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Abstract: The House-Tree-Person (HTP) sketch test is a psychological analysis technique designed
to assess the mental health status of test subjects. Nowadays, there are mature methods for the
recognition of depression using the HTP sketch test. However, existing works primarily rely on
manual analysis of drawing features, which has the drawbacks of strong subjectivity and low
automation. Only a small number of works automatically recognize depression using machine
learning and deep learning methods, but their complex data preprocessing pipelines and multi-
stage computational processes indicate a relatively low level of automation. To overcome the above
issues, we present a novel deep learning-based one-stage approach for depression recognition in
HTP sketches, which has a simple data preprocessing pipeline and calculation process with a high
accuracy rate. In terms of data, we use a hand-drawn HTP sketch dataset, which contains drawings of
normal people and patients with depression. In the model aspect, we design a novel network called
Feature-Enhanced Bi-Level Attention Network (FBANet), which contains feature enhancement and
bi-level attention modules. Due to the limited size of the collected data, transfer learning is employed,
where the model is pre-trained on a large-scale sketch dataset and fine-tuned on the HTP sketch
dataset. On the HTP sketch dataset, utilizing cross-validation, FBANet achieves a maximum accuracy
of 99.07% on the validation dataset, with an average accuracy of 97.71%, outperforming traditional
classification models and previous works. In summary, the proposed FBANet, after pre-training,
demonstrates superior performance on the HTP sketch dataset and is expected to be a method for the
auxiliary diagnosis of depression.

Keywords: depression recognition; feature enhancement; bi-level attention; transfer learning; cross
validation

1. Introduction

Major Depressive Disorder (MDD) or depression is a common mental illness charac-
terized by symptoms such as low mood, decreased interest, pessimism, slowed thinking,
lack of initiative, poor appetite, and sleep disturbances [1]. Severe cases may even involve
suicidal ideation or behavior [2]. According to the World Health Organization (WHO),
as of 31 March 2023, about 5% of adults worldwide are afflicted with depression [3], and
depression is expected to surpass cardiovascular disease and become the leading cause of
disability by 2030 [4]. Therefore, efficient and accurate diagnosis of depression is crucial.

Traditional depression diagnosis methods include symptom questionnaires and psy-
chological tests. Commonly used questionnaires include the Hamilton Depression Rating
Scale (HAMD) [5] and the Self-Rating Depression Scale (SDS) [6]. These questionnaires
contain multiple items covering various aspects of depressive symptoms, such as low mood,
decreased interest, and changes in sleep and appetite. Each item has a different score, with
higher total scores indicating more severe depressive symptoms. However, questionnaires
may not always measure accurately. For example, the test subjects may provide inaccurate
answers or conceal their symptoms deliberately, or may have a different understanding of
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the questions or provide uncertain answers. The House-Tree-Person (HTP) sketch test [7] is
a commonly used psychological test that requires the test subject to sketch a house, a tree,
and a person in pencil on white paper. Psychologists analyze the features of the drawings
to understand the individual’s mental state and personality traits, allowing them to identify
the presence of depressive symptoms. This test can capture personality traits that are
difficult to express in words and avoid distortion of the response content in the process of
verbalization [8,9], making it a more objective method when compared to questionnaire
diagnosis methods.

In recent years, with the development of computer technology and artificial intel-
ligence, more and more studies have begun to explore the use of computer-aided di-
agnosis methods to recognize depression, such as using computers to recognize facial
expressions [10,11], Electroencephalogram (EEG) [12], Electrocardiograms (ECG) [13], and
speech [14] to analyze whether the test subject is depressed. The above methods can be
roughly divided into three steps: (1) data collection, which uses sensors, cameras, micro-
phones, and other devices to collect physiological data such as facial expressions, EEG,
ECG, and speech from test subjects; (2) data processing, which preprocesses and cleans the
collected data and performs data transformation and normalization; (3) feature extraction
and recognition, which uses machine learning and deep learning algorithms to extract
features related to depression from the processed data. Then, the extracted features are fed
into feature classifiers such as a Support Vector Machine (SVM) [15] and Fully Connected
Networks [16] to obtain classification results. However, the above-mentioned methods
require special equipment and testing environments, which results in high data collec-
tion costs. Additionally, the interpretation of facial expressions, speech, and other data is
subjective due to factors such as individual differences and cultural backgrounds.

This paper uses the HTP sketch for the recognition of depression. Notably, using
drawing as a method for screening and analyzing depression has the advantage of being
more cost-effective compared to detection technologies such as EEG and ECG. This makes
it feasible to implement on a larger scale for depression recognition in institutions such
as universities and corporations. In the HTP test, the house reflects the test subject’s
associations with family and loved ones, the tree reflects their vitality and perception of
the environment, and the person often reflects their self-awareness and relationships with
others [8]. For example, an entire tree being drawn in dark black or incomplete people, or
roofs and walls that are separated, may indicate that the test subject has a psychological
disorder [17]. Existing works [18–20] on manual recognition of depression are based on the
above methods, and there are also a number of works [17,21] based on machine learning
and deep learning methods. However, the method of manually analyzing drawing features
requires extensive training by doctors, resulting in high time costs. On the other hand, the
methods proposed by [17,21] are characterized by laborious processing steps. Therefore,
we propose a one-stage depression recognition method for HTP sketches, which has few
process steps and a higher degree of automation. The steps are as follows: (1) the HTP
sketch is divided into several patches with overlapping edges; (2) the features of patches
and the whole sketch are extracted and fused. (3) Self-Attention and Triplet Attention are
used to focus on important features and perform attention fusion; (4) the hybrid attention
features are fused with the features of the whole sketch again for feature compensation;
(5) the classification head is used to process the feature vector to obtain the classification
result. In addition, this paper also uses the traditional CNN, Vision Transformer, and
existing works [17,21] for experimental comparison. Our contributions are as follows:

• A deep learning-based, one-stage depression recognition method (FBANet) for HTP
sketches is proposed for the first time. The FBANet comprises three key modules:
the Feature Enhancement module, which enhances the network’s feature capture
ability; the Bi-Level Attention module, which captures both contextual and spatial
information; and the Classification Head module, which obtains the classification
results. After simple preprocessing, high-accuracy recognition results can be obtained
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by feeding the images into FBANet, making it an expected auxiliary diagnostic method
for depression.

