development of edge computing and the Internet of Things, the problem of
information resource sharing can be effectively solved through multi-party collaboration, but the risk
of data leakage is also increasing. To address the above issues, we propose an efficient multi-party
private set intersection (MPSI) protocol via a multi-point oblivious pseudorandom function (OPRF).
Then, we apply it to work on a specific commercial application: edge caching. The proposed MPSI
uses oblivious transfer (OT) together with a probe-and-XOR of strings (PaXoS) as the main building
blocks. It not only provides one-sided malicious security, but also achieves a better balance between
communication and computational overhead. From the communication pattern perspective, the
client only needs to perform OT with the leader and send a data structure PaXoS to the designated
party, making the protocol extremely efficient. Moreover, in the setting of edge caching, many parties
hold a set of items containing an identity and its associated value. All parties can identify a set of the
most frequently accessed common items without revealing the underlying data.

Keywords: private set intersection; edge computing; multi-party cooperative cache; concrete efficiency

1. Introduction

Co-creation and sharing gained significance in the transition from the era of infor-
mation technology to the era of digital technology. While information sharing brings
convenience, the risk of privacy breaches also rises. The private set intersection (PSI)
protocol is a widely used approach to distributed set computation. It is devoted to the
joint intersection calculation of data from two or more parties. The PSI protocol guarantees
that all parties can collaboratively calculate the intersection of the sets without disclos-
ing anything beyond that intersection. PSI plays an important role in improving pattern
matching [1], private contact discovery [2], advertisement conversion rate [3], and edge
caching [4]. Edge caching is a key technology for communication networks. In order to
utilize cache resources more efficiently, individual operators tend to keep their public items
in a shared cache that can be accessed by all parties. However, since the cache is shared
among multiple parties, these parties aim to identify the set of most frequently visited com-
mon data items and add them to the network edge cache. Their objective is to achieve this
without revealing the actual underlying data. This is known as the multi-party shared cache
problem, where determining the common term is a typical private set intersection problem.

Most of the current efficient PSI protocols are built on OT [5–7]. The OT-based PSI
protocols offer greater advantages in terms of communication and computation when
compared with PSI based on public key encryption [8,9] and PSI based on a garbled
circuit [10–12]. Efficient OT extension techniques allow parties to generate many OT
protocol instances at a low computational cost through a few public key operations. Chase
et al. [5] implemented a two-party PSI protocol with one-sided malicious security. This
protocol uses OT and a multi-point OPRF to achieve a good balance between computational
and communication overhead. The protocol can only interact between two parties, and
multiple runs are required to accomplish the intersection computation with multiple parties

Entropy 2023, 25, 1347. https://doi.org/10.3390/e25091347 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25091347
https://doi.org/10.3390/e25091347
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0009-0002-3018-3402
https://doi.org/10.3390/e25091347
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25091347?type=check_update&version=1

Entropy 2023, 25, 1347 2 of 16

involved. Kavousi et al. [13] proposed a MPSI based on OT and multi-point OPRF. This
protocol can only be implemented in the semi-honest model. Inbar et al. [14] presented
an enhanced semi-honest MPSI protocol based on OT and a garbled Bloom filter (GBF).
However, the protocols [13,14] require the transmission of the GBF for communication,
creating a certain degree of communication burden.

In response to the above issues, we constructed an MPSI protocol for malicious actors
that combines a PaXoS and multi-point OPRF based on OT. The protocol relies only on
symmetric keys, hashing, coding techniques, and bitwise operations, thus providing good
computational performance. This protocol can solve the problem of privacy-preserving
edge cooperative cache sharing by making a simple transformation of this protocol. We
show the following contributions:

• Multi-party PSI protocol: We propose a specifically efficient MPSI protocol utilizing
OT and a PaXoS. The PaXoS can be seen as a corresponding Encode/Decode algorithm
achieving a constant rate. Therefore, our protocol has good computational perfor-
mance. The protocol has low communication overhead since the clients only need to
send a data structure. Theoretical analysis shows that the protocol leads to a better
balance between communication and computational cost.

• Security against malicious clients: We present that our protocol uses the data structure
PaXoS to hide the key during encoding to resist malicious adversaries, which can
achieve one-sided malicious security against the clients with almost no additional
overhead. At the same time, we prove that the protocol can also resist any possible
collusion attack from malicious clients.

• Multi-party cooperative cache: Our MPSI protocol can be applied to edge caching
scenarios by using cuckoo hashing and simple hashing. The protocol supports having
data associated with each input and the extension of payloads to multi-party. In a
multi-party cooperative cache (MPCCache) setting, the MPCCache protocol allows
parties to compute a sum depending on the data associated with the intersection
items. Compared with [4], our MPCCache protocol eliminates the computing burden
associated with polynomial interpolation and improves computational efficiency.

2. Related Work

PSI. The development of efficient constructions for PSI functionality has received
considerable research attention in the last decade or more. Some of the recent relevant
works on PSI are illustrated in Table 1. Ghosh et al. [15] presented a MPSI protocol using
oblivious linear function evaluation (OLE) with optimal asymptotic communication com-
plexity. However, the balance between communication and computation cost is not good.
Kolesniko [16] proposed a two-party PSI protocol against semi-honest adversaries. The
protocol is mainly based on OT techniques for security string equivalence testing and is
computationally efficient. Pinkas [17] proposed a two-party semi-honest PSI protocol based
on OT and a GBF. The parallelized processing of the protocol allows for some improvement
in protocol efficiency. Nevo [18] proposed a malicious PSI protocol utilizing oblivious
programmable PRF (OPPRF) and oblivious key-value store (OKVS) technology, which
solves the problem of multi-party PSI against malicious adversaries. However, this protocol
does not lead to a better trade-off between communication and computational overhead.
Pinkas [19] also proposed a PSI protocol for two parties in the malicious model which
uses a PaXoS to implement, for the first time, a malicious secure PSI using cuckoo hashing.
Ben-Efraim et al. [20] implemented malicious MPSI based on a GBF for multiple parties.
However, GBFs suffer from a certain false positive rate and their high communication over-
head. Bui et al. [21] constructed an optimized semi-honest PSI based on a pseudorandom
correlation generator (PCG). Additionally, they can use the PCG to construct protocols with
fully malicious security in the standard model.

Entropy 2023, 25, 1347 3 of 16

Table 1. The related work of PSI.

Protocol Technical Number of Parties Security Model

[15] OLE multi-party Malicious
[16] OT two-party Semi-Honest
[17] GBF + OT two-party Semi-Honest
[18] OPPRF + OKVS multi-party Malicious
[19] PaXoS two-party Malicious
[20] GBF multi-party Malicious
[21] PCG two-party Semi-Honest

Function-based PSI. Many studies have focused on developing efficient techniques
for PSI construction. In addition, these studies have explored the output results of com-
puting a function over intersections, allowing for potential extensions to various business
scenarios. Table 2 shows recent related works on function-based PSI. Ion et al. [3] proposed
a PI-Sum Protocol utilizing Diffie–Hellman (DDH) and homomorphic encryption (HE).
Thinking about the advertising (Ad) conversion problem: Ad providers want to analyze Ad
effectiveness by age, which obviously cannot be solved using the PI-Sum. Chida [22] pro-
posed a new function based on OPRF and DDH assumptions to calculate the weighted sum
of two-party privacy sets (PIW-sum), which has more practical application value. Pinkas
et al. [11] proposed an idea of calculating payloads based on the circuit, OPPRF, and cuckoo
hash constructs, which allows each input item from one party to have payload data attached
to it, and finally to calculate some specific functions of the payloads in the intersection set.
Based on a new shuffled distributed oblivious PRF (DOPRF), Miao et al. [23] constructed a
two-party PSI cardinality (PSI-CA) protocol for malicious settings which achieves a good
computation and communication cost. In the above protocols, only one party can own
the payload data, which can be applied in limited practical scenarios. Nguyen et al. [4]
extended payload data to the multi-party setting and proposed an MPCCache sharing
framework based on polynomial interpolation and OPPRF, which enables multiple parties
to calculate a sum of data payloads on each of common data items and can identify the
most frequently accessed data items.

Table 2. The related work of function-based PSI.

Protocol Technical Number of Parties Protocol Type

[3] DDH + HE two-party PI-Sum
[4] OPPRF multi-party MPCCache
[11] OPPRF + Circuit multi-party PSI- payload
[22] OPRF + DDH two-party PIW-Sum
[23] DOPRF two-party PSI-CA

3. Preliminaries
3.1. Notions

The computational and statistical security parameters are denoted by λ and σ. [n]

stands in for the set {1, . . . , n}. R← indicates uniformly random selection. The notation ||
denotes concatenation between strings. {0, 1}∗ denotes the set of strings consisting of 0

and 1, where * means that the strings in the set can be of any length. We use
C≈ to indicate

that the real world is indistinguishable from the ideal world. We denote with v[i] the i-th
element of a vector v of length l. The i-th column vector i ∈ [n] of the matrix Mn×m is
denoted by the symbol Mi. The Hamming weight of the binary string x is represented by
||x||H

Entropy 2023, 25, 1347 4 of 16

3.2. One-Sided Malicious Security

One-sided malicious security [5] is a security property found in cryptographic proto-
cols wherein one party is allowed to engage in arbitrary malicious behavior in an attempt to
compromise security while the other parties follow specified behavioral guidelines. In this
context, only the targeted party is vulnerable to malicious action, whereas the other parties
maintain their assigned roles and responsibilities. Our MPSI protocol achieves unilateral
malicious security against the clients, as they are considered as a whole. We further prove
that the proposed MPSI is secure against malicious clients.

