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Abstract: Electromagnetic coils are indispensable components for energy conversion and trans-
formation in various systems across industries. However, electromagnetic coil insulation failure
occurs frequently, which can lead to serious consequences. To facilitate predictive maintenance
for industrial systems, it is essential to monitor insulation degradation prior to the formation of
turn-to-turn shorts. This paper experimentally investigates coil insulation degradation from both
macro and micro perspectives. At the macro level, an evaluation index based on a weighted linear
combination of trend, monotonicity and robustness is proposed to construct a degradation-sensitive
health indicator (DSHI) based on high-frequency electrical response parameters for precise insulation
degradation monitoring. While at the micro level, a coil finite element analysis and twisted pair
accelerated degradation test are conducted to obtain the actual turn-to-turn insulation status. The
correlation analysis between macroscopic and microscopic effects of insulation degradation is used
to verify the proposed DSHI-based method. Further, it helps to determine the threshold of DSHI.
This breakthrough opens new possibilities for predictive maintenance for industrial equipment that
incorporates coils.

Keywords: electromagnetic coils; insulation degradation monitoring; high-frequency electrical response
parameters; health indicator; threshold setting

1. Introduction

As an important energy conversion component for most components, such as equip-
ment and large equipment, the performance of electromagnetic coils will inevitably dete-
riorate during industrial production due to long-term operation in harsh environments,
which may cause serious economic losses [1]. Therefore, on-line monitoring of electro-
magnetic coils plays an important role in avoiding accidental shutdown of the equipment
and reducing economic losses [2,3]. On-line monitoring methods can be further divided
into turn-to-turn short fault detection and turn-to-turn insulation degradation monitoring
methods. Currently, most on-line monitoring methods fall into turn-to-turn short fault
detection. The classical methods include motor current signature analysis (MCSA) [4,5],
negative-sequence-current-component-based methods [6], Park’s vector-based methods [7],
and motor magnetic field signals-based methods [8,9], etc. Deep learning methods have
also been used for turn-to-turn short circuit fault detection, including convolutional neural
network-based methods [10,11], deep auto-encoder-based methods [12], etc. The applica-
tion premise of the turn-to-turn short circuit fault detection methods is that a turn-to-turn
short circuit fault has occurred. However, a turn-to-turn short circuit fault can rapidly
spread throughout a coil and result in its complete failure. In the case of a 15 KW induction
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motor, it takes less than 2 s from the start of a turn-to-turn short circuit fault to the complete
failure of the winding [13]. Therefore, compared with turn-to-turn short fault detection
methods, turn-to-turn insulation degradation methods, which can monitor insulation status
prior to the formation of turn-to-turn shorts, have more contributions to the realization of
predictive maintenance of equipment and the formulation of overall maintenance plans.

The existing typical turn-to-turn insulation degradation monitoring methods are sum-
marized as follows. Werynski et al. [14] and Perisse et al. [15] have performed accelerated
aging tests on twisted pair and demonstrated that the turn-to-turn capacitance increases
as the breakdown voltage decreases. Savin et al. [16] also found a correlation between
turn-to-turn capacitance and partial discharge initial voltage (PDIV). Thus, these studies
have proved that turn-to-turn capacitance is an effective indicator of insulation degradation.
Unfortunately, it is not feasible to measure turn-to-turn capacitance on-site. Therefore, the
influence of turn-to-turn capacitance on the whole winding behavior is studied for the
purpose of implementing online insulation degradation monitoring. Perisse et al. [15] de-
veloped a complex equivalent circuit model to quantify the relationship between winding
impedance and turn-to-turn capacitance. Further, they proposed an online insulation degra-
dation monitoring method by measuring the phase shift and the resulting magnetic field by
injecting low-level, high-frequency signals at the coil resonant frequency. Younsi et al. [17]
used a High-Sensitivity-Current Transformer (HSCT) to monitor the capacitance, AC insu-
lation resistance and dissipation factor on the stator windings of a wire-wound motor. The
decrease in capacitance with aging of the insulation was demonstrated by simulated high-
temperature ageing tests. However, no winding-level life tests were performed to verify
the proposed on-line insulation degradation monitoring methods. Neti et al. [18] studied
winding high-frequency electrical response (impedance) by building a high-frequency
parametric winding model and simulating the motor winding impedance response of the
model by modification of turn-to-turn capacitance values manually. In detail, winding
insulation aging is simulated by connecting variable capacitors and resistors in parallel
with sections of motor coils. They demonstrated that the motor coil impedance response
changes with resistors and capacitors. However, no winding life tests were performed, so
the real correlation between motor coil impedance response and turn-to-turn capacitance is
still not clear. Jordan et al. [19], at the University of Maryland, conducted an accelerated
degradation test on a hand-wound coil and measured its impedance spectrum. Using the
Spearman correlation coefficient [20], impedance measurements at specific frequencies
were utilized for insulation degradation monitoring. However, correlation between coil
impedance response and the actual turn-to-turn insulation health status has not been stud-
ied. Consequently, challenges persist in insulation degradation monitoring, such as how
to determine the on-line health monitoring parameter failure threshold. In addition, only
the monotonicity index is considered to construct the on-line monitoring parameter based
on impedance measurements in [20], while other significant indexes, such as trend and
robustness, are neglected.

