
Citation: Cen, Y.; Zhang, Q.; Liang, X.

Physics-Based Differentiable

Rendering for Efficient and Plausible

Fluid Modeling from Monocular

Video. Entropy 2023, 25, 1348.

https://doi.org/10.3390/e25091348

Academic Editors: Nikolay Kolev

Vitanov and Zlatinka I. Dimitrova

Received: 16 August 2023

Revised: 9 September 2023

Accepted: 14 September 2023

Published: 17 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Physics-Based Differentiable Rendering for Efficient and
Plausible Fluid Modeling from Monocular Video
Yunchi Cen , Qifan Zhang and Xiaohui Liang *

School of Computer Science and Engineering, Beihang University, Beijing 100191, China;
cenyc@buaa.edu.cn (Y.C.); zhangqf_m@buaa.edu.cn (Q.Z.)
* Correspondence: liang_xiaohui@buaa.edu.cn

Abstract: Realistic fluid models play an important role in computer graphics applications. However,
efficiently reconstructing volumetric fluid flows from monocular videos remains challenging. In this
work, we present a novel approach for reconstructing 3D flows from monocular inputs through a
physics-based differentiable renderer coupled with joint density and velocity estimation. Our primary
contributions include the proposed efficient differentiable rendering framework and improved
coupled density and velocity estimation strategy. Rather than relying on automatic differentiation,
we derive the differential form of the radiance transfer equation under single scattering. This allows
the direct computation of the radiance gradient with respect to density, yielding higher efficiency
compared to prior works. To improve temporal coherence in the reconstructed flows, subsequent
fluid densities are estimated via a coupled strategy that enables smooth and realistic fluid motions
suitable for applications that require high efficiency. Experiments on synthetic and real-world data
demonstrated our method’s capacity to reconstruct plausible volumetric flows with smooth dynamics
efficiently. Comparisons to prior work on fluid motion reconstruction from monocular video revealed
over 50–170x speedups across multiple resolutions.

Keywords: monocular video; fluid reconstruction; differentiable renderer

1. Introduction

Realistic fluid flow reconstruction is of paramount importance for a wide range of
applications, including those related to special effects in film and video, artistic design,
and digital media generation. However, this task poses significant challenges. On the one
hand, fluid phenomena are ubiquitous in daily life, and people have high expectations for
the quality of their rendering in artistic and media contexts. However, existing methods
that attempt to reconstruct fluid motion through a combination of physics-based constraints
and density estimation require tens of minutes per frame for reconstruction, rendering
them unsuitable for interactive rendering applications.

To reconstruct fluid motion, existing computed tomography (CT) methods (e.g., [1,2])
rely on sparse-view images and solve a least-squares problem that relates pixels and voxels
using a visual hull. However, their reconstruction quality suffers as the number of views de-
creases, resulting in an under-determined inverse problem. Additionally, the sophisticated
setups required by these methods make calibration difficult and limit their adaptability. Our
method focuses on monocular video reconstruction, which enables us to use a wide variety
of existing videos and capture new fluid motions with ease. Rather than solely simulating
fluids from images, recent works (e.g., [3,4]) have employed a physics-based prediction
scheme to add transport constraints to optimization and couple density estimation to
velocity estimation. Although these physics-based priors have improved the temporal co-
herence of flow motion reconstruction, the time-consuming fluid density reconstruction and
complex physics-based prediction scheme remain bottlenecks to reconstruction efficiency.

Differentiable rendering has been a major focus in computer graphics recently. It
comprises techniques that integrate rendering into end-to-end optimization by obtaining

Entropy 2023, 25, 1348. https://doi.org/10.3390/e25091348 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25091348
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-4930-9386
https://orcid.org/0000-0002-3006-7412
https://orcid.org/0000-0001-6351-2538
https://doi.org/10.3390/e25091348
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25091348?type=check_update&version=2

Entropy 2023, 25, 1348 2 of 18

useful derivatives of the rendering process. However, integrating differentiable rendering
into fluid reconstruction frameworks poses a huge challenge due to the complexity and
nonlinearity of the relation between pixel intensities and fluid density. Franz et al. [5] pro-
posed a differentiable-rendering-based fluid reconstruction framework, where automatic
differentiation (AD) is used to compute the derivatives in a ray marching process. However,
the current automatic differentiation framework is typically inefficient, especially when
optimizing numerous gradient parameters.

To improve the efficiency of fluid reconstruction, we propose a physics-based differen-
tiable rendering framework that analytically computes radiance derivatives with respect
to density. Unlike prior automatic differentiation techniques, which have inherent com-
putational overhead, our method directly calculates derivatives by deriving a differential
form of the radiance transfer equation under single-scattering assumptions. This analytical
approach avoids redundant operations and gradient tracking, significantly accelerating
fluid density optimizations compared to previous differentiable rendering techniques.

Furthermore, we couple our optimized renderer with a constrained density and
velocity estimation strategy. By propagating velocities and densities across time steps
while enforcing physical constraints, we achieve temporally coherent fluid reconstructions
far more efficiently than the costly tomographic methods used previously. Our major
contributions are summarized as follows:

• An efficient physics-based differentiable rendering framework is proposed for fluid
density reconstruction, which is more efficient than previous models.

• The differential form of the Radiative Transfer Equation (RTE) based on single scatter-
ing is derived.

• The transport constraints and the differentiable rendering step are coupled for fluid
density updating, achieving smooth fluid motion reconstruction.

2. Related Work

Density reconstruction: Reconstructing fluid density from 2D observations has been
a popular research topic in computer graphics. Computed tomography (CT) methods,
originally developed for medical applications [6], are widely used for fluid density recon-
struction. Two major categories of tomographic reconstruction algorithms are available:
direct and iterative methods. Direct methods rely on the analytical inverse conversion from
input images to a volume, which is derived using the Fourier transform and calculus. They
require dense multi-view inputs that are difficult to obtain for fluids. Therefore, iterative
methods, which formulate the relationship between input images and a volume as an
energy function that is minimized using iterative algorithms, are more commonly used for
fluid density reconstruction.

Ihrke and Magnor [1] proposed a tomography method to reconstruct a volumetric
model from multiple images of fire by minimizing the least-squares energy using the conju-
gate gradient method. To enhance the efficiency of reconstruction, Ihrke and Magnor [7]
used an adaptive grid to reconstruct a 3D density function from its projections, which was
suitable for thin smoke and flames. Atcheson et al. [8] captured 3D gas flows using the time-
resolved Schlieren tomography system. Some attempts to improve sparse tomographic
reconstruction have been proposed. Okabe et al. [2] used one to two input videos and
augmented their tomographic approach with appearance transfer. They reconstructed an
initial density volume with regular tomography and iteratively improved the density until
the reconstruction satisfied additional view constraints. Eckert et al. [4] pushed the limit
of the sparse tomography problem by introducing a single-view reconstruction approach
for plumes. They compensated for the lack of information by using physics-based and
geometric priors.

Most of these methods often required a difficult calibration step, and the reconstruction
quality dropped with the decrease in the number of views. Our method focuses on
reconstructing fluid density from monocular video, offering distinct advantages, including

Entropy 2023, 25, 1348 3 of 18

reduced costs, a drastically simplified setup, and eliminating tedious procedures like
camera calibration and synchronization.

