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Abstract: A vehicular network embodies a specialized variant of wireless network systems, char-
acterized by its capability to facilitate inter-vehicular communication and connectivity with the
encompassing infrastructure. With the rapid development of wireless communication technology,
high-speed and reliable communication has become increasingly important in vehicular networks.
It has been demonstrated that orthogonal time frequency space (OTFS) modulation proves ef-
fective in addressing the challenges posed by high-mobility environments, as it transforms the
time-varying channels into the delay-Doppler domain. Motivated by this, in this paper, we focus
on the theme of integrated sensing and communication (ISAC)-assisted OTFS receiver design,
which aims to perform sensing channel estimation and communication symbol detection. Specif-
ically, the estimation of the sensing channel is accomplished through the utilization of a deep
residual denoising network (DRDN), while the communication symbol detection is performed by
orthogonal approximate message passing (OAMP) processing. The numerical results demonstrate
that the proposed ISAC system exhibits superior performance and robustness compared to tra-
ditional methods, with a lower complexity as well. The proposed system has great potential for
future applications in wireless communication systems, especially in challenging scenarios with
high mobility and interference.

Keywords: integrated sensing and communication (ISAC); orthogonal time frequency space (OTFS);
deep learning; message passing (MP); joint channel estimation and symbol detection

1. Introduction

A vehicular network is a type of wireless network that connects vehicles to each
other and to the infrastructure around them. It constitutes a paramount technologi-
cal substrate for intelligent transportation systems (ITS), smart urban environments,
and autonomous vehicular navigation systems [1]. Vehicular networks furnish a com-
prehensive spectrum of onboard data utilities, encompassing enhanced road safety
measures, uninterrupted navigational support, sophisticated traffic management, op-
timized driving comfort, and integrated infotainment provisions [2]. These networks
operate as mobile ad hoc networks (MANETs) and employ various technologies such
as Wi-Fi, Bluetooth, and dedicated short-range communications (DSRC) to facilitate
communication among vehicles, roadside units (RSUs), traffic lights, and other entities.
Meanwhile, it has gained extensive usage in providing real-time traffic information,
navigation assistance, and entertainment services to drivers and passengers, as well as
in monitoring traffic conditions and detecting accidents [3,4]. In addition to efficient
communication, vehicular networks also require highly accurate sensing capabilities,
typically achieved through radar systems. The ability to accurately sense both the spatial
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positioning and velocity of vehicles is a critical requirement for effectuating collision
avoidance and empowering viable real-time vehicular safety applications. To address
this requirement, integrated sensing and communication (ISAC) technology has been
applied [5]. By incorporating ISAC technology into the vehicular network, vehicles are
capable of simultaneously performing communication and sensing tasks. Furthermore,
the sharing of hardware architecture between the sensing and communication systems
enabled by ISAC technology significantly reduces hardware deployment costs, a highly
advantageous feature in the context of vehicular networks [6].

Recently, orthogonal time frequency space (OTFS) modulation has been gaining
attention due to its ability to provide more reliable communications than OFDM, espe-
cially in high-mobility environments [7]. Contrary to its OFDM-based ISAC counterpart,
the OTFS-aided ISAC system harmoniously integrates the transmission of signals and
the respective channel responses within a singular domain for both functionalities,
concurrently displaying robustness against delay and Doppler spreads [8]. Moreover,
the RSU has the capability to harness the OTFS-ISAC signals to disseminate downlink
information to vehicles and concurrently infer their sensor data predicated on the reflec-
tive echoes. As such, the OTFS has recently attracted considerable interest as a viable
alternative for ISAC systems [5,9–11].