To address this issue, this paper takes a small commercial transformer as the research
object and carries out insulation degradation monitoring research simultaneously at the
macro and micro levels. On the one hand, an evaluation index based on a weighted linear
combination of trend, monotonicity and robustness is proposed to construct a DSHI based
on impedance evolution characteristics for precise insulation degradation monitoring. On
the other hand, the transformer temperature field distribution is obtained by FEM under
the accelerated test condition, and thus an accelerated aging test on twisted pairs were
designed and performed to explore the correlation between the health indicator of the
proposed method and actual turn-to-turn insulation health status, which helps to provide
engineering guidance for determining the health indicator failure threshold.

The organizational structure of this paper is as follows. Section 2 describes the precise
insulation degradation monitoring method of electromagnetic coils proposed in this paper.
Section 3 describes the experimental setup and result analysis. In Section 4, the conclusion
of this paper is provided.
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2. Insulation Degradation Monitoring Method of Electromagnetic Coils

The methodology framework of coil precise insulation degradation monitoring is
shown in Figure 1. The high-frequency electrical response parameters are obtained to track
the insulation degradation of electromagnetic coils. The preliminary physical health indica-
tors and virtual health indicators are constructed based on the high-frequency electrical
parameters. Then, the degradation-sensitive health indicator (DSHI) is determined based
on the new health indicator evaluation index and criteria. Finally, the coil insulation degra-
dation state is accurately evaluated based on the DSHI and actual turn-to-turn insulation
health status. The specific process is as follows:
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2.1. Collection of High-Frequency Electrical Response Parameters

High-frequency electrical parameter analysis is an effective method for monitoring
the degradation of electromagnetic coils. Impedance, resonant frequency, and parasitic
capacitance are common high-frequency electrical response parameters. In general, high-
frequency electrical response parameters can be generated through accelerated tests or
historical data. During the accelerated test, high-frequency electrical responses collection
equipment is used to inject small-amplitude high-frequency signals into the coil to be tested
and collect high-frequency electrical response impedance signals. Data set Z is constructed
under multiple frequencies of the coil

Z =


Z(t0, f1) Z(t1, f1) · · · Z(tk, f1) · · · Z(tT , f1)
Z(t0, f2) Z(t1, f2) · · · Z(tk, f2) · · · Z(tT , f2)

...
... · · ·

... · · ·
...

Z(t0, fN) Z(t1, fN) · · · Z(tk, fN) · · · Z(tT , fN)


where the coil aging cycle is denoted as t = [t0, t1, · · ·, tk, · · ·, tT ]; t0 denotes the coil health
cycle; tT denotes that T cycles were experienced; f = [ f1, f2, . . . , fN ] denotes the collection
frequency of the coil electrical response parameters; N is the number of collection frequen-
cies injected; and Z(tT , fN) denotes the electrical parameters at the T-th cycle, frequency.
Z(tk)= [Z(tk, f1), Z(tk, f2), . . . , Z(tk, fN)] denotes the full frequency range impedance spec-
trum for the k-th cycle.