Velocity reconstruction: Reconstructing fluid motion from captured videos is more
challenging than reconstructing volumetric density, as motion is indirectly observed by
tracing temporal changes in density. Two families of techniques exist for estimating the
velocity field of a fluid: tracer-based and tracer-free approaches. Tracer-based approaches
introduce tracers, such as particles or dye, into the fluid, and then the fluid velocity can be
retrieved by tracing these tracers. Various PIV methods, including tomographic PIV [9],
synthetic aperture PIV [10], structured-light PIV [11–13], and plenoptic PIV [14,15], are
widely used in different fields to characterize fluid flows. However, some methods require
specialized hardware and complex camera setups, as seen in [9,11]. Though PIV meth-
ods are widely used, methods like [9,11] require carefully chosen particles, specialized
hardware, and complex camera setups. Tracer-free approaches, like background-oriented
Schlieren tomography (BOS) [16,17], use the phase change due to refractive index differ-
ences in the fluid to track fluid flow. These approaches retrieve only either the density field
or the velocity field of the fluid.

Visible-light-capturing is an alternative approach for fluid motion reconstruction.
Corpetti et al. [18] used optical flow with an additional divergence-free and curl smooth-
ness prior to regularizing 2D cloud motions. Similarly, some previous works have taken
divergence-free constraints into account [19–21], yet most of them suffer from the com-
plexity of solving higher-order regularization terms. Recent works [4,5] have coupled
fluid density updating and velocity calculation to improve the temporal coherence of flow
reconstruction. Our work adopts a similar coupled computation strategy to guarantee the
time evolution of the fluid flow.

Differentiable rendering: Differentiable rendering is a technique that allows for the
computation and propagation of derivatives of scene parameters through images. This
technique has a wide range of applications, including solving analysis-by-synthesis prob-
lems and training machine learning pipelines incorporating forward-rendering processes.
Loper and Black [22] introduced OpenDR, which approximates the backward pass of the
traditional mesh-based graphics pipeline and has inspired several follow-up works [23–27].
Kato et al. [26] proposed Neural Renderer, an approximate gradient for rendering a mesh
that enables the integration of rendering into neural networks. Instead of approximating
the backward pass, some methods approximate the rasterization of the rendering process,
enabling the computation of useful gradients. Liu et al. [27] introduced Soft Rasterizer,
which provides an accurate soft approximation of the standard rasterizer. Although these
approximation methods reduce rendering time, generating photorealistic images contain-
ing complex interactions of light, geometry, and materials becomes difficult. Li et al. [28]
proposed the PBDR framework, which supports global illumination. However, all the
methods mentioned so far are limited to surface-based light transport differentiation.

Recently, there has been a focus on improving the efficiency of volumetric differ-
entiable rendering. Nimier-David et al. [29] introduced the radiative backpropagation
approach to differentiable rendering. They observed that differentiable rendering is equiv-
alent to the solution of a reversed light transport problem. Although this approach does
not memorize intermediate states, it also has an expensive computation time, which be-
comes quadratic in the number of scattering events along a light path. To address this,
Vicini et al. [30] proposed the path replay backpropagation approach, which achieves a
computation time that is linear in the number of scattering events and further improves the
performance. Although these approaches significantly accelerate performance compared to
naive automatic differentiation implementations, prior works have shown that AD methods
can be efficient if carefully designed. Weiss et al. [31] proposed an efficient strategy for
differentiable direct volume rendering using automatic differentiation. They demonstrated
that by carefully designing the backward pass and leveraging intermediate outputs from
the forward rendering, AD can achieve excellent performance for differentiating rendered
images with respect to volume densities. While representing an important advancement in

Entropy 2023, 25, 1348 4 of 18

efficient automatic differentiation for volumetric data, calculating derivatives via AD still
fundamentally relies on propagating gradients through long computational graphs. This
carries inherent overhead compared to directly computing derivatives analytically. Our
work builds upon these insights by deriving an analytical form of the radiance transfer
equation, enabling the direct and efficient computation of radiance derivatives with respect
to density. By avoiding gradient tracking and redundant operations, our proposed ap-
proach aims to further improve performance for optimizing dynamic volumetric densities,
such as in fluid reconstruction tasks.

3. Methods
3.1. Overview

As illustrated in Figure 1, our computational framework is composed of two main
algorithmic components: the differentiable rendering component (Section 3.2) and the
coupled density and velocity estimation component (Section 3.3). The primary aim of
this framework is to efficiently reconstruct a temporally coherent sequence of fluid density
fields, denoted as {ρ}. This reconstruction is designed to align the density fields with the
input monocular fluid images {I} while conforming to essential physical priors.

...

Input

𝝆𝒕"𝟏

𝝆𝒕

Output

𝝆𝒕$𝟏

...

𝑰𝒕"𝟏

𝑰𝒕

𝑰𝒕$𝟏

Velocity Reconstruction

Velocity Advection Enforces
Incompressibility

Density Advection

Coupled Density and Velocity EstimationDifferentiable Rendering

Differentiable
Renderer

Density
Optimization

∏𝐃𝐈𝐕 (advect(𝒖𝒕$𝟏 , 𝒖𝒕$𝟏))

advect(𝝆𝒕$𝟏 , %𝒖𝒕$𝟐)

Refined density (t-1)

Estimated density (t)

Figure 1. Our framework consists of two primary algorithm components: the differentiable ren-
dering component and the coupled density and velocity estimation component. In this diagram,
yellow and blue arrows delineate the directional flow of data between external and internal modules,
respectively. The differentiable rendering component is utilized to refine volumetric representations
extracted from a temporal sequence of fluidic images. We note that the current density fields are
associated with the temporal epoch t− 1. These outputs subsequently serve as inputs for the coupled
density and velocity estimation component. This component initially estimates the velocity field
based on the density at temporal epoch t− 1. It then advects this velocity field to the subsequent
temporal epoch t while enforcing incompressibility constraints. Finally, the density field is advected
in accordance with the updated velocity field. The advected density volumes, along with their
corresponding input images, are inputted into the differentiable renderer for final corrections.

Drawing from Algorithm 1, we will now expound on how our framework operates.
Initially, we take a sequence of monocular fluid images {I} as input and reconstruct the first
two frames of fluid density ρ1 and ρ2 through the differentiable rendering component
(Lines 2–3). Here, It refers to the image at a time t within the input video sequences, where
{t|t ∈ N0, t ≤ F} and F denotes the total number of frames in the sequence. With the
obtained initial fluid density, the subsequent frames of estimated fluid density ρ̃t are then
computed using the coupled density and velocity estimation component (Line 5), which
ensures that the fluid flows adhere to the underlying physical priors. Next, given the
estimated density ρ̃t as input, the final fluid density ρt is corrected via our differentiable
renderer using the target image It (Line 6).

Entropy 2023, 25, 1348 5 of 18

Algorithm 1: Fluid motion reconstruction

1 Function FluidMotionRestruction({I}):
/* initial density estimation */

2 ρ1 ← Reconstruction(I1, ρ1)

3 ρ2 ← Reconstruction(I2, ρ2)
/* coupled estimation */

4 for t = 3 to F do
5 ρ̃t ← CoupledEstimation(ρt−2, ρt−1)
6 ρt ← Reconstruction(It, ρ̃t)

7 end
8 return {ρ}

To provide an overview of our algorithms and their relations to the formulas presented
in each subsection, we include a schematic diagram in Figure 2. As depicted, our proposed
method comprises five key algorithms. The core algorithm is Algorithm 1 (fluid motion
reconstruction), which invokes the Reconstruction and CoupleEstimation algorithms. The Re-
construction algorithm reconstructs density fields from input images by leveraging our pro-
posed differentiable renderer, to render images and compute derivatives. Equations (1)–(5),
introduced in Section 3.2.1, govern the radiance calculation. Equations (6)–(10), presented
in Section 3.2.2, enable radiance derivative computations.