• Given the small size of the HTP sketch dataset, transfer learning is employed to
improve the model’s accuracy and reduce the risk of overfitting. Specifically, the model
is pre-trained on a large-scale sketch dataset and fine-tuned on the HTP sketch dataset.
Experimental results demonstrate the superior performance of the proposed model.

2. Related Work
2.1. Traditional Depression Diagnosis

Traditional depression diagnosis and assessment commonly used a scale method,
by asking the test subject to answer a series of questions or complete some tasks, and
finally using the score to evaluate the degree and type of depression. The scale method
is mainly divided into self-assessment scales and clinical assessment scales, see Table 1.
However, the assessment results of these scales may be influenced by subjective factors
such as the subjects’ personal preferences or doctors’ lack of experience, which may lead to
measurement errors. Additionally, these scales require a relatively long assessment time,
resulting in high time costs.

Table 1. Details of several self-rating scales and clinical scales.

Kind Name Description Examples Scale of Scores

Self-Rating Scale

Self-Rating Depression
Scale (SDS) [6]

The SDS contains
20 statements, each with

4 different degrees of
answer, 0 (rarely),

1 (sometimes), 2 (often),
3 (almost always),

corresponding to a score
of 1, 2, 3, and 4.

1. I feel sad or depressed.
2. I feel a loss of interest

or fun.
3. I feel anxious

or scared.

0–52: Normal.
53–62: Mild depression.

63–72: Moderate
depression.

73–80: Severe depression.

Beck Depression
Inventory (BDI) [22]

The BDI contains
21 statements, each with

4 different degrees of
answer, which are

0 (none or very few),
1 (sometimes), 2 (quite a
lot), 3 (extremely severe),
corresponding to a score

of 0, 1, 2, and 3.

1. Lose interest.
2. Feeling lonely.

3. Feel disappointed.

0–13: Normal.
14–19: Mild depression.

20–28: Moderate
depression.

29–63: Severe depression.

Symptom Checklist-90
(SCL-90) [23]

The SCL-90 contains
90 statements, and there

are 13 statements that
measure depression.
Each statement has

5 different degrees of
answer: 1 (never),

2 (very mild), 3
(moderate), 4 (quite a lot),

and 5 (severe),
corresponding to a score

of 1, 2, 3, 4, and 5.

1. Feel your energy levels
drop and your activities

slow down.
2. Wanting to end

your life.
3. You feel lonely.

13–26: Mild depression.
39–65: Severe depression.
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Table 1. Cont.

Kind Name Description Examples Scale of Scores

Clinical Scale

Hamilton Depression
Rating Scale (HAMD) [5]

The original HAMD
contains 21 items with

3–5 descriptions for each
item, and subjects are
required to choose the
answer that best fits

their situation.

“Depressed mood”:
0. Not present (none);

1. Tell only when
asked (lightly).

2. Describe spontaneously
in the interview

(moderate).
3. The emotion can be

expressed without words
in the expression, posture,

voice, or the desire to
cry (severe).

4. The patient’s
spontaneous verbal and
non-verbal expressions

(expressions, movements)
almost exclusively reflect

this emotion
(extremely severe).

0–7: Normal.
8–17: May

have depression.
18–24: Depression.

>24: Severe depression.

Hamilton Anxiety Rating
Scale (HAMA) [24]

The HAMA contains
14 statements, each with

5 different levels of
answers, which are

0 (no symptoms), 1 (mild),
2 (moderate), 3 (severe),

4 (extremely severe),
corresponding to scores of

0, 1, 2, 3, and 4.

1. Insomnia.
2. Memory or

attention disorders.
3. Depression.

0–7: Normal.
8–14: Mild

anxiety symptoms.
15–21: Moderate

anxiety symptoms.
≥22: Severe

anxiety symptoms.

2.2. Computer Diagnosis of Depression Based on Physiological Signal

Currently, computer-aided diagnosis methods are commonly used to recognize depres-
sion. In the study of depression recognition based on facial expressions, Kong et al. [10] em-
ployed classic classification architectures such as Fully Connected Networks [25], VGG [26],
and ResNet [27] to extract facial image features and perform binary classification.
Zhou et al. [28] proposed DepressNet for learning visually interpretable representations of
depression. This network is adapted from ResNet50 and first divides video frames into
three overlapping regions (top, middle, and bottom), which are then fed into DepressNet
for feature extraction. Finally, the features are merged to predict depression scores. The
authors used visualization of the network’s activation maps to explain its attention regions.

In the study of depression recognition based on EEG, Wang et al. [12] first collected
EEG sequence data of the partial head region of subjects using a three-electrode EEG
acquisition sensor. Considering the small amount of data and to prevent overfitting, the
data scale augmentation strategy was applied to obtain EEG sequence data expanded
two, four, and eight times. To take advantage of convolution in image processing, the
sequences were fused into 2D images and VGG was used to extract image features and
perform classification. Deng et al. [29] collected EEG sequence information of five parts of
the head region of subjects using HydroCel Geodesic Sensor Net. They cleaned the data
by performing preprocessing operations such as data denoising and feature smoothing
to improve the recognition accuracy. Then, they designed the SparNet, which employed
five-branch SeNet and convolution modules to process the EEG information of the five
parts of the head region. Finally, the features were fused, and the prediction probability
was obtained by classification head.

In the study of depression recognition based on ECG, Zang et al. [13] first collected
ECG signals of the subjects using RM-6280C and then preprocessed the data by denoising
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and normalization. The processed data were segmented and input to a module that includes
one-dimensional convolution, max pooling, and fully connected layers, and the classification
result was obtained in the end. Zhang et al. [30] extracted 39 RR interval features [31] from
the ECG signals of the subjects and used machine learning classification methods such as
K-nearest neighbor (KNN) [32], Support Vector Machine (SVM) [15], and Decision Tree
(DT) [33] to classify the selected features. They also employed the backward selection
algorithm to select key features and improve the recognition accuracy of the model.