3.3. Security Model

MPSI is a unique instance of secure multi-party computation (MPC). We adhere to the
MPC standard security definition. The ideal functionality of MPSI is defined in Figure 1.

Entropy 2023, 25, x FOR PEER REVIEW 4 of 16

3.2. One-Sided Malicious Security
One-sided malicious security [5] is a security property found in cryptographic pro-

tocols wherein one party is allowed to engage in arbitrary malicious behavior in an at-
tempt to compromise security while the other parties follow specified behavioral guide-
lines. In this context, only the targeted party is vulnerable to malicious action, whereas the
other parties maintain their assigned roles and responsibilities. Our MPSI protocol
achieves unilateral malicious security against the clients, as they are considered as a
whole. We further prove that the proposed MPSI is secure against malicious clients.

3.3. Security Model
MPSI is a unique instance of secure multi-party computation (MPC). We adhere to

the MPC standard security definition. The ideal functionality of MPSI is defined in Figure
1.

Inputs: Party []i nP∈ respectively input a set of elements 1{ ,..., }
ii nX x x= where *{0,1}ix ∈ .

Output: Party nP receives the set intersection 1 ... nI X X= .

Figure 1. Ideal functionality of MPSI MPSI .

The security models [24] of secure multi-party computation are divided into semi-
honest and malicious models. For the semi-honest model, an adversary can completely
obey the protocol execution process, yet might record all the data in the protocol execution
process and try to learn more from the data generated during the protocol execution pro-
cess. The adversary under the malicious model can not only infer the sensitive information
through the data of the protocol process but also refuse to participate in the protocol, alter
the private input set information, or prematurely stop the protocol from running. Our
protocol can achieve one-sided malicious security.

Definition 1. (Malicious security against the clients) If there is a PPT adversary who might
unilaterally depart from the protocol in the real world, there exists a PPT adversary who could
modify the input to the ideal functionality and terminate the output in an ideal world. Then, the
protocol Π can protect from malicious clients, such that for each input 1,..., nX X :

() ()1 1Real ,..., Ideal ,...,c
n nX X X X∏ ≈

 . (1)

3.4. Oblivious Transfer
Rabin et al. [25] proposed a crucial cryptographic primitive OT. In a 1-out-of-2 OT

configuration, the receiver can have a choice bit {0,1}b∈ , while the sender can have input
strings 0 1(,)m m . The OT acts to prevent the receiver from knowing nothing regarding 1 bm −
and prevent the sender from learning anything about b. OT necessitates costly public-key
operations. Ishai et al. [26] described an OT extension technique that permits many OT
executions at the cost of doing few public-key procedures. We can use the instantiation
OT in [15]. The ideal functionality of OT is defined in Figure 2.

Input: The sender inputs two strings 0 1(,)m m and the receiver inputs a choice bit {0,1}b∈ .
Output: The functionality returns only bm to the receiver and returns nothing to the sender.

Figure 2. Ideal functionality of OT OT .

3.5. PaXoS
The following is a way to encode key-value mapping into a brief data structure using

a PaXoS [19]. The associated Encode/Decode methods are frequently more convenient to
describe when describing a PaXoS than the u mapping.

Figure 1. Ideal functionality of MPSI FMPSI.

The security models [24] of secure multi-party computation are divided into semi-
honest and malicious models. For the semi-honest model, an adversary can completely
obey the protocol execution process, yet might record all the data in the protocol execution
process and try to learn more from the data generated during the protocol execution process.
The adversary under the malicious model can not only infer the sensitive information
through the data of the protocol process but also refuse to participate in the protocol, alter
the private input set information, or prematurely stop the protocol from running. Our
protocol can achieve one-sided malicious security.

Definition 1. (Malicious security against the clients) If there is a PPT adversary A who might
unilaterally depart from the protocol in the real world, there exists a PPT adversary S who could
modify the input to the ideal functionality and terminate the output in an ideal world. Then, the
protocol Π can protect from malicious clients, such that for each input X1, . . . , Xn:

Real∏
A(X1, . . . , Xn)

c≈ IdealFS (X1, . . . , Xn). (1)

3.4. Oblivious Transfer

Rabin et al. [25] proposed a crucial cryptographic primitive OT. In a 1-out-of-2 OT
configuration, the receiver can have a choice bit b ∈ {0, 1}, while the sender can have input
strings (m0, m1). The OT acts to prevent the receiver from knowing nothing regarding m1−b
and prevent the sender from learning anything about b. OT necessitates costly public-key
operations. Ishai et al. [26] described an OT extension technique that permits many OT
executions at the cost of doing few public-key procedures. We can use the instantiation OT
in [15]. The ideal functionality of OT is defined in Figure 2.

Entropy 2023, 25, x FOR PEER REVIEW 4 of 16

3.2. One-Sided Malicious Security
One-sided malicious security [5] is a security property found in cryptographic pro-

tocols wherein one party is allowed to engage in arbitrary malicious behavior in an at-
tempt to compromise security while the other parties follow specified behavioral guide-
lines. In this context, only the targeted party is vulnerable to malicious action, whereas the
other parties maintain their assigned roles and responsibilities. Our MPSI protocol
achieves unilateral malicious security against the clients, as they are considered as a
whole. We further prove that the proposed MPSI is secure against malicious clients.

3.3. Security Model
MPSI is a unique instance of secure multi-party computation (MPC). We adhere to

the MPC standard security definition. The ideal functionality of MPSI is defined in Figure
1.

Inputs: Party []i nP∈ respectively input a set of elements 1{ ,..., }
ii nX x x= where *{0,1}ix ∈ .

Output: Party nP receives the set intersection 1 ... nI X X= .

Figure 1. Ideal functionality of MPSI MPSI .

The security models [24] of secure multi-party computation are divided into semi-
honest and malicious models. For the semi-honest model, an adversary can completely
obey the protocol execution process, yet might record all the data in the protocol execution
process and try to learn more from the data generated during the protocol execution pro-
cess. The adversary under the malicious model can not only infer the sensitive information
through the data of the protocol process but also refuse to participate in the protocol, alter
the private input set information, or prematurely stop the protocol from running. Our
protocol can achieve one-sided malicious security.

Definition 1. (Malicious security against the clients) If there is a PPT adversary who might
unilaterally depart from the protocol in the real world, there exists a PPT adversary who could
modify the input to the ideal functionality and terminate the output in an ideal world. Then, the
protocol Π can protect from malicious clients, such that for each input 1,..., nX X :

() ()1 1Real ,..., Ideal ,...,c
n nX X X X∏ ≈

 . (1)

3.4. Oblivious Transfer
Rabin et al. [25] proposed a crucial cryptographic primitive OT. In a 1-out-of-2 OT

configuration, the receiver can have a choice bit {0,1}b∈ , while the sender can have input
strings 0 1(,)m m . The OT acts to prevent the receiver from knowing nothing regarding 1 bm −
and prevent the sender from learning anything about b. OT necessitates costly public-key
operations. Ishai et al. [26] described an OT extension technique that permits many OT
executions at the cost of doing few public-key procedures. We can use the instantiation
OT in [15]. The ideal functionality of OT is defined in Figure 2.

Input: The sender inputs two strings 0 1(,)m m and the receiver inputs a choice bit {0,1}b∈ .
Output: The functionality returns only bm to the receiver and returns nothing to the sender.

Figure 2. Ideal functionality of OT OT .

3.5. PaXoS
The following is a way to encode key-value mapping into a brief data structure using

a PaXoS [19]. The associated Encode/Decode methods are frequently more convenient to
describe when describing a PaXoS than the u mapping.

Figure 2. Ideal functionality of OT FOT.

3.5. PaXoS

The following is a way to encode key-value mapping into a brief data structure using
a PaXoS [19]. The associated Encode/Decode methods are frequently more convenient to
describe when describing a PaXoS than the u mapping.

Encode((x1, y1), . . . , (xt, yt)): Given t items (xi, yi), where xi ∈ {0, 1}∗ and yi ∈ {0, 1}w,
indicate via M the t×m matrix where the i-th row is u(xi). Note that u(x) is the result of using the
mapping u to x. It is possible to find a data structure (matrix) D = (d1, . . . , dm)

T ∈ ({0, 1}w)
m

Entropy 2023, 25, 1347 5 of 16

satisfying M× D = (y1, . . . , yt)
T. In particular, the subsequent linear system of equations

is fulfilled when the u(xi)’s are linearly independent:
−u(x1)−
−u(x2)−

...
−u(xt)−

×

d1
d2
...

dm

 =

y1
y2
...

yt

. (2)

Decode(D, x): Given D ∈ ({0, 1}w)
m and x ∈ {0, 1}∗, we can extract the correspond-

ing “value” via y = 〈u(x), D〉 def
= ⊕

j:v(x)j=1
dj.