...

Input

𝝆𝒕"𝟏

𝝆𝒕

Output

𝝆𝒕$𝟏

...

𝑰𝒕"𝟏

𝑰𝒕

𝑰𝒕$𝟏

Velocity Reconstruction

Velocity Advection Enforces
Incompressibility

Density Advection

Coupled Density and Velocity EstimationDifferentiable Rendering

Differentiable
Renderer

Density
Optimization

∏𝐃𝐈𝐕 (advect(𝒖𝒕$𝟏 , 𝒖𝒕$𝟏)) advect(𝝆𝒕$𝟏 , %𝒖𝒕$𝟐)

Refined density (t-1)

Estimated density (t)

Algorithm 1:
Fluid Motion Reconstruction

Input:
density field at temporal epoch t-1 𝜌!"#,
density field at temporal epoch t-2 𝜌!"$
Outputs:
estimated density field at temporal epoch
t "𝜌!

Algorithm 3:
Density Reconstruction

Algorithm 4:
Coupled Density and Velocity Estimation

Input: target image I, density field	𝜌
Outputs: updated density field {𝜌}

Algorithm 5:
Velocity Reconstruction

Input:
density field at temporal epoch t-1 𝜌!-#,
density field at temporal epoch t-2 𝜌!"$
Outputs:
velocity field at temporal epoch t-1 u!"#

Reference formula:
modified constraints
Sec. 3.3.2, Equations (11, 12, 13)
optimization (fast primal-dual method)
Sec. 3.3.2 Equations (14, 15, 16)

Algorithm 2:
Differentiable Renderer

Input: density field 𝜌,
extinction coefficient 𝜎!, light source L&'
Outputs: rendered radiance L()!,

Reference formula:
radiance computation
Sec. 3.2.1, Equations (1, 2, 3, 4, 5)
radiance derivative computation
Sec. 3.2.2, Equations (6, 7, 8, 9, 10)

Input: image sequence {I}
Outputs: reconstructed density field {𝜌}

Figure 2. This figure provides a schematic diagram overviewing the relations between our proposed
algorithms and the formulas presented in each subsection (Algorithm 2: Differentiable Renderer.
Algorithm 3: Density Reconstruction. Algorithm 4: Coupled Density and Velocity Estimation.
Algorithm 5: Velocity Reconstruction).

Algorithm 4 (coupled density and velocity estimation), introduced in Section 3.3,
advects the reconstructed density fields from time step t− 1 and t− 2 to t while enforcing
key physical constraints. Since it takes density fields as input, Algorithm 4 calls Algorithm 5
(velocity reconstruction) to estimate velocity fields from the previous two time steps’ density
fields to perform advection. Velocity reconstruction is formulated as an optimization
problem with Equations (11)–(13) (Section 3.3.2) as constraints. Algorithm 5 efficiently
solves this using a fast primal-dual approach governed by Equations (14)–(16). Finally,
the reconstructed velocity fields are advected to density fields from time step t− 1 to t. This
procedure couples the reconstruction of densities and velocities in a physics-constrained
manner for robust fluid motion estimation.

Further technical details concerning our proposed differentiable rendering framework
and the coupled density and velocity estimation will be discussed below.

Entropy 2023, 25, 1348 6 of 18

Algorithm 2: Differentiable renderer

1 Function DiffRenderer(ρ, σt, Lin):
2 foreach pixel position (i, j) ∈ (ImgW, ImgH) do

/* x and ω are the starting point and direction of the ray */
3 x, ω ← GetRay(i, j)
4 xa, xb ← Hit(x, ω)
5 xu ← xa
6 Db = ‖xb − x‖
7 Lss, L̇ss ← 0

/* ray marching from xa to xb */
8 repeat

/* radiance computation */
9 Jss(vxu , ω)← Equation (5)

10 Lss(x, ω)← Lss(x, ω) + τ(vxu , vxb)κt(vxu)Jss(vxu , ω)
/* derivative computation */

11 J̇ss(vxu , ω)← Equation (9)
12 L̇ri(vxu , ω)← −Lin(ω)τ(vxa , vxu)κ̇t(vxu)

13

L̇ss(vxu , ω)← τ(vxu , vxb)κt(vxu) J̇ss(vxu , ω)∆d

+ (τ̇(vxu , vxb)κt(vxu) + τ(vxu , vxb)κ̇t(vxu))

∗ Jss(vxu , ω)∆d
L̇out ← L̇ri(vxu , ω) + L̇ss(vxu , ω)
/* recording the gradient along the path integral */

14 gradRec(x).position.push_back(vxu)
15 gradRec(x).grad.push_back(L̇out)
16 xu ← xu + ω · ∆d
17 Du = ‖xu − x‖
18 until Du < Db
19 Lri(x, ω)← Equation (2)
20 Lout(x, ω)← Lri(x, ω) + Lss(x, ω)

21 end
22 return Lout, gradRec

Algorithm 3: Density reconstruction

1 Function Reconstruction(I, ρ):
2 repeat
3 Lout, gradRec← Di f f Renderer(ρ, σt, Lin)
4 loss← MSE(I, Lout)
5 foreach pixel position (i, j) ∈ (ImgW, ImgH) do
6 x, ω ← GetViewpoint(i, j)
7 di f f ← I[i, j]− Lout(x, ω)
8 for k = 0 to gradRec(x).size() do
9 vp ← gradRec(x).position[k]

10 grad← gradRec(x).grad[k]
11 densityGrad[vp]← 2 ∗ di f f ∗ grad + densityGrad[vp]

12 end
13 end

/* update density field */
14 parfor each position vp ∈ voxels do
15 ρ[vp]← ρ[vp]− LR ∗ densityGrad[vp]
16 end
17 until loss < minLoss
18 return {ρ}

Entropy 2023, 25, 1348 7 of 18

Algorithm 4: Coupled density and velocity estimation

1 Function CoupledEstimation(ρt−1, ρt−2):
2 ut−1 ← VelRecon(ρt−2, ρt−1)

3 ũt ← ΠDIV(advect(ut−1, ut−1))

4 ρ̃t ← advect(ρt−1, ũt)
5 return ρ̃t

Algorithm 5: Velocity reconstruction

1 Function VelRecon(ρt−1, ρt−2):
2 for k=0 to maxIter do
3 Xk+1 ← Xk + σYk − σprox f ,σ(

1
σ Xk + Yk)

4 ut−1
k+1 ← proxg, 1

γ
(ut−1

k+1 − γXk+1)

5 Yk+1 = ut−1
k+1 + θ(ut−1

k+1 − ut−1
k)

/* check stopping criterion */
6 rk+1 = ut−1

k+1 − ut−1
k

7 ε =
√

3εabs + εrel
∥∥∥ut−1

k+1

∥∥∥
8 if ‖rk+1‖ ≤ ε then
9 break;

10 end
11 end
12 return ut−1

k+1

3.2. Differentiable Rendering

A fluid is a participating medium that can scatter or absorb light, altering its direction
and intensity as it passes through. Modeling the behavior of light in a fluid can be difficult
and computationally expensive, especially when multiple scattering events are involved.
Many studies have addressed these challenges by assuming simplified lighting conditions
or uncluttered backgrounds in the fluid reconstruction process. This approach helps
minimize interference with accuracy. Our work follows this trend and posits the following
hypotheses as a result:

• We assume that the single-scattering model is sufficient for rendering the rough shape of
the fluid volume. Therefore, we ignore the radiance contribution of multiple-scattering
radiance and emitted radiance.