In the study of depression recognition based on audio, Lu et al. [14] proposed a
CBAM-based attention mechanism network. The authors collected speech data from
subjects in four scenarios: vocabulary reading, short text read, interview and picture
description, and removed noise such as coughing and misreading. The Mel Frequency
Cepstrum Coefficient (MFCC) features [34] of the speech were extracted as input to the
neural network, which used a ResNet and CBAM [35] combined architecture. The results
were obtained through a classification head. Sardari et al. [36] proposed an end-to-end
Convolutional Neural Network-based Autoencoder (CNN AE) technique to learn highly
relevant and discriminative features from raw sequential audio data. Notably, the CNN
AE first allowed the encoder to learn the raw speech representation, and then the decoder
restored the speech. After unsupervised learning on the training dataset, the raw speech
in the test dataset was input into the encoder to obtain speech features and then classified
using classifiers such as SVM and Random Forests (RF) [37].

Despite the aforementioned research, physiological signals such as EEG, ECG, and
audio have drawbacks such as high collection costs, tedious data preprocessing (denoising,
characterizing, etc.), small data volume (with only a few dozen participants), and weak
interpretability. In contrast, HTP sketches have the advantages of low collection costs (only
requiring paper and pen), simple data preprocessing (normalization of the sketches), rela-
tively large amount of experimental data (1615 HTP sketches), and strong interpretability
(the drawing features that the model focuses on can be used for judgments).

2.3. Analysis of Depression Recognition Based on HTP Sketch

As a projection test, the drawing test has a history of nearly 100 years in modern psy-
chological research, and the measurement efficiency has been recognized as both scientific
and therapeutic [38]. Among the drawing tests, Buck’s HTP test [7] is the most classic
and popular. It was mentioned that the house represents the test subject’s psycho-sexual
adjustment, contact with reality, and accessibility. For example, a big door may represent
an extroverted personality, while a small door may indicate introversion and a lack of
interest in socializing. The tree represents the test subject’s felt impression of themselves in
relation to their environment. A tortuous and twisted trunk, or broken branches, indicating
the test subject’s experience of painful trauma. The person represents the test subject’s
self-portraiture. For example, an active person may indicate an energetic and adaptable
personality. Therefore, the analytical diagnosis of depression can be carried out according
to the characteristics of the HTP sketch.

In recent years, Li et al. [39] proposed 35 HTP drawing features associated with depres-
sion or anxiety disorders and confirmed their effectiveness through the Rasch measurement
model. Yu et al. [19] evaluated the level of anxiety in prisoners before and after psycho-
logical treatment using HTP sketches. Yang et al. [18] utilized HTP sketches to diagnose
depression in cancer patients and assessed the effectiveness and accuracy of the HTP test
by comparing it with the SDS. Hu et al. [40] used HTP sketches to detect depression in
middle school students after the Lushan earthquake. Yan et al. [41] used HTP sketches
to detect symptoms of depression in high school students. However, these tests are still
manually conducted by doctors based on drawing features, and the automation level is
low. Moreover, the sample size of the above experiments is small, only several hundred.
Zhang et al. [21] conducted a study where they computed the mean of effective pixel,
entropy of effective pixel, and the number of corners in the HTP sketches as features for
depression recognition. They employed classifiers such as Support Vector Machines (SVM)
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and Decision Trees (DT). However, this method is only based on the information of pixels
and fails to extract the semantic and spatial information of the sketch; Pan et al. [17] de-
veloped an automated testing method using a two-stage algorithm that first uses a model
similar to R-CNN [42] to locate the drawing features, then uses the binarization method to
process shadow features, and finally merges the features and inputs them into a traditional
SVM classifier to obtain the classification results. However, this localization method may
be biased, and some important features may not be perceived. In contrast, the approach
proposed in this paper is a one-stage method that takes the entire sketch as input. After
enhancing its features, the Bi-Level Attention is utilized to extract both the semantic and
spatial information of the sketch. This approach offers the advantages of a convenient
processing pipeline and comprehensive attention to all parts of the sketch.

2.4. Image Classification Models and Attention Mechanisms

Image classification is an important task in computer vision. At present, Convolutional
Neural Networks (CNN) [43] and Vision Transformers (ViT) [44] are mainly used for
image classification.

The CNN structure is mainly composed of a convolutional layer, a pooling layer,
and a fully connected layer. We compare classical CNN architectures such as ResNet [27],
InceptionNet [45], EfficientNet [46], MobileNet [47]. ResNet consists of a shortcut connec-
tion that skips one or more convolutional modules in the network. By stacking residual
units, ResNet can produce very deep neural networks with improved training and general-
ization performance. InceptionNet contains multiple Inception modules. Each Inception
module consists of multiple parallel convolutional pathways that allow the network to learn
features of different scales and resolutions and to capture both local and global information
in the input data. MobileNet uses depthwise separable convolution instead of traditional
convolution to reduce the number of parameters and computations. EfficientNet incorpo-
rates Mobile Inverted Bottleneck Convolution (MBConv) [48] and Squeeze-and-Excitation
Network (SENet) [35], effectively balancing the relationship between network width, depth,
and image resolution.

Dosovitskiy et al. [44] proposed the Vision Transformer (ViT) for image classification
tasks, which is the first work to apply the self-attention mechanism to this field. Specifically,
the input image is first divided into a set of non-overlapping patches, which are then trans-
formed into vector representations using a Transformer encoder with position encoding
and self-attention. In self-attention, each vector is compared to others to compute their sim-
ilarities, and the weights are assigned based on these similarities. The network then obtains
a more contextualized representation by computing the weighted average of these vectors,
followed by a classification head to output the probability of each class. In this paper, we
compare ViT, Hybrid ViT [44], and Swin Transformer [49] with our model. Hybrid ViT
differs from ViT in that it uses ResNet50 to extract image features as input vectors; Swin
Transformer introduces a multi-scale window attention mechanism to balance computation
efficiency and receptive field size. Specifically, Swin Transformer first performs patch
partition and linear embedding to obtain image vectors and then computes multiple Win-
dowed Multi-head Self-Attention (W-MSA) and Shifted Window Multi-head Self-Attention
(SW-MSA) to reduce computation and capture information between adjacent patches. Patch
merge is used to reduce the resolution of image vectors for multi-scale information.