3.6. Multi-Point OPRF

Chase [5] presented a PSI protocol for two parties based on multi-point OPRF. The

sender chooses a pseudorandom seed s R← {0, 1}w, and the receiver computes a pseudoran-
dom function v = Fk(xi) based on its set elements to construct two matrices: Am×w and
Bm×w. For each xi ∈ X1, the corresponding bits in matrices are the same, while others are
different. The sender obtains a matrix Cm×w depending on seed s and runs w OTs with
the receiver. Each column of the matrix is either Aj or Bj for all j ∈ [w]. Then, the sender
computes v = Fk(xi) according to each element xi ∈ X2 to obtain all the resulting OPRFs
ϕ = H(C1[v[1]||. . .||Cw[v[w]]) and sends them to the receiver. Eventually, the receiver can
find the intersection of the two sets based on its computed OPRF value.

3.7. Hamming Correlation Robustness

Under the assumption of correlation robustness for the underlying hash function, our
MPSI structure is demonstrated to be secure.

Definition 2. (Hamming Correlation Robustness [5]) If the distribution produced by the sam-
pling of s← {0, 1}n at random is pseudorandom for a1, . . . , am, b1, . . . , bm ∈ {0, 1}n, and has
||bi||H ≥ d for each i ∈ [m], H is d-Hamming correlation robust. Namely:

(H(a1 ⊕ [b1·s]), . . . , H(am ⊕ [bm·s]))
c≈ (F(a1 ⊕ [b1·s]), . . . , F(am ⊕ [bm·s])), (3)

where ⊕ denotes bitwise-AND and bitwise-XOR, respectively, and F is a random function.

3.8. Cuckoo Hashing and Simple Hashing

Hash technology is one of the essential tools for optimizing communication and
computational complexity in PSI protocols. There are two commonly used construction
methods for hash technology: simple hashing and cuckoo hashing [10]. Simple hashing
can map elements to k positions in a hash table using k hash functions, with each bucket
being capable of storing multiple elements. Cuckoo hashing can map elements to a specific
location in a hash table using a hash function, and its basic idea is to use multiple hash
functions to handle collisions. When collisions occur, cuckoo hashing evicts the element oc-
cupying the original position, which can be rehomed to alternative positions. If alternative
positions are already occupied, the process repeats until all elements can find their homes.
Typically, cuckoo hashing and simple hashing are combined to achieve optimal results in
PSI protocols.

Entropy 2023, 25, 1347 6 of 16

4. Our MPSI Protocol
4.1. Overview

In this section, we show the MPSI protocol. A couple of parties P1, . . . , Pn with
respective private input sets X1, . . . , Xn desire to collectively compute X1 ∩ . . .∩Xn without
disclosing any more information. Note that we regard t as the set sizes for parties, Pn as
the leader, and Pi∈[n−1] as the client. The system model of the MPSI protocol is shown in
Figure 3.

Entropy 2023, 25, x FOR PEER REVIEW 6 of 16

4. Our MPSI Protocol
4.1. Overview

In this section, we show the MPSI protocol. A couple of parties 1,..., nP P with respec-
tive private input sets 1,..., nX X desire to collectively compute 1 ... nX X without disclos-
ing any more information. Note that we regard t as the set sizes for parties, nP as the
leader, and [1]i nP∈ − as the client. The system model of the MPSI protocol is shown in Figure
3.

OT

()a a
A BM ,M

as
asM

• • • • • •

2 1([[1]] || ... || [[]])n n
wH C v C v w x Iψ∈ → ∈

1

Encode({(,
[[1]] || ... || [[]])})

a
a

a a
w

D x
C v C v w

←

()()1a k av F H x=

()()1n k nv F H x=

n

Clent n
X

2
2 1 1

1 1
1

(Decode(,)
([[1]] || ... || [[]]))

n i
i n

n n
w

H D x
C v C v w

ψ
−
= −

− −

 ⊕ =
⊕

n 1s −

n 1sM
−

()n 1 n 1
A BM ,M− − OT

() aClent a a=1,2,...,n 2 X− :

()()1 1 1n k nv F H x− −=

n 1

Clent n 1
X −

−

Figure 3. System model.

nP constructs a random matrix m wA × and chooses strings for [1]i nP∈ − to generate the
{0,1}i R m

jA ←⎯⎯ and sets 1 1n n
j j jA A A −= ⊕ ⊕ , where []j w∈ . For each [1]i n∈ − , from its input

elements, nP constructs unique matrices m wB × . nP first initializes a matrix m wE × to all
1’s. For nx X∈ computing 1(())kv F H x= , m wB × is designed such that [[]] 0jE v j = for all

[]j w∈ , and hence [[]] [[]] [[]]i i i
j j jA v j B v j C v j= = for all [1]i n∈ − and []j w∈ . Then, [2]i nP∈ −

locally encode a data structure PaXoS of their input sets

(){ }()1, [[1]]|| ... || [[]]Encode i i
w

i x C v C v wD ← using the entries of the received matrix and send iD
to 1nP− . 1nP− decodes all the iD . Then, they compute and sends the OPRF values

()()2 1 1
2 1 1Decode(,) [[1]] || ... || [[]]n i n n

i wH D x C v C v wϕ − − −
== ⊕ ⊕ to nP . After receiving the OPRF val-

ues, nP computes ()2 1 [[1]]|| ...|| [[]]n n
wH C v C v wϕ = according to its input set, which allows

nP to find the intersection. This implies that, if x I∈ , the hash function’s input from 1nP−
and nP will be equal. While the output of the PRF would be pseudorandom to nP if
x I∉ , the hash function’s input from 1nP − will be dramatically different from any nP ’s
input.

4.2. Our Protocol
We show our MPSI protocol in Figure 4. The selection of m , w , 1l , and 2l in our

MPSI protocol follows [5] and they show how to choose the parameters concretely.

Figure 3. System model.

Pn constructs a random matrix Am×w and chooses strings for Pi∈[n−1] to generate

the Ai
j

R← {0, 1}m and sets An
j = A1

j ⊕ . . . ⊕ An−1
j , where j ∈ [w]. For each i ∈ [n − 1],

from its input elements, Pn constructs unique matrices Bm×w. Pn first initializes a matrix
Em×w to all 1’s. For x ∈ Xn computing v = Fk(H1(x)), Bm×w is designed such that
Ej[v[j]] = 0 for all j ∈ [w], and hence Ai

j[v[j]] = Bi
j[v[j]] = Ci

j[v[j]] for all i ∈ [n − 1]
and j ∈ [w]. Then, Pi∈[n−2] locally encode a data structure PaXoS of their input sets
Di ← Encode

({(
x, Ci

1[v[1]]
∣∣∣∣. . .

∣∣∣∣Ci
w[v[w]]

)})
using the entries of the received matrix and

send Di to Pn−1. Pn−1 decodes all the Di. Then, they compute and sends the OPRF values
ϕ = H2

(
⊕n−2

i=1 Decode(Di, x)⊕
(

Cn−1
1 [v[1]]

∣∣∣∣∣∣. . .
∣∣∣∣∣∣Cn−1

w [v[w]]
))

to Pn. After receiving the

OPRF values, Pn computes ϕ = H2
(
Cn

1 [v[1]]
∣∣∣∣. . .

∣∣∣∣Cn
w[v[w]]

)
according to its input set,

which allows Pn to find the intersection. This implies that, if x ∈ I, the hash function’s input
from Pn−1 and Pn will be equal. While the output of the PRF would be pseudorandom to
Pn if x /∈ I, the hash function’s input from Pn−1 will be dramatically different from any Pn’s
input.

4.2. Our Protocol

We show our MPSI protocol in Figure 4. The selection of m, w, l1, and l2 in our MPSI
protocol follows [5] and they show how to choose the parameters concretely.

Entropy 2023, 25, 1347 7 of 16Entropy 2023, 25, x FOR PEER REVIEW 7 of 16

Parameters: security parameters λ and σ , protocol parameters m ,w , 1l , 2l , hash functions
1*

1 :{0,1} {0,1}lH → , 2
2 :{0,1} {0,1}lwH → , pseudorandom function 1:{0,1} {0,1} []l wF mλ × → .

Precomputation：
• [1]i nP∈ − sample {0,1}R w

is ←⎯⎯ .
• nP performs following operations:
(i) Initialize a matrix m wE × to all 1’s 1 ... 1mwE E= = = .
(ii) nP randomly samples a binary matrix {0,1}n R

m wA × ←⎯⎯ . For []j w∈ , nP chooses 1n −
shares uniformly at randomly under the constraint that 1 1...n n

j j jA A A −= ⊕ ⊕ . He also uniformly
samples a PRF key {0,1}Rk λ←⎯⎯ .

(iii) For nx X∈ , computes 1(())kv F H x= and sets [[]] 0jE v j = for all []j w∈ .
Oblivious Transfer:

(i) nP computes matrix i iB A E= ⊕ for [1]i n∈ − .
(ii) []1i nP∈ − and nP run w OTs where nP is the sender with input { , }i i

j jA B and []1i nP∈ − is

the receiver with inputs []is j . []1i nP∈ − obtain w number of m-bit strings as the column

vectors of i
m wC × .

Concluding the Intersection:
(i) nP sends k to []1i nP∈ − .

(ii) For ix X∈ , []2i nP∈ − compute 1(())kv F H x= and encode a PaXos data structure iD to

1nP − , where iD is encoded as { }()1 1
1Encode (, [[1]] || ... || [[]])i

wD x C v C v w← .