2.2. Construction of Preliminary Health Indicators

In this paper, root mean square (RMS) and kurtosis (K), which are effective time-
domain features in fault diagnosis and health management, are considered. However,
in the process of electromagnetic coil insulation degradation, the degradation features
are usually nonstationary and nonlinear. For this reason, the time-frequency domain
features of fuzzy entropy (FE) and wavelet packet node energy (WPNE) are also extracted.
Such physical quantities that characterize equipment degradation are generally referred
to as physical health indicators. At the same time, information fusion algorithms, such
as Principal Component Analysis (PCA) and Mahalanobis–Taguchi system (MTS) are
considered for feature dimension reduction to avoid information redundancy and model
training overfitting. PCA [21] and MTS [22,23] are both indicators of equipment degradation
after information fusion of physical health indicators. In this paper, they are referred to as
virtual health indicators.

The above physical health indicators and virtual health indicators are used as pre-
liminary health indicators. The calculation equations of the preliminary health indicators
are shown in Table 1. In the table, both RMS (HIrms) and K (HIk) are calculated based on
Z(tk), where Z(tk) is the mean value of the impedance spectrum for the k-th cycle Z(tk);
and FE is used to measure the similarity of two sequences. In the calculation process of FE
(HI f e), the phase space is reconstructed based on the impedance spectral sequence Z(tk)
and related parameters(m,n,r), while the affiliation function is introduced to calculate the
mean values φm(n, r), φm+1(n, r) of all affiliations except itself in m and m + 1 dimensions,
respectively. φm(n, r) is the similarity function of the two reconstructed m-dimensional
vectors, where n is the boundary gradient, and r is the similarity tolerance; the WPNE
(HIwpnei ) is obtained by wavelet decomposition and reconstruction of Z(tk) to obtain the
reconstruction coefficient zi of the i-th node; P is the eigenvector matrix corresponding
to the covariance of the impedance spectral sequence Z(tk); MTS uses orthogonal table
and signal-to-noise ratio to optimize features and calculate the MD value (HIMDj ) of the
selected features. Among them, Sj denotes the standardized matrix of the j-th characteristic
parameters of the impedance spectrum Z(tk), corr is the correlation coefficient matrix, and
p is the number of characteristic parameters.
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Table 1. The calculation equations of preliminary health indicators.

Preliminary Health Indicators Equation

Physical health indicators

Root mean square (RMS) HIrms =
√

1
N ∑ Z(tk)

2

Kurtosis (K) HIk = 1
HIrms4 ∑ (Z(tk)− Z(tk))

4

Fuzzy entropy (FE) HI f e = ln φm(n, r)− ln φm+1(n, r)
Wavelet packet node energy

(WPNE) HIwpnei =
1

∑
i

zi
2 zi

2

Virtual health indicators
Principal component

analysis (PCA) HIpca = PZ(tk)

Mahalanobis-Taguchi
system (MTS) HIMDj =

1
p Sj · corr−1 · Sj

T

2.3. Determination of DSHI

The determination process of the DSHI based on the above preliminary health indi-
cators HIpre= [HIrms, HIk, HI f e, HIwpnei , HIpca, HIMDj

]
is shown in Figure 2. The DSHI

evolution trend can characterize the degradation state of electromagnetic coils.
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Since the coil insulation degradation layer will gradually become thinner during the
insulation degradation process, indicating that the insulation degradation is an irreversible
process, the health indicator reflecting coil insulation degradation should have monotonic
characteristics. With the increase of the aging cycle, the coil insulation degradation will also
change, so the health indicator and the aging time should have a certain correlation, which
is also called the trend. In addition, the health indicator should have good anti-interference
ability for outliers, that is, it has a certain robustness. In this paper, the evaluation indexes,
such as trend, monotonicity and robustness based on trend and residual [24–26] are used to
select DSHI. For preliminary health indicator series HIpre and time series t, the exponential
weighted moving average (EWMA) method is used to decompose the health indicator
sequence HIpre(tk) at time tk into stationary trend term HIT

pre(tk) and random residual term
HIR

pre(tk), as shown in (1):

HIpre(tk) = HIT
pre(tk) + HIR

pre(tk) (1)
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where the EWMA calculation process is shown in (2):

HIT
pre(tk) = βHIT

pre(tk−1) + (1− β)HIpre(tk) (2)

The equation is generally taken as β ≥ 0.9.
The trend, monotonicity and robustness equations [27] are shown in (3)–(5). Before

calculating the three evaluation indexes of the health indicator, the feature sequence needs
to be normalized.