In addition, some studies have proposed visual attention mechanisms. For example,
Hu et al. [50] proposed SENet, which introduces a Squeeze-and-Excitation (SE) module.
The SE module first performs global average pooling to obtain global features, learns
the importance weights of each channel using two fully connected layers, normalizes the
weights using the softmax function to generate an SE vector, and then recombines the
original feature map by multiplying it with the SE vector. Woo et al. [35] proposed the
Convolutional Block Attention Module (CBAM), which introduces a channel attention
module and a spatial attention module to adaptively adjust the channel and spatial dimen-
sions of the feature map. The channel attention module learns the importance weights of
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each channel, while the spatial attention module learns the importance weights of each
spatial position. The CBAM module cascades the channel attention module and the spa-
tial attention module to obtain a finer representation. Misra et al. [51] invented Triplet
Attention, which calculates attention for image vectors by computing cross-dimensional
interaction information and is a combination of SENet and CBAM with reduced parameters.
Considering that Triplet Attention is almost parameterless and combines the advantages of
SENet and CBAM, this paper combines Triplet Attention with Self-Attention to make up
for the lack of unilateral attention.

In general, this paper combines CNN, ViT, and Triplet Attention, aiming to compre-
hensively extract sketch information and improve the accuracy of depression classification.

2.5. Transfer Learning

Transfer learning aims at improving the performance of target learners on target do-
mains by transferring the knowledge contained in different but related source domains [52].
In the field of computer vision, this method mainly solves the problem of overfitting caused
by the small size of the target dataset [53]. In recent years, transfer learning has been widely
applied. For example, Oquab et al. [54] used transfer learning to first train a traditional
CNN model on the ImageNet dataset [55] and then performed classification on the Pascal
VOC dataset [56]. Shehada et al. [57] used transfer learning for facial expression recogni-
tion. They first pre-trained the model on the FER2013 dataset [58] and then fine-tuned the
model on the CK+ dataset [59] to improve the model’s performance. Shin et al. [60] used
transfer learning with a CNN structure for thoraco-abdominal Lymph Node (LN) detection
and Interstitial Lung Disease (ILD) classification. Apostolopoulos et al. [61] used transfer
learning with several CNN networks for Covid-19 identification based on lung CT images.
In this paper, we employ transfer learning by first pre-training the model in a supervised
manner on a large-scale sketch dataset and then fine-tuning it on the HTP sketch dataset.

3. Methodology

Figure 1 illustrates the overall structure of the FBANet. It mainly contains three parts:
Feature Enhancement, Bi-Level Attention and Classification Head. In the initial stage, both
local and global features are extracted. Subsequently, Feature Enhancement is proposed, where
the local features are fused and concatenated with the global features. Next, the combined
features traverse the Bi-Level Attention Block. Ultimately, they are concatenated with the
global features and processed by the Classification Head to derive the classification probability.

Image
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Figure 1. Overall architecture of FBANet. It consists of the Feature Extraction module (Stem), Feature
Enhancement module, Bi-Level Attention Block module, and Classification Head module.

3.1. Feature Enhancement

Considering the sparse nature of sketch strokes, the features obtained solely from the
global sketch are not sufficiently prominent. To address this issue, we enhance the features
by combing local sketch patches and the global sketch.
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Step 1: We first resize the sketch image S ∈ RH×W×3, where H = W. Then, we divide
S into P patches {S1, S2, . . . , SP}, where P ∈ {5, 9}, see Figure 1. When P = 5, the whole
sketch image is divided into top left patch, top right patch, bottom left patch, bottom right
patch, and center patch. Each patch is a square, and its size occupies 36% of the whole
sketch image. For the upper right corner Pos(X1, Y) of the top left patch S1 and the upper
left corner Pos(X2, Y) of the top right patch S2, there is a relation X2 < X1 and X2−X1 ≤ H

2 .
Width and height of each patch is:

Wm, Hm = {W, H} × σ (1)

where σ = 0.6. The upper left coordinate of the center patch is calculated as follows:

Xm, Ym = {W, H} × 1− σ

2
. (2)

When P = 9, we set σ = 0.4, and every patch occupies 16% of the total image. It is worth
noting that the patches with edge overlap can maintain the hidden context relationship
between adjacent patches. Each patch is resized to 224 × 224 and input into the feature
extraction network Stem (in this paper, Stem uses ResNet50) to obtain FL = {F1, F2, . . . , FP},
where Fi ∈ Rc×h×w, and then compute the average of FL:

F̂L =
F1 + F2 + . . . + FP

P
. (3)

Step 2: Resize the whole sketch image S to 224 × 224 and input it into the Stem to
obtain FG ∈ Rc×h×w.

Step 3: Feature FL+G =
{

F̂L; FG

}
∈ R(2c)×h×w is obtained by attaching FG to F̂L.

Step 4: 1 × 1 convolution is used to adjust the channel numbers of feature FL+G to
obtain Fw ∈ RN×h×w, which is convenient for calculating attention.

3.2. Self-Attention

The architecture mainly includes the multi-head attention mechanism and the fully
connected layer, see Figure 2. The multi-head attention mechanism is used to calculate the
importance between each position in the input sequence, and the fully connected layer is
used to perform nonlinear transformation of the sequence.

Considering the use of two attention fusion strategies, we do not use classtoken because
of the dimension requirement. At the same time, related experiments are performed in the
original paper of ViT [44], and it is verified that the presence or absence of classtoken has
little impact on the performance of the model.

Step 1: Transforming the dimension Fw ∈ RN×h×w to F̂w ∈ RN×(hw) and adding
learnable positional encoding and LayerNorm to F̂w, as shown in the following equation:

F̂w = LN(F̂w + Epos). (4)

Here, layerNorm is employed to normalize the features of the input sequence, which effec-
tively mitigates the internal covariate shift within the model, thereby enhancing its stability.
Furthermore, position encoding is used to infuse positional information into the input se-
quence, aiding the model in capturing and understanding the sequence position information.