(iii) For each 1nx X −∈ , 1nP − decode [2]i nD ∈ − according to 1(())kv F H x= , and computes its
OPRF values ()()2 1 1

2 1 1Decode(,) [[1]] || ... || [[]]n i n n
i wH D x C v C v wϕ − − −
== ⊕ ⊕ according to 1(())kv F H x= and

send ϕ to nP 。
(iv) Let ψ represent the set of OPRF values obtained from 1nP − . For nx X∈ , nP

computes its OPRF value ()2 1 [[1]] || ... || [[]]n n
wH C v C v wϕ = according to 1(())kv F H x= and outputs

x if ϕ ψ∈ .
Figure 4. Our MPSI protocol.

4.3. Protocol Correctness

nP constructs the special matrices iA and iB for [1]i nP∈ − such that 1(())kv F H x=
computed for each nx X∈ satisfies [[]] [[]]i i

j jA v j B v j= for all j w∈ . Let x be the intersec-
tion element. Since each column of matrix n

jA is composed of uniform random shares as
1 1...n n

j j jA A A −= ⊕ ⊕ for j w∈ , after the client [1]i nP∈ − runs OTs with nP , the matrix i
jC is ob-

tained, satisfying [[]] [[]]i i
j jA v j C v j= . It holds that 1

1[[]] [[]]nn i
j jiA v j C v j−

=
= ⊕ for each x I∈ .

Based on the nature of the constructed data structure, we have
1Decode(,) [[1]] || ... || [[]]i i i

wD x C v C v w= . So, for x I∈ , let 1(())kv F H x= , and we can always satisfy

()() ()1
2 1 1 2 1[[1]] || ... || [[]] [[1]] || ... || [[]]n i i i i

i w wH C v C v w H A v A v w−
=⊕ = .

4.4. Protocol Security

Theorem 1. If F is a PRF, 1H and 2H are random oracles, and the underlying OT is protected
against malicious receivers, then our MPSI protocol has one-sided malicious security which can be
secure against malicious clients when m , w , 1l , and 2l are chosen appropriately.

Proof of Theorem 1. We consider any client 1 1{ ,..., }nP P P −= corrupted by an adversary
. Let l clients 1,..., lP P be corrupted, making the number of uncorrupted clients (1)n l− −

. Given []{ }i i lX ∈ , the simulator interacts with []{ }i i lP ∈ as follows. samples random
matrices []{ } {0,1}m w

i i lC ×
∈ ∈ and performs malicious OT simulator on []{ }i i lP ∈ with outputs

Figure 4. Our MPSI protocol.

4.3. Protocol Correctness

Pn constructs the special matrices Ai and Bi for Pi∈[n−1] such that v = Fk(H1(x))
computed for each x ∈ Xn satisfies Ai

j[v[j]] = Bi
j[v[j]] for all j ∈ w. Let x be the intersection

element. Since each column of matrix An
j is composed of uniform random shares as

An
j = A1

j ⊕ . . .⊕ An−1
j for j ∈ w, after the client Pi∈[n−1] runs OTs with Pn, the matrix Ci

j is

obtained, satisfying Ai
j[v[j]] = Ci

j[v[j]]. It holds that An
j [v[j]] = ⊕

n−1
i=1 Ci

j[v[j]] for each x ∈ I.
Based on the nature of the constructed data structure, we have

Decode(Di, x
)
= Ci

1[v[1]]
∣∣∣∣. . .

∣∣∣∣Ci
w[v[w]] . So, for x ∈ I, let v = Fk(H1(x)), and we can

always satisfy H2

(
⊕n−1

i=1

(
Ci

1[v[1]]
∣∣∣∣. . .

∣∣∣∣Ci
w[v[w]]

))
= H2

(
Ai

1[v[1]]
∣∣∣∣. . .

∣∣∣∣Ai
w[v[w]]

)
.

4.4. Protocol Security

Theorem 1. If F is a PRF, H1 and H2 are random oracles, and the underlying OT is protected
against malicious receivers, then our MPSI protocol has one-sided malicious security which can be
secure against malicious clients when m, w, l1, and l2 are chosen appropriately.

Proof of Theorem 1. We consider any client P = {P1, . . . , Pn−1} corrupted by an adver-
sary A. Let l clients P1, . . . , Pl be corrupted, making the number of uncorrupted clients
(n− l − 1). Given {Xi}i∈[l], the simulator S interacts with {Pi}i∈[l] as follows. S samples

random matrices {Ci}i∈[l] ∈ {0, 1}m×w and performs malicious OT simulator on {Pi}i∈[l]
with outputs Ci

1, . . . , Ci
w. S honestly chooses PRF key k and sends k to {Pi}i∈[l]. The sim-

ulator S constructs random data structures representing honest parties according to the

Entropy 2023, 25, 1347 8 of 16

randomness of the matrices. T1 and T2 are initialized to an empty table. In Pi∈[n−1]’s query x
to H1, S records (x, H1(x)) in table Ti

1. In Pn−1’s query y to H2, S records (y, H2(y)) in table
T2. When Pn receives OPRF value Ψ, S finds all ϕ ∈ Ψ such that ϕ = H2(y) for some y in
T2, and y = ⊕i∈[l]

(
Ci

1[v[1]]
∣∣∣∣. . .

∣∣∣∣Ci
w[v[w]]

)
⊕
(
⊕j∈[n−t−1]

(
Cj

1[v[1]]
∣∣∣∣∣∣. . .

∣∣∣∣∣∣Cj
w[v[w]]

))
where

v = Fk(H1(x)) for x ∈ T1
1 ∩ . . . ∩ Tn−1

1 . Finally, S can send these x to ideal functionality.
Let Qi

1,Q2 be a set of queries Pi∈[n−1] and Pn−1 make to H1 and H2, respectively, and
let Q = ∩n−1

i=1 Qi
1, Qi

1 =
∣∣Qi

1

∣∣, and Q2 =|Q2|. We will misuse notation: for matrix Cm×w and
vector u ∈ [m]w, C[v] means C1[v[1]]||. . .||Cw[v[w]] . For the set V of vectors in [m]w, the set
{C[V]|v ∈ V} is denoted by C[V].

We prove Real∏
A(X1, . . . , Xn)

c≈ IdealFS (X1, . . . , Xn).

Hyb0 The outputs of parties in the real world.
Hyb1 Similar to Hyb0, but S performs OT simulator on {Pi}i∈[l] to obtain si. If si[j] = 0,

it randomly chooses string Ai
j of length m and constructs matrix Bi

j = Ai
j ⊕ Dj,

and it randomly chooses string Bi
j of length m and constructs matrix Ai

j = Bi
j ⊕ Dj;

otherwise, it gives Ci
1, . . . , Ci

w to OT simulator as output. Hyb1 is computationally
indistinguishable from Hyb0 due to OT security against malicious receiver.

Hyb2 Similar to Hyb1 except that the protocol terminates if there exists xa, xb ∈ X1 ∪ X2 ∪
. . .∪Xn, xa 6= xb such that H1(xa) = H1(xb). Since H1 is a random oracle, the protocol
is aborted with negligible probability.

Hyb3 Same as Hyb2, but, for each OPRF value ϕ received by Pn, if ϕ /∈ H2(Q2), then
Pn ignores ϕ. Since H2 is a random oracle, the probability of changing Pn’s output
is negligible. ϕ equals the output of H2 on one of Pn’s elements with negligible
probability.

Hyb4 Same as Hyb3 except that the protocol terminates if there exists y ∈ Q2,
y′ ∈ A[Fk(H1(Xn))] with y 6= y′ and H2(y) = H2(y′). Since H2 is a random ora-
cle, the protocol is aborted with negligible probability.

Hyb5 Same as Hyb4, but, for each OPRF value ϕ received by Pn, Pn ignores ϕ when calculat-
ing the set intersection if ϕ = H2(y) for some y ∈ Q2, where
y /∈

(
⊕i∈[t]

(
Ci[Fk(H1(Q))]

))
⊕
(
⊕j∈[n−t−1]

(
Cj[Fk(H1(Q))]

))
. This hybrid changes

output only if there exist x ∈ Xn satisfying ϕ = H2(A[Fk(H1(x))]), which implies
y = A[Fk(H1(x))] via the terminate condition added in Hyb4. Note that if x ∈ Xn
and x ∈ Q, because of the construction of E, we then have y = A[Fk(H1(x))] =
⊕i∈[l]

(
Ci[Fk(H1(x))]

)
⊕
(
⊕j∈[n−l−1]

(
Cj[Fk(H1(x))]

))
∈

(
⊕i∈[t]

(
Ci[Fk(H1(Q))]

))
⊕
(
⊕j∈[n−l−1]

(
Cj[Fk(H1(Q))]

))
. Therefore, we need only think about x ∈ Xn\Q. For

all x ∈ Xn, A[Fk(H1(x))] = ⊕i∈[l]
(
Ci[Fk(H1(x))]

)
⊕
(
⊕j∈[n−l−1]

(
Cj[Fk(H1(x))]

))
, the

output of Hyb5 changes only if there exist x ∈ Xn\Q, y ∈ Q2 satisfying
y = ⊕i∈[l]

(
Ci[Fk(H1(x))]

)
⊕
(
⊕j∈[n−l−1]

(
Cj[Fk(H1(x))]

))
. Suppose there is a PPT

adversary A that, with non-negligible probability, produces Q, Q2, and Xn such that
there exist y ∈ Q2, x ∈ Xn\Q satisfying y = ⊕i∈[l]

(
Ci[Fk(H1(x))]

)
⊕
(
⊕j∈[n−l−1]

(
Cj[Fk(H1(x))]

))
. Then, [5] shows we can break the security of the

PRF.
Hyb6 Same as Hyb5 except that the protocol terminates if there exists xa ∈ Q, xb ∈ Xn such

that, y = ⊕i∈[l]
(
Ci[Fk(H1(xa))]

)
⊕
(
⊕j∈[n−l−1]

(
Cj[Fk(H1(xa))]

))
= A

[
Fk(H1(xb))

]
but xa 6= xb. The protocol is aborted with negligible probability because of the security
of the PRF.