Tre(HIpre, t) =

∣∣∣∣K∑
k

HIT
pre(tk)tk−∑

k
HIT

pre(tk)∑
k

tk

∣∣∣∣√√√√[K∑
k

HIT
pre(tk)

2 −
(

∑
k

HIT
pre(tk)

)2
][

K∑
k

tk
2 −

(
∑
k

tk

)2
] (3)

Mon(HIpre) =
1

K− 1

∣∣∣∣∣∑k
δ
(

HIT
pre(tk+1)− HIT

pre(tk)
)
−∑

k
δ
(

HIT
pre(tk)− HIT

pre(tk+1)
)∣∣∣∣∣ (4)

Rob(HIpre) =
1
K ∑

k
exp

(
−
∣∣∣∣∣HIR

pre(tk)

HIpre(tk)

∣∣∣∣∣
)

(5)

where δ is the unit step function, and the specific expression is shown in (6):

δ(t) =
{

1 , t ≥ 0
0 , t < 0

(6)

The values for each evaluation index of the health indicator are located at [0,1], and
the closer to 1, the more sensitive the health indicator is. However, the DSHI cannot be
reasonably selected based on a single evaluation index. Therefore, this paper constructs
an evaluation index J based on weighted linear combination of trend, monotonicity and
robustness, as shown in (7). The closer the value of J is to 1, the more sensitive the
corresponding health indicator is. The DSHI is determined according to the above criteria.

J
HI∈Ω

= ω1Tre(HIpre, t) + ω2Mon(HIpre) + ω3Rob(HIpre)

s.t.
{

ωi > 0
∑ ωi = 1

, i = 1, 2, 3
(7)

where ω1, ω2, ω3 are the weights corresponding to each evaluation index. It is known that
monotonicity is a prerequisite for the construction of the health indicator, so its weight
is the largest. To better track the degradation trend in the health monitoring process, the
weight of the trend is set to the second. Since coil insulation degradation monitoring
is based on high-frequency electrical response signals in this paper, the signals are not
susceptible to noise interference, so the robustness index is provided as the least weight
here, i.e., ω2 > ω1 > ω3.

2.4. Insulation Degradation Monitoring Based on DSHI

To achieve precise insulation health assessment, this paper constructs a knowledge
base to obtain the actual turn-to-turn insulation degradation state. Specifically, the temper-
ature field distribution of the transformer is obtained based on finite element simulation,
and then the accelerated aging test of twisted pairs is designed to measure the actual
turn-to-turn insulation degradation state index, which is finally used as a benchmark to
validate the proposed DSHI-based method. At the same time, the correlation between
the DSHI and the actual turn-to-turn insulation state is explored to provide theoretical
guidance for determining the DSHI threshold value. The precise insulation degradation
monitoring method can provide an early warning of insulation failures and remaining life
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prediction for coils, which can help reduce the risk of unplanned downtime in industrial
systems containing electromagnetic coils.

3. Experimental Setup and Result Analysis

In this section, an experimental scheme is proposed, as depicted in Figure 3, which
consists of three parts. Initially, the high-frequency response parameters are measured
by performing a winding accelerated aging test, and the insulation degradation state of
the transformer is monitored based on the existing methods and the DSHI-based method
presented in this paper. Subsequently, to verify the accuracy of the method, the breakdown
voltage, which reflects the actual insulation degradation, is measured using the temperature
mapping method based on finite element simulation and the twisted pair accelerated
aging test. This measurement provides a benchmark for the above-mentioned insulation
degradation monitoring method. Finally, the DSHI-based method and existing methods
are compared with the benchmark to validate the effectiveness of this paper. Among them,
the failure threshold setting is the focus of this part.
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3.1. Winding Accelerated Test and Its High-Frequency Response Measurement and Analysis
3.1.1. Winding Accelerated Test and Its High-Frequency Response Measurement