• Our method is limited to pure volume scenes, which reduces the complexity of
derivative computation caused by visibility.

We now depict the technical details of our differentiable rendering framework. First,
we introduce the participating media rendering based on single scattering (Section 3.2.1).
We then derive the differentiation form of the RTE (Section 3.2.2), which can be directly
used to compute the radiance derivative with respect to density. We finally present
the algorithm of fluid density reconstruction via our proposed differentiable renderer
(Sections 3.2.3 and 3.2.4).

3.2.1. Participating Media Rendering

In order to lay the foundation for differentiating the radiative transfer equation (RTE),
we will briefly review light transport in participating media and introduce the RTE based
on the single-scattering model. When light passes through a participating media, it is
attenuated along the direction ω and ultimately reaches the viewpoint x with the total
radiance Lout(x, ω). As noted earlier, we assume that the light transport within the volume

Entropy 2023, 25, 1348 8 of 18

is governed solely by single scattering. This process can be mathematically modeled by the
RTE, whose integral form is expressed as follows:

Lout(x, ω) = Lri(x, ω) + Lss(x, ω). (1)

where Lout comprises the reduced incident radiance Lri and single-scattering radiance Lss.
The reduced incident radiance Lri(x, ω) describes the ambient light Lin(ω) that arrives
directly at viewpoint x along direction ω with attenuation by the participating medium.
The single-scattering radiance Lss(x, ω) represents that the radiance of light has scattered
only once before arriving at viewpoint x along the direction ω, which is computed by
integrating radiance contributions along the corresponding view ray. Before detailing the
expressions of the radiance, the following notations need to be predefined.

Let us denote the volume density of the participating medium at position x as ρ(x),
and let the optical coefficient be defined as κi(x), where κi ∈ {κa, κs, κt} indicate the
absorption, scattering, and extinction coefficient, respectively. The extinction coefficient is
κt(x) = κa(x) + κs(x), and the scattering albedo is Ω = κs(x)/κt(x). The expressions of Lri
and Lss are as follows:

Lri(x, ω) = Lin(ω)τ(xa, x), (2)

Lss(x, ω) =
∫ Da

Db

τ(xu, xb)κt(xu)Jss(xu, ω)du, (3)

where Da and Db are the distances from the viewpoint x to the volume boundary points xa
and xb, respectively. xu is an arbitrary position inside the participating medium volume.
τ(x0, x1) is the transmittance from x0 to x1, which is computed as

τ(x0, x1) = e−
∫ D0

D1
κt(xu)du, (4)

where x0 and x1 are arbitrary positions inside the participating medium volume, and D0
and D1 are the distances from viewpoint x to x0 and x1, respectively. As both τ and Lss are
expressed in continuous forms, they cannot be directly calculated in computers. We derive
their discrete forms to facilitate computer program implementation in Section 3.2.2.

To compute Lss, Jss is required. The single-scattering term Jss represents the reduced
incident radiance, with its first scattering interaction occurring at the position vp of the
voxel grid:

Jss(vp, ω) =
Ω
4π

∫
S2

Lri(vp, ω′)p(ω, ω′)dω′, (5)

where S2 indicates a solid angle over the unit sphere. Due to Equation (5), we need to
calculate an integration over the unit sphere S2, while Monte Carlo (MC) integration
provides a means for estimating Jss. However, for more efficiency, we use distinct tricks
for different illuminations. For environment map lighting, we utilize importance sampling
to estimate Jss efficiently. For simple point or parallel lights, Jss can be directly calculated
without MC as the lighting directions and radiance are known. Rather than relying on MC
estimation for the complete differentiable rendering, we use it only to efficiently estimate Jss
where needed. The phase function p(ω, ω′) describes the directional scattering distribution
of the participating media.

The necessary formulas for forward rendering have been introduced. In the following
section, we will derive the differential form of the RTE. This form can be integrated into the
differentiable rendering process to calculate the derivative of the RTE directly.

3.2.2. Differential Form of RTE

Here, we introduce the differentiation of the RTE based on the single-scattering model
for computing the density derivative. The differentiation of Equation (1) can be expanded
into two terms, namely the differentiation of the reduced incident radiance L̇ri and the

Entropy 2023, 25, 1348 9 of 18

differentiation of the single-scattering radiance L̇ss. The differential form of the RTE is
therefore

L̇out(x, ω) = L̇ri(x, ω) + L̇ss(x, ω). (6)

Since our work only focuses on the fluid reconstruction task, the derivative L̇out can
be confined as L̇out =

dLout
dρ (w.r.t. density ρ only).

Derivation of L̇ri. As shown in Equation (6), the first component of the differential
form of the RTE is L̇ri, which can be derived by differentiating Lri of Equation (2):

L̇ri(x, ω) = Lin(ω)τ̇(xa, x). (7)

In order to compute L̇ri, τ̇ is required. Differentiating the transmittance τ of Equation (4)
yields

τ̇(vx0 , vx1) =− τ(vx0 , vx1)
x1

∑
p=x0

κ̇t(vp)∆d, (8)

where κ̇t = σt, σt is the extinction cross-section, vp is a voxel position of a uniform 3D voxel
grid, and ∆d is the length of the sampling step.

Derivation of L̇ss. The second component of the differential form of the RTE is L̇ss.
Given the single-scattering radiance assumption, where light scattering occurs only once
before arriving at viewpoint x, differentiating Lss of Equation (3) yields

L̇ss(x, ω) =
xb

∑
p=xa

(τ̇(vp, vxb)κt(vp) + τ(vp, vxb)κ̇t(vp))Jss(vp, ω)∆d

+
xb

∑
p=xa

τ(vp, vxb)κt(vp) J̇ss(vp, ω)∆d.

(9)

To compute L̇ss, J̇ss is required. Differentiating Jss of Equation (5) yields

J̇ss(vp, ω) =
Ω
4π

∫
S2

L̇ri(vp, ω′)p(ω, ω′)dω′. (10)

The derivation of Equation (10) requires taking the derivative of an integral. To accom-
plish this, we can utilize the Reynolds transport theorem [32,33], which is a widely used
method for computing derivatives of hydrodynamic integral equations. However, since
our work is concerned with purely participating media volumes, we can assume that Lri
exhibits continuity in S2, and thus the derivative of the interface can be disregarded.

3.2.3. Differentiable Renderer

The cornerstone of our differentiable renderer lies in the radiance transport equation
and its differential form. Unlike previous works, we derive an analytical differential
expression for the radiance transport equation, thereby enabling the direct computation
of density derivatives without the exclusive reliance on automatic differentiation. Our
algorithmic approach is delineated in Algorithm 2, where we employ ray marching to
both render images and compute the associated derivatives. Specifically, the algorithm
calculates the final radiance Lout while simultaneously storing the requisite gradients for
subsequent density field updates. Lines 9–13 of the algorithm illustrate that we execute
both forward and backward passes concurrently. This dual-pass approach facilitates the
reuse of Jss during the backpropagation phase.

It is worth noting that Equations (5) and (9), appearing in lines 9 and 11 of Algorithm 2,
are essential for performing integration over the unit sphere. While a straightforward Monte
Carlo method could be employed for this estimation, it would entail computationally
expensive calculations. To mitigate this, we adopt specialized techniques tailored to
different types of illuminations. As elaborated in Section 3.2.1, we utilize importance

Entropy 2023, 25, 1348 10 of 18

sampling for environment map illuminations and direct computation for point/parallel
light illuminations when calculating Jss.