Hyb7 Same as Hyb6 except that Pn’s outputs are substituted by its outputs in the ideal world. Hyb7
can change Pn’s outputs if and only if there exists a value ϕ received by Pn and considered
by Pn such that ϕ = H2

(
⊕i∈[l]

(
Ci[Fk(H1(xa))]

)
⊕
(
⊕j∈[n−l−1]

(
Cj[Fk(H1(xa))]

)))
for

Entropy 2023, 25, 1347 9 of 16

some xa ∈ Q, and ϕ = A
[

Fk(H1(xb))
]

for some xb ∈ Xn, xa 6= xb. Because H2 is a ran-

dom oracle,⊕i∈[l]
(
Ci[Fk(H1(xa))]

)
⊕
(
⊕j∈[n−l−1]

(
Cj[Fk(H1(xa))]

))
6= A

[
Fk(H1(xb))

]
is aborted via terminate condition in Hyb6 with negligible probability.

Hyb8 Same as Hyb7 except that the protocol does not terminate. Hyb7 and Hyb8 are
computationally indistinguishable since H1 and H2 are random oracles and Fk is
a PRF.

Hyb9 The output in the ideal world. The difference between Hyb9 and Hyb8 is that S
samples a random matrix C and encodes a data structure PaXoS, which is identically
distributed.

�

5. Performance Evaluation
5.1. Complexity Analysis

To better evaluate the complexity of the protocol, we first need to perform a simple
analysis of the overall protocol process. It is important to note that this protocol uses only
inexpensive tools such as OTs and bitwise operations, making it concretely efficient. We
treat t as the set sizes and set m = t as in [5]. So, w can be viewed as a value dependent on
λ by fixing m and t.

Party Pn is referred to as the leader carrying the majority overhead of the protocol,
while the others are referred to as clients. Regarding the complexity of the protocol,
Pn designs matrices of a particular form, requiring linear complexity in t. Then, they
perform w OTs for clients independently, resulting in linear complexity in the number of
OTs. Moreover, Pi∈[n−2] just do encoding operations for data structure Di, and Pn−1 does
hashing, bitwise-XOR, and decoding operations, which require linear communication and
computation complexities. Although the computational overhead of Pn−1 is larger than
that of other clients, they do not need to encode and send a data structure. From this, we
can regard the overall communication and computation costs as uniformly distributed
across all clients.

Note that our protocol can be divided into offline and online phases. Only lightweight
procedures are required in the online phase, and communication and computation costs
associated with performing OT can be handled in the offline phase. In addition, the bits
exchanged among the parties concerning the random OT and the optimized malicious OT
extension are summarized in Table 3.

Table 3. Bits sent for leader and client.

Communication Party Total Bit Transmission

Pn → Pi∈[n−1] tw
Pi∈[n−1] → Pn w(λ− 1)

Pi∈[n−2] → Pn−1 tw
Pn−1 → Pn tl2

5.2. Comparison

It should be noted that, due to the variations in architectures and security levels,
making a fair comparison is challenging. Nevertheless, we have endeavored to include
some recent studies pertaining to diverse security models (e.g., semi-honest, malicious,
etc.). So, we contrast the complexity of communication and computation with [13–15] in
Table 4, where n is the number of parties, k is the number of hash functions, t is the size
of input sets, and λ is the security parameter. In our MPSI protocol, the communication
and computation complexity of the leader are O(tnλ), which is linear in the number of
parties. Meanwhile, the complexity for the client remains constant regardless of the number
of parties involved (namely, O(tλ)) because the client Pi∈[n−1] only needs to compute and

Entropy 2023, 25, 1347 10 of 16

send a data structure Di and does not need to perform additional data transfers with other
parties. Therefore, our protocol achieves a good trade-off between communication and
computation overhead.

Table 4. Complexity of MPSI protocols.

Protocol
Communication Computation

Security Model
Leader Clients Leader Clients

[13] O(tnλ) O(tλk) O(tnλ) O(tnλ) Semi-Honest
[14] O(log(n)tnλk) O(log(n)tnλk) O(tnλk) O(tnλk) Aug Semi-Honest
[15] O((n2 + tn)λ) O(tλ) O(tn log(t)) O(t log(t)) Malicious

Ours O(tnλ) O(tλ) O(tnλ) O(tλ) One-sided
Malicious

Figure 5 shows the security levels of the discussed protocols. Compared with [13],
our protocol achieves a stronger security model without sacrificing communication and
computation costs. We implement one-sided malicious security and [14] implements the
Aug semi-honest model. It is difficult to define which security model is more practical,
but our protocol has better computation and communication performance. Although
the security model in [15] is higher-performing, our protocol has greater communication
performance and achieves a better trade-off between communication and computation.

Entropy 2023, 25, x FOR PEER REVIEW 10 of 16

5.2. Comparison
It should be noted that, due to the variations in architectures and security levels, mak-

ing a fair comparison is challenging. Nevertheless, we have endeavored to include some
recent studies pertaining to diverse security models (e.g., semi-honest, malicious, etc.). So,
we contrast the complexity of communication and computation with [13–15] in Table 4,
where n is the number of parties, k is the number of hash functions, t is the size of
input sets, and λ is the security parameter. In our MPSI protocol, the communication
and computation complexity of the leader are ()O tnλ , which is linear in the number of
parties. Meanwhile, the complexity for the client remains constant regardless of the num-
ber of parties involved (namely, ()O tλ) because the client [1]i nP∈ − only needs to compute
and send a data structure iD and does not need to perform additional data transfers with
other parties. Therefore, our protocol achieves a good trade-off between communication
and computation overhead.

Table 4. Complexity of MPSI protocols.

Protocol
Communication Computation

Security Model
Leader Clients Leader Clients

[13] ()O tnλ ()O t kλ ()O tnλ ()O tnλ Semi-Honest
[14] ()log()O n tn kλ ()log()O n tn kλ ()O tn kλ ()O tn kλ Aug Semi-Honest
[15] 2(())O n tn λ+ ()O tλ (log())O tn t (log())O t t Malicious

Ours ()O tnλ ()O tλ ()O tnλ ()O tλ One-sided Malicious

Figure 5 shows the security levels of the discussed protocols. Compared with [13],
our protocol achieves a stronger security model without sacrificing communication and
computation costs. We implement one-sided malicious security and [14] implements the
Aug semi-honest model. It is difficult to define which security model is more practical, but
our protocol has better computation and communication performance. Although the se-
curity model in [15] is higher-performing, our protocol has greater communication per-
formance and achieves a better trade-off between communication and computation.

13 14 15 ours

Semi-Honest

Aug Semi-Honest

One-sided Malicious

Malicious

se
cu

ri
ty

 le
va

l

Protocol
Figure 5. Comparison of security levels.

5.3. Experimental Evaluation
In order to compare the runtime overhead of each protocol more intuitively, simula-

tion experiments and a results analysis were performed. It should be noted that the time
consumed by this protocol is the average time of multiple experiments. The experimental

Figure 5. Comparison of security levels.

5.3. Experimental Evaluation

In order to compare the runtime overhead of each protocol more intuitively, simulation
experiments and a results analysis were performed. It should be noted that the time
consumed by this protocol is the average time of multiple experiments. The experimental
platform was Windows 10, Intel (R) Core (TM) i5-8250U CPU @ 1.60 GHz 1.80 GHz, 8.00 GB
of RAM, and a compiled environment of Dev-C++5.11.

We first consider the total time required for each protocol to execute with different
numbers of set elements. It is assumed that n = 100, k = λ = 128, and t = 210, 211, 212, 213

are chosen for the comparison experiment, and Figure 6 shows the total running time of
the protocol as a function of the number of elements contained in the set.

Entropy 2023, 25, 1347 11 of 16

Entropy 2023, 25, x FOR PEER REVIEW 11 of 16

platform was Windows 10, Intel (R) Core (TM) i5-8250U CPU @ 1.60 GHz 1.80 GHz, 8.00
GB of RAM, and a compiled environment of Dev-C++5.11.

We first consider the total time required for each protocol to execute with different
numbers of set elements. It is assumed that 100n = , 128k λ= = , and 10 11 12 132 ,2 ,2 ,2t = are
chosen for the comparison experiment, and Figure 6 shows the total running time of the
protocol as a function of the number of elements contained in the set.

0

100

200

300

400

500

600

700

132122112102

Ti
m

e(
s)

Set Cardinality(t)

 13
 14
 15
 our

Figure 6. Running time vs. set cardinality.