The winding accelerated aging test platform and high-frequency electric response
acquisition system for transformers in this section are shown in Figure 4. A dry-type
transformer electromagnetic coil (the insulation material is polyester, and the rated power
is 25 W) is selected for accelerated aging experiments under thermal stress. The transformer
coil is placed in an 80-degree thermal aging environmental chamber. The input voltage
of the transformer is 220 V. The transformer is overloaded to 3.6 times (90 W) the rated
power by increasing the load at the output end of the transformer. Then, the transformer
coil is removed periodically from the chamber every 8 h for high-frequency electrical
response measurement. The accelerated fatigue test procedure is shown in Figure 5. Seven
cycles, namely 56 h of the thermally accelerated test, were completed in total. As the coil is
removed from the chamber at a high temperature, it must be cooled to room temperature
in a constant temperature chamber for 12 h before the high-frequency electrical response
parameters can be measured. The termination condition of the accelerated test is that the
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direct current resistance (DCR) of the transformer coil decreases significantly. According
to the measured DCR value, the DCR in the seventh cycle drops significantly to 0.7218 Ω,
indicating that the coil has been short-circuited at this time.
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Figure 5. The accelerated fatigue test procedure.

After cooling, the high-frequency electrical response signals of the transformer primary
coil in the frequency range of 20 Hz–1 MHz will be collected by an E4980A impedance
analyzer. Figure 6 shows the resistance and reactance data of the whole life cycle. According
to the analysis of the failure mechanism of electromagnetic coils, the reactance only includes
the inductive reactance and the capacitive reactance, which is directly affected by the
parasitic capacitance. Theoretically, the reactance is the component that directly reflects
the degradation of electromagnetic coils. In this paper, the reactance data will be used to
analyze the insulation degradation monitoring.
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Figure 6. Resistance and reactance for the whole life cycle of electromagnetic coils.

3.1.2. Experiment Results Analysis of the DSHI-Based Method

Based on the reactance data of the whole life cycle of electromagnetic coils, multi-
domain features are extracted, and physical health indicators and virtual health indicators
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are constructed. The physical health indicators include RMS, K, FE and three-layer wavelet
packet node energy features (WPNE-01~WPNE-08), as shown in Figure 7. Virtual health
indicators include principal component analysis (PCA-01~PCA-02) and MTS, as shown in
Figure 8.
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Figure 8. Virtual health indicators of electromagnetic coils in the whole life cycle.

The above physical health indicators and virtual health indicators are used as prelimi-
nary health indicators. The monotonicity, trend and robustness of the above preliminary
health indicators are evaluated, respectively. The results of each evaluation index of pre-
liminary health indicators are shown in Table 2. Notably, the health indicators need to be
normalized before the assessment. Equation (8) is as follows:

HItest
pre (m) = (HIpre(m)− HI f ailure

pre )/(HIhealth
pre − HI f ailure

pre ) (8)

where HIhealth
pre is the preliminary health indicator of the electromagnetic coil health cycle;

HI f ailure
pre is the preliminary health indicator of the previous cycle (failure cycle) of the fault

cycle; HIpre(m) is the preliminary health indicator of the m-th cycle; and HItest
pre (m) is the

preliminary health indicator for assessment after normalization.
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Table 2. Preliminary health indicator evaluation indexes.

Preliminary Health
Indicators

Evaluation Indexes Symbols
Trend Monotonicity Robustness

Physical
health

indicators

RMS 0.9904 1 0.3957 HI1
K 0.9894 1 0.3930 HI2
FE 0.8776 0.6 0.2346 HI3

WPNE-01 0.8925 0.6 0.2717 HI4
WPNE-02 0.8917 0.6 0.2717 HI5
WPNE-03 0.9034 0.6 0.2747 HI6
WPNE-04 0.9247 0.6 0.2755 HI7
WPNE-05 0.8607 0.6 0.3199 HI8
WPNE-06 0.7271 0.2 0.3459 HI9
WPNE-07 0.9212 0.6 0.3054 HI10
WPNE-08 0.9246 0.6 0.3119 HI11