Step 2: Performing multi-layer (layer = 1, 2, . . . , L) self-attention calculation and resid-
ual connection on F̂w. Mapping F̂w into three learnable embeddings {Q, K, V} ∈ RN×(hw),
the attention matrix is calculated as follows:

Attention(Q, K, V) = So f tmax(
QKT
√

C
)V. (5)
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Here, the scaling factor 1√
C

avoids the dot products becoming too large and mitigates the
degree of gradient vanishing. Multi-head means that Q, K, V are first divided into several
head blocks along the channel dimension and each block performs self-attention calculation
independently, as shown in the following equation:

MHSA
(

F̂w

)
= Concat(head0, head1, . . . , headn)WO

headi = Attention(F̂wWi
q, F̂wWi

k, F̂wWi
v)

(6)

where headi ∈ RN× (hw)
n is the output of the ith attention head and Wq

i , Wk
i , Wv

i ∈ Rhw× hw
n

correspond to the input mapping weights. WO ∈ Rhw×hw is used to map all the heads. The
general formula is as follows:

F̂w = F̂w + MHSA(F̂w). (7)

+Pos

Norm

Multi-Head
Attention

Norm

MLP

 Self-Attention Block

+

+ ×N

Figure 2. Architecture of Self-Attention Block. It consists of Positional Encoding, Normalization,
Multi-Head Attention, Multi-Layer Perceptron and Residual Connection. The whole computation
process is repeated N times.

The purpose of using multi-head self-attention is to allow the model to focus on
information from different representation subspaces. Taking the HTP sketch as an example,
one of the heads may focus on the style of the drawings from a global perspective, and
another head may pay attention to drawing details, such as the thickness and trembling of
strokes, which are crucial for recognizing depression.

Step 3: Performing LayerNorm F̂w and feed it into the MLP module with residual
connection:

F̂w = F̂w + MLP(LN(F̂w)). (8)

The MLP module contains two fully connected layers. The residual connection is
used to pass the information of the input sequence directly into the next block. This can
effectively accelerate the convergence of the model, avoid the vanishing gradient, and
improve the generalization performance of the model. In this paper, n = 8 and L = 12.

3.3. Triplet Attention

Triplet Attention is a three-branch structure that calculates attention weights along the
C, H, and W dimensions and averages them. It can capture interdimensional interaction



Entropy 2023, 25, 1350 10 of 20

information in images and has the advantage of having a small number of parameters. The
structure of the Triplet Attention Block is illustrated in Figure 3.

Copy ×3

C

W

H

·
Z-Pool Conv.

Sigmoid

W
H

C ·
Z-Pool Conv.

Sigmoid

W
H

C

·
Z-Pool Conv.

Sigmoid

Permute

Permute

Permute
A

Triplet Attention  ×N

Figure 3. Overall architecture of Triplet Attention. The channel attention is calculated along the
C, H, and W dimensions (implemented by Zpool and Convolution modules), so as to capture the
interaction information between different dimensions, and finally the three-direction attention fusion
is performed. The whole computation process is repeated N times.

Consider the input vector Fw ∈ RN×h×w , Zpool will calculate the global maximum and
average along the dimension D ∈ {N, h, w} and then concatenate them along the dimension
D to obtain a spatial attention tensor of 2× h× w, as shown in the following equation:

Zpool = {MaxPoold(Fw); AvgPoold(Fw)}. (9)

Here, the Zpool operation is able to retain rich feature information while reducing the
channel depth to make computation lighter.

In the first branch, the interaction between the h and w dimensions is established: no
dimension transformation is needed, and the calculation is as follows:

F1
w = Fw

⊙
Sigmoid(BN(Conv(Zpool(Fw)))). (10)

Here, Conv represents the convolution operation, which can effectively extract spatial
information. The convolution kernel size is 7× 7, and padding is used to keep the input
and output dimensions the same. Batch Normalization (BN) is applied for normalization
purposes. Following this, the attention weights are derived via the Sigmoid function,
and the element-wise product operation is performed with Fw, resulting in the output
F1

w ∈ RN×h×w.
In the second branch, the interaction between w and N dimensions is established by

performing the dimension transformation Fw → F
′
w ∈ Rh×N×w. The calculation process is

the same as Equation (10), and the result is F2
′

w ∈ Rh×N×w. Then, the dimension is restored:

F2
′

w → F2
w ∈ RN×h×w.

In the third branch, the interaction between h and N dimensions is established by
performing the dimension transformation Fw → F

′
w ∈ Rw×h×N . The calculation process is

the same as Equation (10), and the result is F3
′

w ∈ Rw×h×N . Then, the dimension is restored:

F3
′

w → F3
w ∈ RN×h×w. Later, averaging F1

w, F2
w, F3

w:

Fw =
F1

w + F2
w + F3

w
3

. (11)
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3.4. Bi-Level Attention Fusion and Classification Head

The calculated channel attention and self-attention are connected, and finally the
global feature map is attached to make up for the lack of details in the attention calculation:

F = Concat(Concat(F̂w, Fw), Conv(FG)) (12)

where F ∈ RN×h×w, note that F̂w requires dimension conversion RN×(hw) → RN×h×w,
Conv stands for convolution operation with 1 × 1 kernel size.

The Classification Head consists of three blocks: 1 × 1 Convolution (Conv), Global
Average Pooling (GAP), and Fully Connected Layer (Linear). The formula is as follows:

Output = Linear(GAP(Conv(F))) (13)

where Output ∈ R1×num_class and num_class represents the total class numbers of dataset.
The 1 × 1 convolution is used to adjust the number of channels and reduce the amount of
calculation; global average pooling plays a pivotal role in summarizing spatial information
without any trainable parameters. Finally, a fully connected layer is used to output the
classification probability.

4. Experiments

At present, the number of HTP sketches is small, only about 1600, and the attention
mechanism network needs a large number of training samples to better fit the distribution
of data. Therefore, we use the transfer learning strategy. Firstly, the model is pre-trained in
a supervised form on a large-scale sketch dataset, then it is transferred to the HTP sketch
dataset for fine-tuning. In addition, we select several classical CNN and Transformer
models for comparison, and the training and testing of all models are carried out under
the same hyperparameters and environment. The configurations of FBANet are shown in
Table 2.

Table 2. Details of FBANet models with different scales.