Furthermore, as depicted in lines 14–15, gradRec is used for recording the gradi-
ents associated with the sampling positions. Rather than saving gradients for all voxels,
we implement a sparse structure gradRec that only stores gradients along sampled ray
paths. When marching rays through the volume, we push gradients onto the stack as
intersections occur along the ray (Algorithm 2 lines 14–15). When a density field update
finishes (Algorithm 3), the stack is popped, releasing memory. Our optimized approach
reduces memory usage from O(N3) to O(RN) for R rays of length N. We only maintain
gradients along active ray paths rather than the entire volume grid. These computational
strategies, in conjunction with our analytical radiance derivatives, culminate in a highly ef-
ficient differentiable renderer, thereby facilitating fluid density optimization with enhanced
computational efficacy.

3.2.4. Density Reconstruction

Building upon our proposed differentiable rendering framework, we present the
reconstruction of the density field using our framework and provide details in Algorithm 3.
We begin by computing the loss function of the target and primal images, followed by
reading the density gradient from the recorded sampling positions of the generated ray.
The gradients of density with respect to the loss value are computed and saved in the
volume data densityGrad. Finally, we iterate through and update each voxel value of the
density field, and the memory of the structure gradRec and densityGrad are released.

3.3. Coupled Density and Velocity Estimation

Most previous works for fluid reconstruction directly updated the fluid density in each
time step using tomographic methods from input video sequences. While this works well
for systems with a large number of cameras, the reconstruction quality drops significantly
when the number of cameras (i.e., projections) reduces, making the tomography problem
formulation ill-posed. To solve this ill-posed problem and improve the reconstruction
quality, we apply a coupled estimated strategy, which makes the efficient reconstruction
of realistic and smooth fluid flow possible. A possible solution is coupled density and
velocity updating, which was developed by Eckert et al. [4], yet their method was extremely
time-consuming and impractical, with an average reconstruction time of up to 50–60 min
per frame. We therefore propose a simplified strategy for coupled density and velocity
estimation that is highly efficient, making interactive fluid motion reconstruction possible.

3.3.1. Coupled Estimation

Our approach is to predict the density field ρ̃t for the current time step t based on the
given states of time t− 1 and time t− 2. The details of our coupled density and velocity
estimation are depicted in Algorithm 4. To proceed, we first estimate velocity ut−1 based
on the densities of time t− 1 and time t− 2 according to Algorithm 5. We then predict the
velocity and density for the current time step t based on physical priors, i.e., the density and
velocity transport over the time steps and the incompressibility of the velocity. Note that
incompressibility is ensured by projecting the velocities onto the space of divergence-free
velocities, called ΠDIV. We advect velocity ut−1 with itself and ensure its incompressibility
to create a velocity guess ũt. The density guess ρ̃t is created by advecting the density ρt−1

forward with the velocity guess ũt−1 (lines 3–4 of Algorithm 4).

3.3.2. Velocity Reconstruction

While the last two steps shown in lines 3–4 of Algorithm 4 are similar to those in [4],
our velocity reconstruction process is different. Notably, we do not apply depth regularization
to gain control over the motion in depth. Because this regularized term breaks the sparse
property of the matrix, the optimization problem cannot be solved efficiently.

Entropy 2023, 25, 1348 11 of 18

To improve the efficiency of velocity reconstruction, we propose a modified constraint
as follows:

min
ut−1

f
(

ut−1
)
=

∥∥∥∥ρt−1 − ρt−2

∆t
+ ut−1 · ∇ρt−1

∥∥∥∥2

+ Esmooth(ut−1) + Ekinetic(ut−1)

(11)

subject to ∇ · ut−1 =0. (12)

In Equation (11), the first component is the constraint from an optical flow problem
∂ρ
∂t +∇ · (ρu) = 0. In order to further confine our solution, we add both smoothness and
kinetic energy (Tikhonov) regularized terms to the velocity [34]. These regularized terms
are expressed as

Esmooth(u) =α‖∇u‖2,

Ekinetic(u) =β‖ut−1‖2,
(13)

where α, β are the weights of these regularized terms, respectively. Esmooth(u) is a smooth-
ness regularizer controlled by weight α. It penalizes large changes/gradients in the velocity
field by minimizing the L2 norm of ∇u. This smoothness constraint helps reduce noise
and discontinuities in the estimated velocities. Ekinetic(u) is a kinetic energy or Tikhonov
regularizer weighted by β. It minimizes the L2 norm of the velocity values themselves.
This constraint discourages large velocity magnitudes and excessive motion. Together,
these regularization terms help confine the velocity solution space to plausible flows that
are smooth and controlled in magnitude. The relative weights α and β allow the balancing
of the smoothing and kinetic energy constraints as needed for the data.

In order to compute the velocity, as described in Equations (11) and (12), we make use
of the fast primal-dual method (PD) for convex optimization as introduced by Chambolle
and Pock [35]. Instead of solving for the whole complex optimization problem at once, we
split the complex optimization problem into two manageable components, where proximal
operators act as efficient solvers for each subproblem. Iterative variable updates ensure
that the solution converges to the optimal value of the problem in Equations (11) and (12).
The simplified PD updates are given by

Xk+1 =Xk + σYk − σprox f ,σ(
1
σ

Xk + Yk),

ut−1
k+1 =proxg, 1

γ
(ut−1

k+1 − γXk+1),

Yk+1 =ut−1
k+1 + θ(ut−1

k+1 − ut−1
k),

(14)

where {σ, γ, θ} are parameters that affect convergence; k is the iteration number; X, Y are
helper variables; and prox is the proximal operator for each subproblem. f of prox f ,σ tar-
gets Equation (11), where velocity ut−1 is unknown, and the object function f (Equation (11))
is solved by least squares. The optimization equation of prox f ,σ is given by

prox f ,σ(ξ) = argminut−1 f (ut−1) +
σ

2

∥∥∥ut−1 − ξ
∥∥∥, (15)

where ξ is a generic variable. The proximal operator proxg, 1
γ

targets Equation (12), and this

constraint assumes that the velocity field is incompressible:

proxg, 1
γ
(ξ) = ΠDIV(ξ). (16)

The process of velocity reconstruction is shown in Algorithm 5. Lines 3–5 are the PD
updates, and lines 6–10 check the convergence of the iterative computation.

Entropy 2023, 25, 1348 12 of 18

3.4. Implementation Details

We implemented our proposed approach using a combination of Python and C++.
The differentiable renderer was developed in Python, leveraging the Taichi programming
language [36,37] for parallelization and high-performance computing on GPUs. Taichi was
chosen due to its excellent compatibility with existing deep learning frameworks, allowing
integration with neural networks or other models. Additionally, Taichi provided high-
efficiency parallel primitives and differentiable programming constructs that significantly
accelerated the core computations in our renderer compared to standard Python.

The coupled density and velocity estimation component was implemented in C++ for
computational efficiency and numeric precision. We interfaced with this C++ module from
the Python renderer using the pybind11 library. Pybind11 enabled us to seamlessly pass
data between the Python and C++ code.

We evaluated our method on a workstation with an Intel Xeon E5-2620 v4 CPU and
an Nvidia GeForce RTX 2080 Ti GPU. All results and timings provided were obtained
by executing the code on the GPU hardware, leveraging parallelized implementations
for performance.