From Figure 6, the total time overhead in each protocol grows essentially linearly as
the number of set elements continues to increase. However, the time of our MPSI protocol
increases the slowest when the fixed set cardinality is small. Our MPSI protocol has the
slowest time growth rate.

In addition, the effect of the change in the number of parties on the running time of
the protocol is further considered. Suppose that the maximum number of elements con-
tained in the set is 1000t = , the security parameters are kept fixed at 128k λ= = , and the
number of parties 1 2 3 410 ,10 ,10 ,10n = is selected for the comparison experiment. The total
protocol runtime as a function of the number of parties is shown in Figure 7.

20

40

60

80

100

0 410310210110

Ti
m

e(
m

s)

parties(n)

 13
 14
 15
 our

Figure 7. Running time vs. the number of parties.

From Figure 7, the running time of all protocols increases gradually with the number
of parties. The time overheads of our MPSI protocol are lower than those of the other
protocols when n is fixed. In addition, our MPSI protocol has the slowest time growth rate.

Figure 6. Running time vs. set cardinality.

From Figure 6, the total time overhead in each protocol grows essentially linearly as
the number of set elements continues to increase. However, the time of our MPSI protocol
increases the slowest when the fixed set cardinality is small. Our MPSI protocol has the
slowest time growth rate.

In addition, the effect of the change in the number of parties on the running time of the
protocol is further considered. Suppose that the maximum number of elements contained
in the set is t = 1000, the security parameters are kept fixed at k = λ = 128, and the number
of parties n = 101, 102, 103, 104 is selected for the comparison experiment. The total protocol
runtime as a function of the number of parties is shown in Figure 7.

Entropy 2023, 25, x FOR PEER REVIEW 11 of 16

platform was Windows 10, Intel (R) Core (TM) i5-8250U CPU @ 1.60 GHz 1.80 GHz, 8.00
GB of RAM, and a compiled environment of Dev-C++5.11.

We first consider the total time required for each protocol to execute with different
numbers of set elements. It is assumed that 100n = , 128k λ= = , and 10 11 12 132 ,2 ,2 ,2t = are
chosen for the comparison experiment, and Figure 6 shows the total running time of the
protocol as a function of the number of elements contained in the set.

0

100

200

300

400

500

600

700

132122112102

Ti
m

e(
s)

Set Cardinality(t)

 13
 14
 15
 our

Figure 6. Running time vs. set cardinality.

From Figure 6, the total time overhead in each protocol grows essentially linearly as
the number of set elements continues to increase. However, the time of our MPSI protocol
increases the slowest when the fixed set cardinality is small. Our MPSI protocol has the
slowest time growth rate.

In addition, the effect of the change in the number of parties on the running time of
the protocol is further considered. Suppose that the maximum number of elements con-
tained in the set is 1000t = , the security parameters are kept fixed at 128k λ= = , and the
number of parties 1 2 3 410 ,10 ,10 ,10n = is selected for the comparison experiment. The total
protocol runtime as a function of the number of parties is shown in Figure 7.

20

40

60

80

100

0 410310210110

Ti
m

e(
m

s)

parties(n)

 13
 14
 15
 our

Figure 7. Running time vs. the number of parties.

From Figure 7, the running time of all protocols increases gradually with the number
of parties. The time overheads of our MPSI protocol are lower than those of the other
protocols when n is fixed. In addition, our MPSI protocol has the slowest time growth rate.

Figure 7. Running time vs. the number of parties.

From Figure 7, the running time of all protocols increases gradually with the number
of parties. The time overheads of our MPSI protocol are lower than those of the other
protocols when n is fixed. In addition, our MPSI protocol has the slowest time growth rate.

Entropy 2023, 25, 1347 12 of 16

6. MPCCache in Edge Computing

This section aims to address the problem of edge collaborative content caching,
wherein all parties can jointly cache the most frequently accessed common data items
in shared caches. Figure 8 shows the difference between the traditional cache model and
edge cache model. Our challenge is to find how to determine a set of the most frequently
accessed common items without revealing any underlying data.

Entropy 2023, 25, x FOR PEER REVIEW 12 of 16

6. MPCCache in Edge Computing
This section aims to address the problem of edge collaborative content caching,

wherein all parties can jointly cache the most frequently accessed common data items in
shared caches. Figure 8 shows the difference between the traditional cache model and
edge cache model. Our challenge is to find how to determine a set of the most frequently
accessed common items without revealing any underlying data.

client1 client2 client3 client4

cache

cloud

server

shared cache

Internet

client1 client2 client3 client4

cache

cloud

server

Internet

Traditional model Edge cache model
Figure 8. Traditional cache model and edge cache model.

6.1. Our MPCCache
We describe how to use our MPCCache protocol to handle the edge cache case. The

network operators []i nP∈ respectively own set 1 1{(,),...,(,)}i i i i
i t tK x z x z= , where {0,1}ix ∗∈ de-

notes an identify element and {0,1}i wz ∈ denotes its associated value. Note that the latter
may represent the anticipated frequency of content being accessed or the value to network
operators of the cached content. Let the common items 1 1 2{ , ...}n

i iI X x x== = be the inter-
section of the identifiers, where 1{ ,..., }i i

i tX x x= is the set of identity for []i nP∈ . For each com-

mon item x I∈ , calculate a sum of the associated values z ; that is, () ()
1

nx x
i

sum z
=

= . The
sum of a common item is determined as the total of the individual values of the operators
for the item.

We present the MPCCache protocol in Figure 9. [1]i nP∈ − conduct simple hashing and

nP conducts cuckoo hashing that maps common items to the same bucket. According to
the PaXoS, all the buckets are compressed into a data structure so that nP can efficiently
compute the MPCCache. In detail, [1]i nP∈ − choose n

jq and n
js uniformly at random for

[]j β∈ . Notice that 1
1[[]] [[]]nn i

j jiA v j C v j−

=
= ⊕ for each x I∈ . For (,) ix z K∈ and 1(())kv F H x= ,

[1]i nP∈ − compute ()1 1
1[[1]] ||,...,|| [[]]

j

defi i
x w jf C v C v w q ⊕= and

j

defi i
x jg z s −= , and send the encoding

Encode(|| ,)
j

i
xx j f and Encode(|| ,)

j

i
xx j g to nP , where (HT[] ||)jx j j= means that x is in

thj − bucket. nP can use { } [](||) | GT []n
j n jx x j x j β∈
∈ ∈ to obtain the correct decoding

j

i
xf

and
j

i
xg if n i

j jx x= ; it is otherwise random. Then, nP computes

()1
1 1 [[1]] || ... || [[]]

j

defn n i n n
j i x wq f A v A v w−

= ⊕ ⊕= and 1

1 j

def nn i
j xi
s g z−

=
 += . Finally, []i nP∈ input []

n
jq β∈ and

[]
n
js β∈ , respectively, to check whether 1 0n i

i jq=⊕ = is based on a garbled circuit, and, if so,
obtain the sum of the corresponding common item 1

n i
i js=⊕ .

Figure 8. Traditional cache model and edge cache model.

6.1. Our MPCCache

We describe how to use our MPCCache protocol to handle the edge cache case.
The network operators Pi∈[n] respectively own set Ki =

{
(xi

1, zi
1), . . . , (xi

t, zi
t)
}

, where
xi ∈ {0, 1}∗ denotes an identify element and zi ∈ {0, 1}w denotes its associated value. Note
that the latter may represent the anticipated frequency of content being accessed or the value
to network operators of the cached content. Let the common items I = ∩n

i=1Xi = {x1, x2 . . .}
be the intersection of the identifiers, where Xi =

{
xi

1, . . . , xi
t
}

is the set of identity for
Pi∈[n]. For each common item x ∈ I, calculate a sum of the associated values z; that is,
sum(x) = ∑n

i=1 z(x). The sum of a common item is determined as the total of the individual
values of the operators for the item.

We present the MPCCache protocol in Figure 9. Pi∈[n−1] conduct simple hashing and
Pn conducts cuckoo hashing that maps common items to the same bucket. According to the
PaXoS, all the buckets are compressed into a data structure so that Pn can efficiently compute
the MPCCache. In detail, Pi∈[n−1] choose qn

j and sn
j uniformly at random for j ∈ [β]. Notice

that An
j [v[j]] = ⊕

n−1
i=1 Ci

j[v[j]] for each x ∈ I. For (x, z) ∈ Ki and v = Fk(H1(x)), Pi∈[n−1]

compute f i
xj

de f
=
(
C1

1 [v[1]]
∣∣∣∣, . . . ,

∣∣∣∣C1
w[v[w]]

)
⊕ qi

j and gi
xj

de f
= z− si

j, and send the encoding

Encode
(

x
∣∣∣∣∣∣j, f i

xj

)
and Encode

(
x
∣∣∣∣∣∣j, gi

xj

)
to Pn, where xj = (HT[j]

∣∣∣∣j) means that x is in
j − th bucket. Pn can use xn

j ∈ {(x||j)|x ∈ GTn[j]}j∈[β] to obtain the correct decoding

f i
xj

and gi
xj

if xn
j = xi

j; it is otherwise random. Then, Pn computes qn
j

de f
= ⊕n−1

i=1 f i
xj
⊕(

An
1 [v[1]]

∣∣∣∣. . .
∣∣∣∣An

w[v[w]]
)

and sn
j

de f
= ∑n−1

i=1 gi
xj
+ z. Finally, Pi∈[n] input qn

j∈[β] and sn
j∈[β],

respectively, to check whether ⊕n
i=1qi

j = 0 is based on a garbled circuit, and, if so, obtain

the sum of the corresponding common item ⊕n
i=1si

j.