Model Layers Patches Params (M) FLOPs (G)

FBA-Small-5 1,2 6 5 58.97 9.16
FBA-Base-5 12 5 101.50 17.52

FBA-Large-5 18 5 144.03 25.87
FBA-Small-9 6 9 58.97 9.16
FBA-Base-9 12 9 101.50 17.52

FBA-Large-9 18 9 144.03 25.87
1 ‘Small’, ‘Base’, and ‘Large’ represent the number of attention layers. 2 ‘5’ and ‘9’ represent number of patches.

4.1. Datasets and Settings
4.1.1. Datasets

Pre-training experiments are conducted on the QuickDraw-414K dataset [62].
QuickDraw-414K is randomly selected from the QuickDraw dataset [63], which con-
tains about 50 million sketches. Specifically, the dataset consists of 345 classes, each with
1000 training samples, 100 validation samples, and 100 test samples, with a resolution of
224 × 224 pixels. Considering that the sketches in the QuickDraw-414K dataset are black
backgrounds with white strokes, contrary to the white background with black strokes in
the HTP sketch dataset, color conversion is also necessary. Figure 4 shows several examples
of the QuickDraw-414K dataset.

Fine-tuning experiments are conducted on the HTP sketch dataset, which is sourced
from the work of Zhang et al. [21] and is continuously updated. Currently, a total
of 1615 test subjects participated in the study, including 1296 normal individuals and
319 depressed individuals. Each test subject drew only one sketch. Therefore, the HTP
sketch dataset now consists of a total of 1615 sketches, with 1296 drawn by healthy
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individuals and 319 drawn by depressed individuals. Each sketch has a resolution of
4676 × 3308 pixels. Figure 5 shows several examples of the HTP sketch dataset.

In Figure 5, differences between the drawings of individuals with depression and those
of healthy individuals are observed. In Figure 5a,b, the brush strokes exhibit moderate
pressure, the lines appear smooth, and the overall style is normal. In Figure 5c, the presence
of falling raindrops, withered trees, and single-line trunks symbolically represents a state of
low mood and depression. In Figure 5d, heavy brush strokes, dark tree trunks, disorderly
branches, a hanging angel, falling tears, cracked walls, and an overall strange style indicate
that the test subject is suffering from severe psychological depression.

(a) Airplane (b) Apple (c) Chair (d) Dog (e) Banana (f) Face

Figure 4. Examples of QuickDraw-414K. We randomly sampled six categories of sketches from the
QuickDraw-414K dataset for illustration.

(a) Normal example 1 (b) Normal example 2

(c) Depression example 1 (d) Depression example 2

Figure 5. Examples of the House-Tree-Person dataset. We sampled four representative sketches from
the HTP dataset to show. Drawing style from sketches (a,b) is normal. Drawing style of sketches (c,d)
is depressing.
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4.1.2. Implementation Details

In the pre-training experiment, we train the FBANet model and the comparative
models for 50 epochs in total, using the SGD optimization algorithm and giving an initial
learning rate of 3 × 10−2. The learning rate update strategy uses the cosine annealing
algorithm with Warmup, where the number of Warmup steps is set to 1 epoch. The input
sketches are resized to 224 × 224, and batch size is set to 40.

In the fine-tuning experiment, we use five-fold stratified cross-validation to train
and validate the FBANet model and train each fold for 10 epochs. The SGD optimization
algorithm is employed with an initial learning rate of 1 × 10−3. The learning rate update
strategy uses the cosine annealing algorithm with Warmup, where the number of Warmup
steps is set to 1 epoch. The input sketches are resized to 224 × 224, the batch size is
set to 16, and the parameters of the model are not frozen. To prevent overfitting and
improve generalization, we employ the data augmentation toolkit Albumentations [64,65]
to perform data augmentation operations. Specifically, for the training segment data in
cross-validation, we apply data augmentation operations such as random horizontal and
vertical flips, as well as normalization. For the validation segment data, we only perform
normalization operation.

We use the cross-entropy loss function to train the model:

CrossEntropyLoss = − 1
N

N

∑
n=1

k

∑
i=1

yi
t log yi

p (14)

where N is the total number of samples, k is the number of classes, yi
t is the class label, and

yi
p is the predicted value of the model.

4.2. Metrics

We choose Accuracy, F1 score, Precision, and Recall as the metrics for classification,
which are calculated by the symbols of the confusion matrix: True Positive (TP), True
Negative (TN), False Positive (FP), False Negative (FN).

Accuracy is the proportion of examples that the model predicts correctly. It is one of
the most commonly used evaluation metrics, especially when the distribution of positive
and negative samples is relatively balanced. It is calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
. (15)

Precision is a metric that measures the proportion of true positive samples among all
the samples predicted as positive by the model. This metric focuses on how accurately the
model predicts positive samples, especially if FP is high. The formulation is:

Precision =
TP

TP + FP
. (16)

Recall is a measure that quantifies the ability of a model to correctly recognize positive
samples from the entire set of positive samples in the dataset. This metric focuses on
the ability of the model to recognize positive samples, especially when FN is high. The
formulation is:

Recall =
TP

TP + FN
. (17)

F1 score is the harmonic mean of Precision and Recall, and it takes into account the
performance of both Precision and Recall to provide a more comprehensive assessment of
the overall performance of the model. It is calculated as follows:

F1 score = 2× Precision× Recall
Precision + Recall

=
2TP

2TP + FP + FN
. (18)
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4.3. Pre-Training

Table 3 shows the results of training and testing on the QuickDraw-414k dataset. The
comparative models based on CNN are ResNet50 [27], Inceptionv3 [45], MobileNetv3 [47],
and EfficientNetb5 [46].

Table 3. Performances of FBANet and comparative models on the QuickDraw-414k Dataset.