As mentioned above, the sensing information of the environment can be obtained
from the OTFS channel matrix without additional signaling costs. Accordingly, it is
essential for the RSU and users to estimate channel information with low latency accu-
rately. The authors in [12] proposed a message passing algorithm (MPA)-based channel
estimation based on the hidden Markov model, which effectively addressed the effects
of fractional Doppler for OTFS systems. For the purpose of radar sensing, Ref. [13]
proposed a two-dimensional (2D) correlation-based algorithm for OTFS sensing, which
overcame the channel estimation in the DD domain and enhanced the estimation accu-
racy. Furthermore, an off-grid channel estimation method was adopted for estimating
effective channel response in the DD domain, which facilitated a reduction in estimation
accuracy degradation associated with fractional Doppler. In some intricate scenarios
such as underwater acoustic communication with a t-distribution noise, model-based ap-
proaches may fall short in addressing channel estimation. Due to the robust data-driven
capabilities of deep learning, it is frequently employed to tackle previously intractable
issues [14–16]. For instance, the authors in [15] employed a deep residual convolution
neural network to deal with noise in RIS channels. In [16], the authors leveraged rein-
forcement learning to address MIMO channel estimation, addressing the computational
complexity of algorithms and the time-varying nature of the channel. Inspired by the suc-
cessful application of deep learning, we employed an innovative neural-network-based
technique for OTFS channel estimation.

The rigorous exploitation of the time–frequency diversity facilitated by the wireless
channel, associated with the OTFS modulation, generally necessitates a higher level of
detection complexity compared to its conventional counterpart, the OFDM modulation.
This amplified complexity arises from the distinctiveness of the delay-Doppler (DD)
domain channel. In this context, the intercepted signal could be interpreted as an overlay
of transmitted signals, each being power-diminished, phase-altered, and subjected to
both delay and Doppler shifts, relative to each discernible path of the wireless channel.
In order to confront this complexity escalation, a widely accepted solution is the imple-
mentation of a message-passing algorithm (MPA) for OTFS detection. Nevertheless, this
algorithm may impose significant computational demands. To decrease the detection
complexity, a Gaussian approximation technique has been introduced to address the
intersymbol interference (ISI) in the DD domain [17]. Recently, a novel extension to the
maximum a posterior (MAP), termed the hybrid MAP and parallel interference cancella-
tion (PIC) detection, has been proposed [18]. In this innovative solution, the Gaussian
approximation is selectively applied to portions of the DD domain ISI, based on the
corresponding path attenuation levels. In a further initiative to streamline receiver com-
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plexity, a variational Bayes (VB) methodology was proposed as a surrogate to the optimal
MAP detection [19]. Moreover, [20] introduced low-complexity detectors, capable of
achieving commendable error rate performance by leveraging the block-diagonal char-
acteristic of the time-domain effective channel matrix, using an SVD-based orthogonal
linear estimator.

In this paper, we design a novel joint channel estimation and symbol detection frame-
work for the OTFS-aided ISAC in uplink communications to reduce the signaling overhead,
focusing on the dual tasks of channel estimation and symbol detection within vehicular
networks. The RSU can leverage the OTFS-ISAC signals to garner estimates of temporal de-
lays, Doppler shifts, and angles related to vehicles encompassed within its communication
sphere. Specifically, for channel estimation, a deep neural network (DNN)-based estimator
is employed to achieve accurate and robust channel estimation for some complex scenarios
where the noise cannot be solved by model-based methods. On the other hand, we adopt a
low-complexity algorithm named orthogonal approximate message passing (OAMP) for
the symbol detection. To the best of our knowledge, this is the first joint channel estima-
tion and detection scheme based on deep learning designed for uplink communication in
OTFS-assisted ISAC scenarios. To further illustrate our work, the contributions are listed
as follows:

• We propose an integrated OTFS-ISAC system that leverages a novel deep residual
denoising network and OAMP algorithm for joint channel estimation and symbol
detection. Specifically, we design a DNN-based denoising module, incorporating
an element-by-element subtraction operation that concurrently exploits the spatial
attributes of noise-infected channel matrices as well as the additive character of the
perturbation. In addition, a subnetwork that can generate thresholds is utilized to
eliminate irrelevant features, thereby enhancing the estimation accuracy.

• We employ the OAMP detector to carry out the OTFS symbol detection, as it has the
potential for MMSE optimality and exhibits excellent detection performance.