4. Result
4.1. Evaluation

We conducted a rigorous validation of our method through both qualitative visu-
alizations and quantitative analyses. Our validations focused primarily on the claimed
contributions of the proposed differentiable renderer and reconstruction framework. As the
accuracy of the estimated gradients and computational performance are critical metrics for
evaluating a differentiable renderer, we first validated these two aspects. Subsequently, we
conducted ablation studies to assess the reconstruction capabilities of our differentiable
renderer and the efficacy of the transport constraints. Furthermore, given the significant
impact of the estimated velocity on reconstructed fluid motions, we analyzed comparisons
between our velocity estimates and the ground-truth data. Finally, we compared our ap-
proach against previous methods through both qualitative visualizations and quantitative
efficiency metrics.

Validation of gradient computation. To validate the effectiveness of our proposed
differentiable renderer, we optimized a density field and analyzed the evolution of the
calculated derivatives. The initial density configuration was in the shape of a rabbit, which
was optimized by updating the density field based on a target smoke image. The image
sequence in Figure 3 shows the images derived throughout the optimization iterations.

Initially, the density inside the rabbit shape needed to decrease, while the density
in the smoke region had to increase to match the target. Since the smoke density was
thinner than the rabbit density, the derivatives for the smoke density diminished faster,
disappearing after around 30 iterations. In contrast, significant derivatives for the rabbit
density persisted from iterations 0 to 50. By iteration 99, the optimization had converged to
the target image. Overall, Figure 3 demonstrates that the density field derivatives followed
the expected variations throughout the optimization process.

Performance validation of our differentiable renderer. Since our differentiable ren-
derer significantly differed from previous methods based on differential volumetric path
tracing in implementation, different factors impacted its performance. Previous physics-
based differentiable renderers heavily relied on the Monte Carlo method to estimate the
radiance and its derivatives. Hence, these methods’ performance was affected by the num-
ber of samplings. Unlike these methods, the volumetric data size significantly impacted our
renderer’s performance. To characterize this relationship, validations were performed on
the rabbit scene in Figure 3 under four resolutions: 323, 643, 1283, and 2563 voxels. Table 1
presents the average runtime and GPU memory usage across 100 iterative optimizations at
different volumetric data resolutions. As anticipated, the runtime of our renderer demon-
strated an increasing trend with higher-resolution volumetric data. The recorded runtimes
for the resolutions of 323, 643, 1283, and 2563 voxels were 9.4 ms, 17.6 ms, 82.4 ms, and

Entropy 2023, 25, 1348 13 of 18

545.1 ms, respectively. Despite the increase in runtime, our method maintained real-time
performance even at higher resolutions, which could be crucial for interactive applications
and dynamic scenes.

Figure 3. Derivative analysis of density optimization. The initial volume was configured in the shape
of a rabbit, with the density field optimized to match a target smoke image. The derivative images
show an increasing density in blue and decreasing density in red. This color mapping accurately
captures the evolution of the derivatives throughout the entire density optimization process.

The memory usage of our differentiable renderer was another essential aspect of its
performance. Similar to the runtime analysis, we observed a direct correlation between the
resolution of the volumetric data and the GPU memory usage. As the resolution increased,
so did the memory requirement. The memory usages for the resolutions 323, 643, 1283,
and 2563 voxels were 612 MB, 648 MB, 851 MB, and 2813 MB, respectively. This increase
was consistent with the greater amount of data that needs to be processed and stored in
higher-resolution volumetric data. Despite this growth, our method remained memory-
efficient even at the highest resolution, which was a testament to its practical viability for a
wide range of applications.

Table 1. Performance validation at different volumetric data resolutions. The average runtime and
GPU memory utilization across 100 optimization iterations are presented for varying volumetric
data resolutions. We observed increasing runtimes and memory usage with higher resolutions.
However, our differentiable renderer maintained real-time performance and memory efficiency even
at elevated resolutions.

Volumetric Resolution Average Runtime (ms) Memory Usage (MB)

323 9.4 612
643 17.6 648
1283 82.4 851
2563 545.1 2813

Evaluation of density reconstruction. To evaluate the reconstruction accuracy of
our proposed method, we conducted an experiment using synthetic fluid motion data.
The ground-truth fluid flows were generated using the Mantaflow simulator [38]. The density
fields were then rendered into a monocular video sequence using Mitsuba 3 [39]. This synthetic
video served as the target for guiding the reconstruction using our approach. To enhance
the shape constraints, we re-used the monocular video to constrain the reconstruction
from orthogonal angles (e.g., angle 0◦ and 90◦). As shown in Figure 4, we conducted an
ablation experiment to study the effectiveness of the proposed coupled density and velocity

Entropy 2023, 25, 1348 14 of 18

estimation component. Qualitatively, the physically constrained result in Figure 4c more
faithfully captured the true fluid evolution compared to the unconstrained reconstruction
in Figure 4b. The results demonstrated that our proposed framework could accurately
reconstruct fluid motions from monocular video while maintaining physically consistent
temporal evolutions.

(a) input

(b) reconstruction, ퟒ�° (without transport constraint)

(c) reconstruction, ퟒ�°(with transport constraint)

Figure 4. Validation of the physical constraint. (a) The input image sequence used to constrain the
shape from orthogonal views. (b) The reconstructed results without the transport constraint. (c) The
proposed constraint. We observed that adding the transport constraint significantly improved the
reconstruction quality and temporal consistency.

Evaluation of the velocity estimation. The evaluation of the velocity estimation is
of utmost importance in reconstructing fluid motions, as it significantly impacts the re-
construction quality and temporal consistency of fluid motions. We compared estimated
velocity fields obtained from reconstructing Figure 4 with the ground truth. As Figure 5
shows, the estimated velocity was somewhat minimal at the base because no specialized
processing was implemented for the inflow zones. Despite the inherent challenges in
precisely estimating inflow velocity from only a monocular video and transport constraints,
the overall velocity field could still be coarsely estimated to a reasonable degree. These
findings validated the feasibility of estimating fluid velocities from limited visual informa-
tion while preserving efficiency. In applications where computational efficiency is not the
primary concern, one potential area of investigation could be devising techniques to better
model the inflow velocity profile, which would likely improve estimated accuracy.

Comparison to previous work. While we demonstrated our method’s fluid motion
reconstruction capabilities above, further comparative evaluations were essential to fully
validate its abilities against previous approaches. To this end, we conducted fluid motion
reconstruction from the same initial configuration using both our method and Franz et al.’s
approach [5]. Our method followed similar overall workflows to Franz et al.’s approach
but had key differences in the following critical aspects: First, we proposed an efficient
differentiable renderer for participating media, which was successfully integrated into our
framework. Second, our method utilized an improved joint density and velocity estima-
tion strategy. These improvements aimed to enable efficient and temporally consistent

Entropy 2023, 25, 1348 15 of 18

fluid motion reconstruction. As depicted in Figure 6, both our method and Franz et al.’s
method achieved a high similarity between visualizations and the ground truth. This
demonstrated that our framework had a comparable fluid motion reconstruction capability
to Franz et al.’s method.

a) input

b) reconstruction, 𝟒𝟓° （differentiable rendering）

c) reconstruction, 𝟒𝟓° (differentiable rendering+physical prior)

(a) ground truth, front (c) ground truth, side

(b) our, front (d) our, side

Figure 5. Validating the velocity estimation. We compared center-slice velocities from our estimation
to the ground truth at frames t = 70, 110, and 147 along the front and side views. The results exhibited
some bias near the base, as no specialized inflow treatment was implemented. However, overall,
the estimated velocities reasonably matched the ground truth, suggesting that our method could
effectively and reliably characterize the fluid flow dynamics.