Model
Accuracy (%) F1 Score (%) Precision (%) Recall (%)

Flops (G) Params (M)
Validation Test Validation Test Validation Test Validation Test

ResNet50 69.33 69.53 69.11 69.29 70.12 70.22 69.33 69.53 4.21 24.21
Inceptionv3 69.08 68.92 68.90 68.73 69.27 69.05 69.08 68.92 2.85 25.82

MobileNetv3 70.39 70.64 70.25 70.58 70.48 70.83 70.38 70.64 227.52 4.64
EfficientNetb5 69.93 69.69 69.75 69.53 70.05 69.77 69.93 69.70 2.33 29.05

ViT 67.94 67.90 67.82 67.74 68.21 68.10 67.94 67.90 16.86 86.06
Hybrid ViT 71.78 72.04 71.73 71.95 72.30 72.48 71.78 72.04 16.91 98.16

Swin 56.75 56.77 56.29 56.28 56.65 56.64 56.75 56.77 15.51 87.1

FBA-Small-5 70.81 70.53 70.68 70.42 71.27 71.03 70.81 70.53 9.16 58.97
FBA-Small-9 73.43 73.35 73.34 73.24 73.73 73.56 73.44 73.35 9.16 58.97

FBA-Base-5 73.93 73.81 73.91 73.79 74.21 74.09 73.93 73.81 17.52 101.50
FBA-Base-9 74.01 73.83 73.98 73.79 74.27 74.11 74.01 73.83 17.52 101.50

FBA-Large-5 73.01 73.21 72.96 73.15 73.23 73.42 73.01 73.21 25.87 144.03
FBA-Large-9 73.79 73.75 73.76 73.75 74.01 74.10 73.79 73.75 25.87 144.03

On the test dataset, MobileNetv3 performs better than other CNN models, with an
accuracy of 70.64% and an F1 score of 70.58%. The Transformer-based models used are
ViT [44], Hybrid ViT [44], and Swin Transformer [49], with Hybrid ViT performing best
with an accuracy of 72.04% and an F1 score of 71.95%. Given that our model combines
channel attention with self-attention, it is better than traditional CNN or ViT models. Our
FBA-Base-9 accuracy reaches 73.83% and F1 score reaches 73.79%, which is 3.19% and 1.79%
higher than MobileNetv3 and Hybrid ViT, respectively.

In FBA models of the same scale, it is generally observed that the more the number of
patches, the higher the accuracy. For instance, the FBA-Small-9 model achieves a higher
accuracy (73.35%) than the FBA-Small-5 model (70.53%), possibly because the strokes in
the images of the QuickDraw-414k dataset are uniform, with sparse and uniform feature
distributions. As a result, more patches can capture local details; when the number of
patches is the same, it is found that the accuracy increases when the number of attention
layers is increased from 6 to 12. For example, the FBA-Base-5 model achieves a higher
accuracy (73.81%) than the FBA-Small-5 model (70.53%). However, when the number of
attention layers is increased from 12 to 16, the accuracy decreases. For example, the FBA-
Large-5 model achieves a lower accuracy (73.21%) than the FBA-Base-5 model (73.81%).
This phenomenon may be caused by attention redundancy.

4.4. Fine-Tuning

Next, we fine-tune different pre-trained models on the HTP sketch dataset, see Table 4.
In the CNN models, ResNet50 achieves the best performance, with an average accuracy of
86.56% and a highest accuracy of 92.26%. In the Transformer models, Hybrid ViT achieves
the highest accuracy, with an average accuracy of 88.11% and the highest accuracy of
92.26%. In addition, a comparison is made between our FBANet model and the methods
proposed by Pan et al. [17] and Zhang et al. [21]. It is found that their approaches exhibit
inferior performance to our model, with accuracies of 91.33% and 85.55%, respectively,
whereas our model achieved an accuracy of 97.71% (FBA-Large-5).
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Table 4. Performances of FBANet and comparative models in Horse-Tree-Person (HTP) sketch dataset.

Model
Accuracy (%) F1 Score (%) Precision (%) Recall (%)

Flops (G) Params (M)
ValAverage ValMax ValAverage ValMax ValAverage ValMax ValAverage ValMax

ResNet50 86.56 92.26 64.97 82.52 72.28 92.86 88.67 100 4.21 24.21
Inceptionv3 82.97 86.69 53.19 65.22 64.18 93.33 61.73 73.44 2.85 25.82

MobileNetv3 85.88 92.26 62.10 80.31 65.50 80.95 65.73 81.25 227.52 4.64
EfficientNetv5 85.26 91.95 62.15 69.92 64.36 78.38 67.92 90.63 2.33 29.05

ViT 82.17 84.21 89.66 90.50 83.33 87.73 99.92 100 16.86 86.06
Hybrid ViT 88.11 92.26 92.75 95.06 91.50 94.66 98.53 99.61 16.91 98.16

Swin 80.56 81.42 89.19 89.66 80.54 81.25 99.92 100 15.51 87.1

Pan et al. [17] 85.55 93.33 - - - - - - - -
Zhang et al. [21] 91.33 95.00 91.30 95.65 95.12 97.06 87.84 94.29 - -

FBA-Small-5 96.72 97.21 97.95 99.23 99.27 100 98.84 100 9.16 58.97
FBA-Small-9 94.49 98.45 96.54 99.03 97.98 99.61 99.92 100 9.16 58.97

FBA-Base-5 96.72 98.45 97.97 99.04 99.31 100 99.23 100 17.52 101.50
FBA-Base-9 97.09 99.07 98.19 99.42 99.11 100 98.77 100 17.52 101.50

FBA-Large-5 97.71 99.07 98.56 99.42 99.30 100 99.54 100 25.87 144.03
FBA-Large-9 97.13 98.76 98.12 99.22 99.08 100 98.85 100 25.87 144.03

Furthermore, we investigate the effect of patch numbers and attention layers in
FBANet models of the same scale. We observe that using 5 patches for feature enhancement
generally outperformed using 9 patches (FBA-Small-5 96.72% vs. FBA-Small-9 94.49%).
This phenomenon can be attributed to the uneven distribution of strokes in the HTP sketch
dataset. If the patches are too small (9 patches), some of them may not contain stroke
features, leading to a decrease in model performance. On the other hand, when the num-
ber of patches is kept the same, we found that increasing the number of attention layers
generally improves the model performance (FBA-Small-9 94.49% vs. FBA-Base-9 97.09% vs.
FBA-Large-9 97.13%). This is because the HTP sketch dataset contains more features and
information, and stacking multiple attention layers can better capture various aspects of
the sketch information.