Virtual health
indicators

PCA-01 0.9965 1 0.4505 HI12
PCA-02 0.9851 1 0.3731 HI13

MTS 0.9775 1 0.5759 HI14

In this section, an evaluation index based on a weighted linear combination of trend,
monotonicity and robustness is constructed by (7). According to the importance of the three
indexes in the coil insulation degradation process described in Section 2.3, the weights
of the evaluation index J are set as ω1 = 0.3, ω2 = 0.5, ω3 = 0.2. As shown in (7),
ω1 +ω2 +ω3 = 1. The value of the new evaluation index J is located at [0,1], and the
closer to 1, the more sensitive the health indicator is. The results of the new evaluation
index J for preliminary health indicators are shown in Figure 9. According to the selection
criteria of the DSHI, the evaluation index value of HI14 is the closest to 1. Therefore, MTS
is selected as a DSHI for the insulation degradation monitoring of electromagnetic coils
based on the whole life cycle data in this section.
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Normally, the MTS method requires the data distribution to follow a normal curve. If
the data does not have a normal distribution, the calculation results of MTS may be biased.
To solve the problem of data distribution, the Box-Cox power transformation [28,29] is
employed in MTS to convert different data distributions into ones with similar character-
istics. This ensures the same analytical methodology can be applied to various types of
data, ultimately improving the accuracy of the analysis. The Box-Cox transformation can
be used to transform variables with positive values that do not obey the normal distribu-
tion into variables that obey the normal distribution [30,31]. The assessment result of the
transformed MTS is shown in Figure 10.
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3.1.3. Experiment Results Analysis of the Existing Methods

The resonant frequency-based method and Spearman correlation spectrum-based
method are two existing classical impedance analysis techniques for insulation degradation
monitoring. Therefore, coil impedance data obtained during the accelerating test is also
analyzed by these two methods for comparison purpose. Wangkai et al. [32] found that
the resonant frequency is influenced by the parasitic capacitance through computational
analysis and can track the insulation degradation process of electromagnetic coils. In
this paper, the resonant frequency of the whole life cycle is calculated by using reactance
data. The result of coil insulation degradation monitoring based on resonant frequency is
shown in Figure 11. The fluctuation of the resonant frequency from the healthy cycle to the
five consecutive degradation cycles is minimal, and the amplitude change from the sixth
degradation cycle to the final short-circuit fault cycle is significant.

Entropy 2023, 25, x FOR PEER REVIEW 11 of 18 
 

 

types of data, ultimately improving the accuracy of the analysis. The Box-Cox transfor-

mation can be used to transform variables with positive values that do not obey the nor-

mal distribution into variables that obey the normal distribution [30,31]. The assessment 

result of the transformed MTS is shown in Figure 10. 

 

Figure 10. The result of coil insulation degradation monitoring based on transformed MTS. 

3.1.3. Experiment Results Analysis of the Existing Methods 

The resonant frequency-based method and Spearman correlation spectrum-based 

method are two existing classical impedance analysis techniques for insulation degrada-

tion monitoring. Therefore, coil impedance data obtained during the accelerating test is 

also analyzed by these two methods for comparison purpose. Wangkai et al. [32] found 

that the resonant frequency is influenced by the parasitic capacitance through computa-

tional analysis and can track the insulation degradation process of electromagnetic coils. 

In this paper, the resonant frequency of the whole life cycle is calculated by using reac-

tance data. The result of coil insulation degradation monitoring based on resonant fre-

quency is shown in Figure 11. The fluctuation of the resonant frequency from the healthy 

cycle to the five consecutive degradation cycles is minimal, and the amplitude change 

from the sixth degradation cycle to the final short-circuit fault cycle is significant. 

 

Figure 11. The result of coil insulation degradation monitoring based on resonant frequency. 

Jameson N J et al. [19] used the Spearman correlation coefficient to find the frequency 

more relevant to the degradation process. The sensitive characteristics obtained by Spear-

man correlation coefficient are used to describe the degradation trend of the electromag-

netic coil in this section. Figure 12 shows the reactance curve at the optimal frequency 

based on Spearman correlation coefficient. With the gradual aging of the coil, the reactance 

Figure 11. The result of coil insulation degradation monitoring based on resonant frequency.