Entropy 2023, 25, 1347 13 of 16Entropy 2023, 25, x FOR PEER REVIEW 13 of 16

Parameters: security parameters λ and σ , protocol parameters m , w , 1l , 2l , hash
function 1*

1 :{0,1} {0,1}lH → , pseudorandom function 1:{0,1} {0,1} []l wF mλ × → , Cuckoo, Simple
hashing, and number of bins β .

Input of []i nP∈ : *
1 1{(,),...,(,)} ({0,1} ,{0,1})i i i i w t

i t tK x z x z= ⊂ .

Precomputation：
• [1]i nP∈ − do Simple hashing which maps elements in [1]i nX ∈ − to the hash table iHT

with β bins and sample random strings {0,1}i R w
jq ←⎯⎯ and {0,1}i R w

js ←⎯⎯ for []j β∈ .
• nP does Cuckoo hashing which maps elements in nX to the hash table nGT . Then

nP perform the same Precomputation as in Figure 4.
Oblivious Transfer:

nP and [1]i nP∈ − run the same Oblivious Transfer as in Figure 4.
Compute:

(i) nP sends key k to [1]i nP∈ − .
(ii) For each (,) ix z K∈ , [1]i nP∈ − compute 1(())kv F H x= and encode two data structures

PaXoS i
xD and i

zD based on { }'
[](||) | []i i jX x j x HT j β∈

= ∈ and sent to nP , where i
xD is

encoded as ()(){ }()1 1
1Encode || , [[1]] || ... || [[]]i i

x w jD x j C v C v w q← ⊕ and i
zD is encoded as

{ }()Encode (|| ,)i i
z jD x j z s← − .

(iii) After nP receives i
xD and i

zD sent by [1]i nP∈ − , compute 1(())kv F H x= for each
(,) nx z K∈ and generate query set { }'

[](||) | []n n j
X x j x GT j β∈

= ∈ according to nGT . nP finally

computes () ()1
1 1Decode(, ||) [[1]] || ... || [[]]defn n i n n

j i x wq D x j A v A v w−
= ⊕ ⊕= and 1

1
Decode(, ||)ndefn i

j zi
s D x j z−

=
 += .

Garbled Circuit:
-Input from []i nP∈ is []

n
jq β∈ and []

n
js β∈ .

-Output to []i nP∈ is ju where 1

n
j ji
u s

=
= if 1 0n i

i jq=⊕ = , otherwise 0ju = .

Figure 9. Our MPCCache protocol.

6.2. Correctness and Security

Correctness: Section 4.3 proves that 1
1[[]] [[]]nn i

j jiA v j C v j−

=
= ⊕ for each x I∈ and

1(())kv F H x= ; that is, ()1 1 1
1 1 1[[1]] || ... || [[]] [[1]] || ... || [[]]n n n

w i wA v A v w C v C v w−
== ⊕ . Via the property of the

data structure PaXoSs i
xD and i

zD constructed by [1]i nP∈ − , for x I∈ , []j β∈ , and

1(())kv F H x= , we always have ()()1 1
1 1 1Decode(, ||) [[1]] || ... || [[]]n i n i i i

i x i w jD x j C v C v w q− −
= =⊕ = ⊕ ⊕ ,

11
1 1
Decode(, ||) ()nn i i i

i z ji
D x j z s−−

= =
⊕ = − . At the same time, nP defines

() ()1
1 1Decode(, ||) [[1]] || ... || [[]]defn n i n n

j i x wq D x j A v A v w−
= ⊕ ⊕= and 1

1
Decode(, ||)ndefn i

j zi
s D x j z−

=
 += in terms

of the i
xD and i

zD they receive from [1]i nP∈ − . That is, when x I∈ , it always satisfies that

1 0n i
i jq=⊕ = and 1 1

nn i i
i j i
s z= =

⊕ = .

Theorem 2. If F is a PRF and 1H is a random oracle, then the construction of our MPCCache
protocol has colluding semi-honest security, given the OT, PaXoS, GC, and appropriate parame-
ters.

Proof of Theorem 2. If we consider l parties []{ }i i lP ∈ to be corrupted by an adversary
, then the number of uncorrupted parties is ()n l− . Given []{ }i i lK ∈ , the simulator inter-
acts with []{ }i i lP ∈ as follows. samples random matrices, performs OT, chooses the PRF
key k and sends k to []{ }i i lP ∈ . The simulator constructs random data structures rep-
resenting honest parties according to the randomness of the matrices. sends two data

Figure 9. Our MPCCache protocol.

6.2. Correctness and Security

Correctness: Section 4.3 proves that An
j [v[j]] = ⊕n−1

i=1 Ci
j[v[j]] for each x ∈ I and

v = Fk(H1(x)); that is, An
1 [v[1]]

∣∣∣∣∣∣. . .
∣∣∣∣∣∣An

w[v[w]] = ⊕n−1
i=1

(
C1

1 [v[1]]
∣∣∣∣. . .

∣∣∣∣C1
w[v[w]]

)
. Via the

property of the data structure PaXoSs Di
x and Di

z constructed by Pi∈[n−1], for x ∈ I, j ∈ [β], and v =

Fk(H1(x)), we always have ⊕n−1
i=1 Decode(Di

x, x
∣∣∣∣∣∣j) = ⊕n−1

i=1

((
Ci

1[v[1]]
∣∣∣∣. . .

∣∣∣∣Ci
w[v[w]]

)
⊕ qi

j

)
,

⊕n−1
i=1 Decode(Di

z, x
∣∣∣∣∣∣j) = ∑n−1

i=1 (zi − si
j). At the same time, Pn defines qn

j
de f
=(

⊕n−1
i=1 Decode(Di

x, x
∣∣∣∣∣∣j))⊕ (An

1 [v[1]]
∣∣∣∣. . .

∣∣∣∣An
w[v[w]]

)
and sn

j
de f
= ∑n−1

i=1 Decode(Di
z, x
∣∣∣∣j)+

z in terms of the Di
x and Di

z they receive from Pi∈[n−1] . That is, when x ∈ I , it always
satisfies that ⊕n

i=1qi
j = 0 and ⊕n

i=1si
j = ∑n

i=1 zi.

Theorem 2. If F is a PRF and H1 is a random oracle, then the construction of our MPCCache
protocol has colluding semi-honest security, given the OT, PaXoS, GC, and appropriate parameters.

Proof of Theorem 2. If we consider l parties {Pi}i∈[l] to be corrupted by an adversary A,
then the number of uncorrupted parties is (n− l). Given {Ki}i∈[l], the simulator S interacts
with {Pi}i∈[l] as follows. S samples random matrices, performs OT, chooses the PRF key k
and sends k to {Pi}i∈[l]. The simulator S constructs random data structures representing
honest parties according to the randomness of the matrices. S sends two data structures

Di
x and Di

z constructed on a PaXoS to ideal functionality. We prove Real∏
A(K1, . . . , Kn)

c≈
IdealFS (K1, . . . , Kn).

Entropy 2023, 25, 1347 14 of 16

Hyb0 The outputs of parties in the real world.
Hyb1 Same as Hyb1, Hyb2, and Hyb6 in Section 4.4.
Hyb2 Similar to Hyb1 except that the decoding executions of the PaXoS are replaced

as follows. When {Pi}i∈[l] does not contain Pn, S receives nothing from the data
structure PaXoS. When {Pi}i∈[l] contains Pn, if x ∈ I, Pn receives Di

x and Di
z, thus(

Ci
1[v[1]]

∣∣∣∣. . .
∣∣∣∣Ci

w[v[w]]
)
⊕ qi

j, (z
i − si

j) for the PaXoS involving the non-colluding

party {Pi}i∈[n−l] and j ∈ [β]. Note that qi
j and si

j are used in the above expression

for each bin j ∈ [β]. Since these values are uniform, so are Di
x and Di

z. Therefore,
we replace the decoding outputs of the PaXoS with random ones. Otherwise, all
the decoding outputs of the PaXoS are uniformly random from the perspective of
Pn and {Pi}i∈[l]. Hyb2 is computationally indistinguishable from Hyb1 due to the
PaXoS’s security.

Hyb3 The output in the ideal world. The only difference between Hyb3 and Hyb2 is that S
executes the output of the circuit.

�

7. Conclusions

In this work, we design an efficient MPSI protocol and the MPCCache protocol to better
solve the information leakage problem in resource sharing. The proposed MPSI protocol
derived from multi-point OPRF demonstrates concrete efficiency in achieving one-sided
malicious security. The protocol also leads to a better trade-off between communication and
computational overhead. It is based on OT and a data structure PaXoS and achieves linear
computation and communication complexity concerning the input set size of each party. In
our MPSI protocol, the asymptotic communication and computational complexity of the
clients are largely determined by the size of the input sets rather than the number of parties
(namely, O(tλ)). Overall, this research has contributed to the development of efficient MPSI
protocols for multiple parties in practice. In fact, we apply the MPCCache protocol to edge
caching scenarios using a simple transformation of the MPSI protocol. The MPCCache
protocol under the semi-honest model can support the computation of specific functions on
intersections. It is our belief that future work can improve the fairness of the MPSI protocol,
as well as propose more application scenarios with practical application value.