In addition, we present the average confusion matrix of the FBANet on the HTP valida-
tion dataset in Figure 6. It is generally observed that the model achieves higher recognition
accuracy for depression than for non-depression. This finding suggests that the FBANet is
more proficient in detecting depression-related features from the HTP sketches. Furthermore,
we find that our models are more prone to misclassify sketches that originally belong to
the normal category as depression. For instance, in the FBA-Small-5 confusion matrix, the
probability in the upper right corner is higher than that in the lower left corner (0.063 > 0.025).
This phenomenon can be attributed to the class imbalance in the HTP sketch dataset.

To further investigate the interpretability of the FBANet, we employ the Grad-Cam
algorithm [66] to analyze the regions of interest of the FBA-Large-5 model on the HTP
sketch dataset, as shown in Figure 7. In Figure 7, we observe that for (a,b), the model pays
attention to all three objects (house, tree, and person) relatively evenly, with focus on the
branches, the middle of the house, and the upper body or the whole person. For (c), the
model concentrates more on the raindrops and the withered tree. For (d), the model mainly
focuses on the disorderly branches, cracks in the wall, and the hanging angel. It can be seen
that the model can accurately capture key features.
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(a) FBA-Small-5 (b) FBA-Base-5 (c) FBA-Large-5

(d) FBA-Small-9 (e) FBA-Base-9 (f) FBA-Large-9

Figure 6. Confusion matrixes of six FBANet models. We show the confusion matrixes of the six
FBANet models in the validation dataset of the HTP sketch dataset, comprehensively reflecting the
performance of the models in predicting two different categories.

(a) Normal example 1 (b) Normal example 2

(c) Depression example 1 (d) Depression example 2

Figure 7. Grad-Cam visualization of FBA-Large-5 model. To illustrate the interpretability of the
model, we conduct experiments using the example sketches in Figure 5 to show the important regions
that the FBANet-Large-5 model focuses on.

4.5. Ablation Study

In this study, we evaluate the impact of different components in our model on the
QuickDraw-414k dataset and HTP sketch dataset. Specifically, we investigate the effects
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of various components in the FBA-Base-5 model, including (1) the Feature Enhancement
module, (2) the Triplet Attention module, and (3) the Self-Attention module. The results
are presented in Tables 5 and 6.

Table 5. Ablation study on the QuickDraw-414k dataset using the FBA-Base-5 model.

Model Feature
Enhance

Triplet
Attention

Self-
Attention

Accuracy
(%) FLOPs (G) Params

(M)

FBANet X X 72.34 17.36 100.72
FBANet X X 71.84 0.72 15.71
FBANet X X 71.54 17.37 100.91
FBANet X X X 73.81 17.52 101.50

On the QuickDraw-414k dataset, the accuracy of the model decreases by 2.27% (72.34%)
when the Feature Enhancement component is removed compared to the Baseline model.
Similarly, when the model contains the Feature Enhancement and Self-Attention compo-
nents, the accuracy decreases by 1.47% (71.54%) compared to the Baseline model. Finally,
when the model contains the Feature Enhancement and Triplet Attention components, the
accuracy decreases by 1.97% (71.84%) compared to the Baseline model.

Table 6. Ablation study on the HTP sketch dataset using the FBA-Base-5 model.

Model Feature
Enhance

Triplet
Attention

Self-
Attention

Average
Accuracy

(%)
FLOPs (G) Params

(M)

FBANet X X 89.35 17.36 100.72
FBANet X X 87.55 0.72 15.71
FBANet X X 93.81 17.37 100.91
FBANet X X X 96.72 17.52 101.50

On the HTP sketch dataset, the accuracy of the model decreases by 7.37% (89.35%)
when the Feature Enhancement component is removed compared to the Baseline model.
Similarly, when the Triplet Attention component is removed, the accuracy decreases by
2.91% (93.81%) compared to the Baseline model. Finally, when the model contains the
Feature Enhance and Triplet Attention components, the accuracy decreases by 9.17%
(87.55%) compared to the Baseline model.

The ablation experiments demonstrate that the Feature Enhancement, Triplet Atten-
tion, and Self-Attention components are all effective, and each component is valid for
classification performance on the HTP sketch dataset.

4.6. Limitations

Although the proposed method has achieved promising results on the HTP sketch
dataset, there are still the following limitations:

• The accuracy of the FBANet models in recognizing the category of non-depression
is lower compared to that of recognizing depression. As shown in Figure 6, except
for Confusion Matrixes (c,f), where the classification accuracy is almost equal, the
remaining Confusion Matrixes exhibit noticeably higher accuracy in recognizing
depression. Therefore, future research will focus on improving the accuracy of the
models in recognizing the category of non-depression.

• The FBANet models have a high number of parameters and computational complexity,
as evident from Table 4: FBA-Small-5 compared to ResNet50, Inceptionv3, Efficient-
Netb5; FBA-Base-5 compared to ViT, Hybrid ViT, Swin. Therefore, future research will
explore the design of lightweight models for depression classification.
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5. Conclusions

This article proposes a novel one-stage method for recognizing depression in HTP
sketches based on deep learning. Specifically, we design a recognition model, FBANet,
based on channel attention and self-attention mechanisms to automatically extract and
analyze features from HTP sketches and directly output classification results. Given
the limited size of the HTP sketch dataset (only 1615 samples), we employ a transfer
learning strategy by pre-training the model on the large-scale QuickDraw-414k dataset
and fine-tuning it on the HTP sketch dataset. The findings indicate that our proposed
model outperforms traditional classification models and previous works, as it achieves
higher accuracies. Specifically, FBANet achieves a maximum accuracy of 73.83% on the
QuickDraw-414k test dataset and an average accuracy of 97.71% with a maximum accuracy
of 99.07% on the HTP validation dataset. Additionally, our ablation experiments confirm the
effectiveness of FBANet. These results suggest that our designed method for recognizing
depression in HTP sketches has the potential to serve as an auxiliary diagnostic tool
for depression.

In the future, our research will focus on improving the recognition accuracy of the
models in the non-depression category and exploring the design of lightweight depression
classification models. These two points will enable better practical application of the models
in real-world scenarios.
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