Jameson N J et al. [19] used the Spearman correlation coefficient to find the frequency
more relevant to the degradation process. The sensitive characteristics obtained by Spear-
man correlation coefficient are used to describe the degradation trend of the electromagnetic
coil in this section. Figure 12 shows the reactance curve at the optimal frequency based
on Spearman correlation coefficient. With the gradual aging of the coil, the reactance
characteristics at the frequency closely associated with the aging cycle show a monotonous
upward trend.
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3.2. Twisted Pair Accelerated Test and Obtainment of Actual Turn Insulation Status

To find a benchmark that can represent the actual insulation health status of electro-
magnetic coils, a twisted pair accelerated fatigue test is designed to measure the break-
down voltage, which is a physical indicator that can truly reflect the degradation state of
electromagnetic coils. To address the problem that it is difficult to measure the internal
temperature of the transformer during the practical industrial applications, the relevant
conditions of the accelerated aging test of the transformer are entered into the finite element
simulation software for thermal simulation, and the temperature field distribution inside
the transformer is obtained in this paper. The highest temperature inside the transformer
is selected as the aging temperature of the twisted pair. The twisted pair samples are
placed in a constant temperature aging chamber for accelerated fatigue testing, and then
the breakdown voltage is measured.

The simulation process is as follows:

1. Utilizing Catiav5R21, construct the geometric model of the transformer with con-
sideration of its symmetry in the xyz direction. Only one-eighth of the transformer
without symmetry is reserved for actual simulation to reduce unnecessary calcula-
tions. The geometric model should consist of the core, the core skeleton, the primary
and secondary coils, as well as the insulation paper between them.

2. Import the Catia 3D model into the ANSYS ICEM for meshing. Repair the geometric
model first, block the components of the model, and then execute the corresponding
mapping. Next, divide the model using a hexahedral mesh, and export the mesh file
to prepare for the subsequent thermal simulation.

3. Utilizing the Fluent module of Ansys, execute a thermal simulation on the model.
Import the mesh file into the Fluent module of Ansys, and employ Fluent’s workflow
to establish the physical properties of the material, including the thermal conductivity
of each part. Among them, the coil and core are established to be anisotropic, the
axis direction of the transformer coil skeleton is defined as Z direction, the thermal
conductivity of this direction is 1.15 W/(m·K), the thermal conductivity of the coil
in the X and Y directions is 230 W/(m·K). Additionally, set the boundary conditions,
such as convection heat dissipation of the core and coil, as well as the ambient temper-
ature, where the heat transfer coefficient is defined as 12 W/(m2·K) and the ambient
temperature is 80 ◦C. Finally, conduct the simulation under a 90 W overload condition.

4. Analyze the results of the simulation. Based on the temperature distribution cloud of
the model, identify the global maximum temperature and its location. The tempera-
ture field distribution is depicted in Figure 13, revealing that the highest temperature
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of 230 ◦C is located on the extension end of the transformer, where the intersection
point of the primary and secondary coils can be found.
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Figure 13. Transformer thermal simulation results.

The twisted pair samples were subjected to thermal aging tests according to the IEC
60851-5 standard [15], as shown in Figure 14, with an aging temperature of 230 ◦C. After
each aging cycle, 10 randomly selected specimens were used to measure the breakdown
voltage at 50 Hz using the insulation withstand voltage tester HIOKI 3153, as shown in
Figure 15. The mean value of the breakdown voltage for six thermal cycles (8 h each at
230 ◦C) is shown in Figure 16. During the gradual aging process of the twisted pair, the
breakdown voltage gradually decreases.
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3.3. Performance Analysis and Threshold Setting of the DSHI-Based Method
3.3.1. Comparison Analysis of DSHI-Based Method with Existing Techniques

To compare the performance of DSHI-based precise insulation degradation monitoring
method and the existing techniques, the breakdown voltage, the DSHI-based method
(transformed MTS-based method), Spearman correlation coefficient-based method and
resonance frequency-based method are normalized to obtain the degradation process of
the whole life cycle of electromagnetic coils in the [0,1] interval, as shown in Figure 17.
To quantify the degradation monitoring results, the indicator of degradation monitoring
accuracy is defined, as shown in (9).

δ = 1− 1
N

N

∑
i=1

|yi − yi|
yi

× 100% (9)

where δ represents the trend prediction accuracy of the degradation monitoring method, yi
represents the value of the degradation monitoring method in the i-th cycle after normal-
ization, yi represents the value of the benchmark in the i-th cycle after normalization, and
N represents the total number of cycles, i = 1, 2, . . . N.
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Taking breakdown voltage as a benchmark, the degradation monitoring accuracy of
the DSHI-based method, Spearman correlation coefficient-based method and resonant
frequency-based method relative to the breakdown voltage is calculated. The calculation
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results show that the degradation monitoring accuracy of the DSHI-based method is 89.48%,
which is 42.84% higher than that of resonant frequency-based method and 39.69% higher
than that of Spearman correlation coefficient-based method. Therefore, the DSHI-based
precise insulation degradation monitoring method has a higher accuracy than the existing
mainstream methods.