(a) input

(b) reconstruction, ퟒ�° (without transport constraint)

(c) reconstruction, ퟒ�°(with transport constraint)

(a) ground truth, front (c) ground truth, side

(b) our, front (d) our, side

(a) input

(b) ours, front

(c) Franz et al. 2021, front

Figure 6. Orthogonal view (angle 0◦and angle 90◦) reconstruction. The results demonstrate that our
approach could produce highly realistic fluid motion that matched the ground truth closely. Our
comparison with Franz et al. [5]’s method revealed that our method’s reconstructed ability was
comparable to theirs.

Entropy 2023, 25, 1348 16 of 18

Furthermore, run-time efficiency is an important indicator to evaluate a reconstruction
framework. To validate the efficiency of our proposed framework, we compared the average
runtime of our method against Franz et al.’s method for reconstructing fluid densities from
video inputs. As shown in Table 2, we evaluated three volumetric resolutions of 64 × 96 ×
64, 128 × 192 × 128, and 256 × 288 × 256 voxels.

For the 64× 96× 64 resolution, our complete reconstruction time per frame was 6.13 s,
over 59× faster than Franz et al.’s 363 s. More significantly, our differentiable rendering
time was just 0.08 s, demonstrating a speedup of over 870× compared to their 69.6 s for
this key computational stage.

For the higher resolutions of 128 × 192 × 128 and 256 × 288 × 256, our method
outperformed Franz et al.’s by factors of approximately 172 and 173, respectively, in terms
of average reconstruction time. Furthermore, our differentiable rendering stage exhibited
speedup factors of around 2655 and 1676 compared to Franz et al.’s methodology.

Table 2. A comparison of efficiency with Franz et al.’s works. “Time” indicates the average recon-
struction time per frame.

Method Resolution DR Time Total Time

Franz et al. [5]
64 × 96 × 64 1.16 m 6.06 m

128 × 192 × 128 5.31 m 25.2 m
256 × 288 × 256 21.8 m 61.6 m

Our method
64 × 96 × 64 0.08 s 6.13 s

128 × 192 × 128 0.12 s 8.75 s
256 × 288 × 256 0.78 s 21.31 s

4.2. Reconstruction from Real-World Data

Reconstructing fluid flows from real-world video captures presents significant chal-
lenges due to ambient interference and computationally intensive processing requirements.
Previous approaches have required several minutes per frame for reconstruction, severely
limiting applicability in interactive contexts. Our proposed method aimed to address this
limitation by enabling the efficient modeling of fluid motions from monocular videos of real
fluids. To validate the practical applicability of our method, we reconstructed fluid motions
from a monocular video capturing real fluid flows from a fixed viewpoint. As depicted
in Figure 7, the reconstructed results were rendered by Mitsuba 3 [39] from a perspective
offset by 20 degrees away from the frontal view. Our results demonstrated that our method
could reconstruct fluid motions realistically with high shape fidelity compared to the input
video, even for complex backgrounds. This showcased the potential of our method as a
useful and efficient tool for artistic creation and content generation.

(a) input

(b) reconstruction, ퟒ�° (without transport constraint)

(c) reconstruction, ퟒ�°(with transport constraint)

(a) ground truth, front (c) ground truth, side

(b) our, front (d) our, side

(a) input

(b) ours, front

(c) Franz et al. 2021, front

(a) inputs

(b) relighting reconstructed results

Figure 7. Reconstruction from real-world data. We utilized a monocular video captured from real-
world fluid flows as input into our method, reconstructing at a volumetric resolution of 64 × 96 × 64.
As illustrated in (b), the reconstructed flows rendered via Mitsuba 3 demonstrated that our proposed
approach could reconstruct physically plausible fluid motions from real-world video.

Entropy 2023, 25, 1348 17 of 18

5. Conclusions

We introduced a novel method to efficiently reconstruct fluid density fields from
monocular video data. The key contribution was our newly proposed efficient differen-
tiable rendering framework for participating media and the improved transport constraints.
Our approach outperformed previous methods by considering both computational ef-
ficiency and visual quality. Looking ahead, worthwhile future work includes reducing
current limitations, such as incorporating the differentiable rendering of surface mod-
els and developing advanced sampling strategies to further improve efficiency. Overall,
this work represents an important advance in performing monocular video-based fluid
reconstructions, providing a valuable new tool for digital content creation.

Author Contributions: Conceptualization, Y.C.; Methodology, Y.C.; Software, Y.C. and Q.Z.; Valida-
tion, Q.Z.; Formal analysis, Y.C.; Investigation, Q.Z. and X.L.; Data curation, Q.Z.; Writing—original
draft, Y.C.; Writing—review & editing, X.L.; Visualization, Q.Z.; Supervision, X.L.; Project administra-
tion, X.L.; Funding acquisition, X.L. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 62272019.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ihrke, I.; Magnor, M. Image-based tomographic reconstruction of flames. In Proceedings of the 2004 ACM SIG-

GRAPH/Eurographics symposium on Computer Animation, Grenoble, France, 27–29 August 2004; pp. 365–373.
2. Okabe, M.; Dobashi, Y.; Anjyo, K.; Onai, R. Fluid volume modeling from sparse multi-view images by appearance transfer. ACM

Trans. Graph. (TOG) 2015, 34, 1–10. [CrossRef]
3. Eckert, M.L.; Um, K.; Thuerey, N. ScalarFlow: A large-scale volumetric data set of real-world scalar transport flows for computer

animation and machine learning. ACM Trans. Graph. (TOG) 2019, 38, 1–16. [CrossRef]
4. Eckert, M.L.; Heidrich, W.; Thuerey, N. Coupled Fluid Density and Motion from Single Views. Comput. Graph. Forum 2018,

37, 47–58. [CrossRef]
5. Franz, E.; Solenthaler, B.; Thuerey, N. Global Transport for Fluid Reconstruction with Learned Self-Supervision. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 1632–1642.
6. Kak, A.C.; Slaney, M. Principles of Computerized Tomographic Imaging; SIAM: Philadelphia, PA, USA, 2001.
7. Ihrke, I.; Magnor, M. Adaptive grid optical tomography. Graph. Model. 2006, 68, 484–495. [CrossRef]
8. Atcheson, B.; Ihrke, I.; Heidrich, W.; Tevs, A.; Bradley, D.; Magnor, M.; Seidel, H.P. Time-resolved 3d capture of non-stationary

gas flows. ACM Trans. Graph. (TOG) 2008, 27, 1–9. [CrossRef]
9. Elsinga, G.E.; Scarano, F.; Wieneke, B.; van Oudheusden, B.W. Tomographic particle image velocimetry. Exp. Fluids 2006,

41, 933–947. [CrossRef]
10. Belden, J.; Truscott, T.T.; Axiak, M.C.; Techet, A.H. Three-dimensional synthetic aperture particle image velocimetry. Meas. Sci.

Technol. 2010, 21, 125403. [CrossRef]
11. Xiong, J.; Idoughi, R.; Aguirre-Pablo, A.A.; Aljedaani, A.B.; Dun, X.; Fu, Q.; Thoroddsen, S.T.; Heidrich, W. Rainbow particle

imaging velocimetry for dense 3D fluid velocity imaging. ACM Trans. Graph. (TOG) 2017, 36, 1–14. [CrossRef]
12. Xiong, J.; Fu, Q.; Idoughi, R.; Heidrich, W. Reconfigurable rainbow PIV for 3D flow measurement. In Proceedings of the 2018

IEEE International Conference on Computational Photography (ICCP), Salt Lake City, UT, USA, 18–22 June 2018; pp. 1–9.
13. Aguirre-Pablo, A.; Aljedaani, A.B.; Xiong, J.; Idoughi, R.; Heidrich, W.; Thoroddsen, S.T. Single-camera 3D PTV using particle

intensities and structured light. Exp. Fluids 2019, 60, 25. [CrossRef]
14. Fahringer, T.W.; Lynch, K.P.; Thurow, B.S. Volumetric particle image velocimetry with a single plenoptic camera. Meas. Sci.