Author Contributions: Conceptualization, J.Z., L.Y. and Y.T.; methodology, L.Y. and Y.T.; validation,
J.Z., L.Y. and Y.T.; formal analysis, L.Y. and M.J.; writing—original draft preparation, L.Y.; writing—
review and editing, Y.T., S.W. and M.J.; supervision, Y.T. and S.W.; funding acquisition, J.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Henan Key Laboratory of Network Cryptography Tech-
nology (No. LNCT2022-A11), the Henan Province Key R&D and Promotion Special Project (No.
212102210166), and the PhD Foundation of Henan Polytechnic University (No. B2021-41).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wei, X.; Xu, L.; Cai, G.; Wang, H. Secure approximate pattern matching protocol via Boolean threshold private set intersection.

Int. J. Intell. Syst. 2022, 37, 9245–9266. [CrossRef]
2. Kales, D.; Rechberger, C.; Schneider, T.; Senker, M.; Weinert, C. Mobile private contact discovery at scale. In Proceedings of the

28th USENIX Security Symposium (USENIX Security 19), Santa Clara, CA, USA, 14–16 August 2019; pp. 1447–1464.
3. Ion, M.; Kreuter, B.; Nergiz, E.; Patel, S.; Saxena, S.; Seth, K.; Shanahan, D.; Yung, M. Private intersection-sum protocol with

applications to attributing aggregate ad conversions. Cryptol. ePrint Arch. 2017. preprint. Available online: https://eprint.iacr.org/
2017/738 (accessed on 11 September 2023).

https://doi.org/10.1002/int.22990
https://eprint.iacr.org/2017/738
https://eprint.iacr.org/2017/738

Entropy 2023, 25, 1347 15 of 16

4. Nguyen, D.T.; Trieu, N. MPCCache: Privacy-preserving multi-party cooperative cache sharing at the edge. In Financial Cryptog-
raphy and Data Security: 26th International Conference, FC 2022, Grenada; Springer International Publishing: Berlin/Heidelberg,
Germany, 2022; pp. 80–99. [CrossRef]

5. Chase, M.; Miao, P. Private set intersection in the internet setting from lightweight oblivious PRF. In Proceedings of the Advances
in Cryptology–CRYPTO 2020: 40th Annual International Cryptology Conference, Santa Barbara, CA, USA, 17–21 August 2020;
pp. 34–63. [CrossRef]

6. Pinkas, B.; Rosulek, M.; Trieu, N.; Yanai, A. SpOT-light: Lightweight private set intersection from sparse OT extension. In
Proceedings of the Advances in Cryptology–CRYPTO 2019: 39th Annual International Cryptology Conference, Santa Barbara,
CA, USA, 18–22 August 2019; pp. 401–431. [CrossRef]

7. Pinkas, B.; Schneider, T.; Zohner, M. Scalable private set intersection based on OT extension. ACM Trans. Priv. Secur. TOPS 2018,
21, 1–35. [CrossRef]

8. Cong, K.; Moreno, R.C.; da Gama, M.B.; Dai, W.; Iliashenko, I.; Laine, K.; Rosenberg, M. Labeled PSI from homomorphic
encryption with reduced computation and communication. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, Virtual Event, Republic of Korea, 15–19 November 2021; pp. 1135–1150. [CrossRef]

9. Chen, H.; Huang, Z.; Laine, K.; Rindal, P. Labeled PSI from fully homomorphic encryption with malicious security. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018;
pp. 1223–1237. [CrossRef]

10. Pinkas, B.; Schneider, T.; Weinert, C.; Wieder, U. Efficient circuit-based PSI via cuckoo hashing. In Proceedings of the Advances
in Cryptology–EUROCRYPT 2018: 37th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, 29 April–3 May 2018; pp. 125–157. [CrossRef]

11. Pinkas, B.; Schneider, T.; Tkachenko, O.; Yanai, A. Efficient circuit-based PSI with linear communication. In Proceedings of
the Advances in Cryptology–EUROCRYPT 2019: 38th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Darmstadt, Germany, 19–23 May 2019; pp. 122–153. [CrossRef]

12. Chandran, N.; Gupta, D.; Shah, A. Circuit-PSI With Linear Complexity via Relaxed Batch OPPRF. Proc. Priv. Enhancing Technol.
2022, 1, 353–372. [CrossRef]

13. Kavousi, A.; Mohajeri, J.; Salmasizadeh, M. Efficient scalable multi-party private set intersection using oblivious PRF. In
Proceedings of the Security and Trust Management: 17th International Workshop, STM 2021, Darmstadt, Germany, 8 October
2021; pp. 81–99. [CrossRef]

14. Inbar, R.; Omri, E.; Pinkas, B. Efficient scalable multiparty private set-intersection via garbled bloom filters. In Proceedings
of the Security and Cryptography for Networks: 11th International Conference, SCN 2018, Amalfi, Italy, 5–7 September
2018; pp. 235–252.

15. Ghosh, S.; Nilges, T. An algebraic approach to maliciously secure private set intersection. In Proceedings of the Advances
in Cryptology–EUROCRYPT 2019: 38th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, 19–23 May 2019; pp. 154–185. [CrossRef]

16. Kolesnikov, V.; Kumaresan, R.; Rosulek, M.; Trieu, N. Efficient batched oblivious PRF with applications to private set intersection.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October
2016; pp. 818–829.

17. Pinkas, B.; Schneider, T.; Zohner, M. Faster private set intersection based on {OT} extension. In Proceedings of the 23rd USENIX
Security Symposium (USENIX Security 14), San Diego, CA, USA, 20–22 August 2014; pp. 797–812.

18. Nevo, O.; Trieu, N.; Yanai, A. Simple, fast malicious multiparty private set intersection. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, Virtual Event, Republic of Korea, 15–19 November 2021; pp. 1151–1165.
[CrossRef]

19. Pinkas, B.; Rosulek, M.; Trieu, N.; Yanai, A. PSI from PaXoS: Fast, malicious private set intersection. In Proceedings of the Advances
in Cryptology–EUROCRYPT 2020: 39th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, 10–14 May 2020; pp. 739–767. [CrossRef]

20. Ben-Efraim, A.; Nissenbaum, O.; Omri, E.; Paskin-Cherniavsky, A. Psimple: Practical multiparty maliciously-secure private set
intersection. In Proceedings of the 2022 ACM on Asia Conference on Computer and Communications Security, 30 May–2 June
2022; pp. 1098–1112.

21. Bui, D.; Couteau, G. Private Set Intersection from Pseudorandom Correlation Generators. IACR Cryptol. ePrint Arch. 2022, 2022, 334.
22. Chida, K.; Hamada, K.; Ichikawa, A.; Kii, M.; Tomida, J. Communication-Efficient Inner Product Private Join and Compute with

Cardinality. Cryptol. ePrint Arch. 2022. preprint. Available online: https://eprint.iacr.org/2022/338 (accessed on 11 September 2023).
23. Miao, P.; Patel, S.; Raykova, M.; Seth, K.; Yung, M. Two-sided malicious security for private intersection-sum with cardinality. In

Proceedings of the Advances in Cryptology–CRYPTO 2020: 40th Annual International Cryptology Conference, Santa Barbara,
CA, USA, 17–21 August 2020; pp. 3–33. [CrossRef]

24. Goldreich, O. Foundations of Cryptography: Volume 2, Basic Applications; Cambridge University Press: New York, NY, USA, 2009.

https://doi.org/10.1007/978-3-031-18283-9_5
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1145/3154794
https://doi.org/10.1145/3460120.3484760
https://doi.org/10.1145/3243734.3243836
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.2478/popets-2022-0018
https://doi.org/10.1007/978-3-030-91859-0_5
https://doi.org/10.1007/978-3-030-17659-4_6
https://doi.org/10.1145/3460120.3484772
https://doi.org/10.1007/978-3-030-45724-2_25
https://eprint.iacr.org/2022/338
https://doi.org/10.1007/978-3-030-56877-1_1

Entropy 2023, 25, 1347 16 of 16

25. Rabin, M.O. How to exchange secrets with oblivious transfer. Cryptol. ePrint Arch. 2005. preprint. Available online:
https://eprint.iacr.org/2005/187 (accessed on 11 September 2023).

26. Ishai, Y.; Kilian, J.; Nissim, K.; Petrank, E. Extending Oblivious Transfers Efficiently. Crypto 2003, 2729, 145–161. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://eprint.iacr.org/2005/187
https://doi.org/10.1007/978-3-540-45146-4_9

	Introduction
	Related Work
	Preliminaries
	Notions
	One-Sided Malicious Security
	Security Model
	Oblivious Transfer
	PaXoS
	Multi-Point OPRF
	Hamming Correlation Robustness
	Cuckoo Hashing and Simple Hashing

	Our MPSI Protocol
	Overview
	Our Protocol
	Protocol Correctness
	Protocol Security

	Performance Evaluation
	Complexity Analysis
	Comparison
	Experimental Evaluation

	MPCCache in Edge Computing
	Our MPCCache
	Correctness and Security

	Conclusions
	References