3.3.2. Threshold Setting of DSHI-Based Method

Setting the failure threshold properly for a health indicator is of great significance for
degradation monitoring and predictive maintenance, because when the health indicator
crosses its threshold, the coil should be replaced. Therefore, this section discusses the
threshold setting for the DSHI-based precise insulation degradation monitoring method.
Considering that MTS is determined as the DSHI in the experiment, the 3σ statistical
approach is selected to set the threshold. 3σ is a commonly used method for anomaly
detection. It considers the variability of the data and provides a more robust threshold for
anomaly detection. According to the 3σ rule, the probability that the samples satisfying
the normal distribution are distributed in [0.1] is 99.7%; then, the fault threshold is set as
µ + 3σ, where µ is the mean and σ is the standard deviation. The samples that exceed the
fault threshold threshold f ault are unhealthy samples.

Breakdown voltage measurement values during the accelerated test is used to verify
the effectiveness of the DSHI threshold setting. Considering that as the breakdown volt-
age measured gradually approaches the rated voltage, the insulation failure probability
increases accordingly, insulation failure probability model is defined as (10).

p(t) = 1− exp
(
−BVmeasure(t)− BVhealth

Vrated − BVhealth

)3

(10)

where p(t) is the insulation failure probability, BVmeasure(t) denotes the breakdown voltage
measured at the t-th aging cycle, and Vrated denotes the rated voltage. BVhealth denotes the
breakdown voltage of healthy coils. In detail, the measured breakdown voltage values
are shown in Figure 16, where the breakdown voltage value BVhealth in the healthy state is
620 V, and the Vrated in this test is 220 V.

The insulation probability calculation results during the accelerated test are shown in
Table 3. According to the experiment results mentioned in Figure 16, the coil failed in the
seventh cycle, while the probability by Equation (10) is 89.46%, which verified the proposed
insulation failure probability model based on breakdown voltage. Further, the threshold
of insulation failure probability model based on breakdown voltage is defined as 85% in
this paper.

Table 3. Coil insulation failure probability for the whole life cycle.

Cycle 1 2 3 4 5 6 7

p(t) 0 52.76% 65.01% 72.06% 75.95% 80.8% 89.46%

Figure 18 shows the evolution trend comparison for DSHI, and the insulation failure
probability calculated by (10), where the red solid line indicates the DSHI, and the black
solid line indicates insulation failure probability model based on breakdown voltage. The
red dashed line is the threshold for DSHI, and the black dashed line indicates the threshold
for insulation failure probability model based on breakdown voltage. Both agree that
the coil under test should be replaced after the sixth aging cycle, which proves that the
threshold setting method of the DSHI is effective.
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4. Conclusions

Insulation degradation monitoring plays an important role in avoiding the unexpected
shutdown of electrical equipment, especially in safety-critical domains. This paper pro-
posed an insulation degradation monitoring method by exploring the macroscopic and
microscopic effects of coil thermal aging. At the macro level, an evaluation index based
on a weighted linear combination of trend, monotonicity and robustness is proposed to
construct DSHI based on the coil high-frequency response parameters during the whole
life cycle. The simultaneous development of coil FEA and twisted pair accelerated tests
are performed at the micro level. Comparison analysis of macro and micro results shows
that the degradation monitoring accuracy of the DSHI-based method is 89.48%, which is
higher than mainstream insulation degradation methods, like the resonant frequency-based
method and Spearman correlation coefficient-based method. Further, a breakdown voltage-
based insulation failure probability model is defined to verify the threshold setting of the
DSHI-based method. The proposed method supports the development of a coil insulation
health assessment model that enables electrical equipment condition-based maintenance.
Considering that the effect of temperature on high-frequency response parameters mea-
surement is not considered in this paper, in the future research, a high-frequency response
parameter mapping model at different measurement temperatures will be developed to
improve the robustness of the proposed method.
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