Technol. 2015, 26, 115201. [CrossRef]
15. Tan, Z.P.; Thurow, B.S. Time-resolved 3D flow-measurement with a single plenoptic-camera. In Proceedings of the AIAA Scitech

2019 Forum, San Diego, CA, USA, 7–11 January 2019; p. 0267.
16. Goldhahn, E.; Seume, J. The background oriented schlieren technique: Sensitivity, accuracy, resolution and application to a

three-dimensional density field. Exp. Fluids 2007, 43, 241–249. [CrossRef]
17. Atcheson, B.; Heidrich, W.; Ihrke, I. An evaluation of optical flow algorithms for background oriented schlieren imaging. Exp.

Fluids 2009, 46, 467–476. [CrossRef]

http://doi.org/10.1145/2766958
http://dx.doi.org/10.1145/3355089.3356545
http://dx.doi.org/10.1111/cgf.13511
http://dx.doi.org/10.1016/j.gmod.2006.08.001
http://dx.doi.org/10.1145/1409060.1409085
http://dx.doi.org/10.1007/s00348-006-0212-z
http://dx.doi.org/10.1088/0957-0233/21/12/125403
http://dx.doi.org/10.1145/3072959.3073662
http://dx.doi.org/10.1007/s00348-018-2660-7
http://dx.doi.org/10.1088/0957-0233/26/11/115201
http://dx.doi.org/10.1007/s00348-007-0331-1
http://dx.doi.org/10.1007/s00348-008-0572-7

Entropy 2023, 25, 1348 18 of 18

18. Corpetti, T.; Mémin, É.; Pérez, P. Dense estimation of fluid flows. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 365–380.
[CrossRef]

19. Herlin, I.; Béréziat, D.; Mercier, N.; Zhuk, S. Divergence-free motion estimation. In Proceedings of the European Conference on
Computer Vision, Florence, Italy, 7–13 October 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 15–27.

20. Yuan, J.; Schörr, C.; Steidl, G. Simultaneous higher-order optical flow estimation and decomposition. SIAM J. Sci. Comput. 2007,
29, 2283–2304. [CrossRef]

21. Ruhnau, P.; Stahl, A.; Schnörr, C. Variational estimation of experimental fluid flows with physics-based spatio-temporal
regularization. Meas. Sci. Technol. 2007, 18, 755. [CrossRef]

22. Loper, M.M.; Black, M.J. OpenDR: An approximate differentiable renderer. In Proceedings of the European Conference on
Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 154–169.

23. Chen, W.; Ling, H.; Gao, J.; Smith, E.; Lehtinen, J.; Jacobson, A.; Fidler, S. Learning to predict 3d objects with an interpolation-based
differentiable renderer. Adv. Neural Inf. Process. Syst. 2019, 32, 9609–9619.

24. Genova, K.; Cole, F.; Maschinot, A.; Sarna, A.; Vlasic, D.; Freeman, W.T. Unsupervised training for 3d morphable model regression.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 8377–8386.

25. Henderson, P.; Ferrari, V. Learning to generate and reconstruct 3d meshes with only 2d supervision. arXiv 2018, arXiv:1807.09259.
26. Kato, H.; Ushiku, Y.; Harada, T. Neural 3d mesh renderer. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3907–3916.
27. Liu, S.; Chen, W.; Li, T.; Li, H. Soft rasterizer: Differentiable rendering for unsupervised single-view mesh reconstruction. arXiv

2019, arXiv:1901.05567.
28. Li, T.M.; Aittala, M.; Durand, F.; Lehtinen, J. Differentiable monte carlo ray tracing through edge sampling. ACM Trans. Graph.

(TOG) 2018, 37, 222. [CrossRef]
29. Nimier-David, M.; Speierer, S.; Ruiz, B.; Jakob, W. Radiative backpropagation: An adjoint method for lightning-fast differentiable

rendering. ACM Trans. Graph. (TOG) 2020, 39, 146. [CrossRef]
30. Vicini, D.; Speierer, S.; Jakob, W. Path replay backpropagation: Differentiating light paths using constant memory and linear time.

ACM Trans. Graph. (TOG) 2021, 40, 108. [CrossRef]
31. Weiss, S.; Westermann, R. Differentiable direct volume rendering. IEEE Trans. Vis. Comput. Graph. 2021, 28, 562–572. [CrossRef]

[PubMed]
32. Flanders, H. Differentiation under the integral sign. Am. Math. Mon. 1973, 80, 615–627. [CrossRef]
33. Leal, L.G. Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes; Cambridge University Press:

Cambridge, UK, 2007; Volume 7.
34. Wedel, A.; Cremers, D. Stereoscopic Scene Flow for 3D Motion Analysis; Springer: Berlin/Heidelberg, Germany, 2011;

Volume 10, p. 978.
35. Chambolle, A.; Pock, T. A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging

Vis. 2011, 40, 120–145. [CrossRef]
36. Hu, Y.; Li, T.M.; Anderson, L.; Ragan-Kelley, J.; Durand, F. Taichi: A language for high-performance computation on spatially

sparse data structures. ACM Trans. Graph. (TOG) 2019, 38, 201. [CrossRef]
37. Hu, Y.; Anderson, L.; Li, T.M.; Sun, Q.; Carr, N.; Ragan-Kelley, J.; Durand, F. DiffTaichi: Differentiable Programming for Physical

Simulation. arXiv 2020, arXiv:1910.00935.
38. Pfaff, T.; Thuerey, N. Mantaflow. 2017. Available online: http://mantaflow.com (accessed on 10 December 2022).
39. Jakob, W.; Speierer, S.; Roussel, N.; Nimier-David, M.; Vicini, D.; Zeltner, T.; Nicolet, B.; Crespo, M.; Leroy, V.; Zhang, Z. Mitsuba 3

Renderer. 2022. Available online: https://mitsuba-renderer.org (accessed on 5 February 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/34.990137
http://dx.doi.org/10.1137/060660709
http://dx.doi.org/10.1088/0957-0233/18/3/027
http://dx.doi.org/10.1145/3272127.3275109
http://dx.doi.org/10.1145/3386569.3392406
http://dx.doi.org/10.1145/3450626.3459804
http://dx.doi.org/10.1109/TVCG.2021.3114769
http://www.ncbi.nlm.nih.gov/pubmed/34587023
http://dx.doi.org/10.1080/00029890.1973.11993339
http://dx.doi.org/10.1007/s10851-010-0251-1
http://dx.doi.org/10.1145/3355089.3356506
http://mantaflow.com
https://mitsuba-renderer.org

	Introduction
	Related Work
	Methods
	Overview
	Differentiable Rendering
	Participating Media Rendering
	Differential Form of RTE
	Differentiable Renderer
	Density Reconstruction

	Coupled Density and Velocity Estimation
	Coupled Estimation
	Velocity Reconstruction

	Implementation Details

	Result
	Evaluation
	Reconstruction from Real-World Data

	Conclusions
	References