• We demonstrate the effectiveness of the proposed system through simulations and
compare its performance with traditional communication systems. The proposed sys-
tem shows superior performance in challenging environments such as a high Doppler
frequency and delay spread, making it a promising solution for future wireless com-
munication systems.

The subsequent sections of this paper are structured as follows. In Section 2, the sys-
tem model is presented, encompassing the OTFS modulation, the communication model,
and the sensing model. In Section 3, the ISAC-based OTFS transmitter design is presented.
Section 4 summarizes the experimental results, and Section 5 concludes the paper.

2. System Model

As depicted in Figure 1, we consider a classical vehicular network where a roadside
unit (RSU) is employed to serve P vehicles. In particular, the RSU is equipped with a
uniform linear array (ULA) consisting of Nt transmit antennas and a separate ULA with
Nr receive antennas. Assuming there is a sufficient distance between the transmit and
receive arrays, the echoes will not interfere with the downlink communication. In addition,
the ULAs of the RSU are positioned parallel to the road, resulting in identical angle-of-
arrival (AoA) and angle-of-departure (AoD) values for each ULA. We then model the
vehicles as point targets and assume that each vehicle is equipped with a single antenna
for communicating with the RSU. In the following, we present the signal models of OTFS-
assisted ISAC systems.
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…

Figure 1. The ISAC-OTFS vehicular network.

2.1. The Modulation of OTFS Signal

The system diagram of the OTFS modulation is presented in Figure 2. Let us de-
note M and N as the number of subcarriers and the number of time slots for each OTFS
frame, respectively. The NM information symbols are taken from a modulation alphabet
A = {a1, · · · , aQ} comprising Q elements. Then, these symbols are arranged in a 2D matrix
X ∈ CN×M with entries X[k, l], where k ∈ {0, 1, · · · , N − 1} and l ∈ {0, 1, · · · , M − 1},
respectively. The transmitter proceeds to map the DD domain symbols X[k, l] to NM sam-
ples Xtf on the time-frequency grid by using the inverse symplectic fast Fourier transform
(ISFFT), which is expressed as

Xtf[n, m] =
1

MN

N−1

∑
k=0

M−1

∑
l=0

X[k, l]ej2π( nk
N −

ml
M ), (1)

where n ∈ {0, 1, · · · , N − 1}, m ∈ {0, 1, · · · , M − 1}, and Xtf is the transmitted samples
matrix in the time–frequency domain. Based on the TF domain transmitted symbols,
we can adopt the conventional OFDM modulator to convert the 2D samples Xtf into a
continuous-time waveform x(t) with the aid of a transmit waveform gtx(t) given by

x(t) =
N−1

∑
n=0

M−1

∑
m=0

Xtf[n, m]gtx(t− nT)ej2πm∆ f (t−nT), (2)

where ∆ f represents the frequency spacing between any adjacent subcarriers. Note that
Equation (2) is the Heisenberg transform in Figure 2, and the Winger transform is the inverse
transformation of the Heisenberg transform [21]. By utilizing OTFS signals, communication
and sensing can be enhanced more efficiently without requiring additional hardware
devices and signal processing.

ISFFT
Heisenberg 
Transform

Channel
( , )h  

Winger 
Transform

SFFT
[ , ]k lX tf [n, ]mX ( )ts ( )tr tf [ , ]n mY [ , ]k ly

Delay-Doppler Domain

Time-Frequency Domain

Figure 2. OTFS modulation.
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2.2. Communication Signal

During the downlink transmission phase, the RSU can utilize an antenna array for
creating either a wide beam or an omnidirectional signal, which enables the detection of all
relevant targets within the range. During the tracking mode, the RSU can generate multiple
beams to facilitate information transmission and target tracking. The multibeam signal
with a beamforming matrix W ∈ CNt×P can be expressed as

x̃(t) = Wx(t), (3)

where x(t) = [x1(t), · · · , xP(t)] is the transmitted signal to all targets. The ith column of W

is denoted as wi =
√

pi
Nt

aNt
(
θ̃i
)
, fulfilling both power allocation and directional steering

functions. Specifically, the term pi represents the power allocation factor for the ith column
of W, and the column vector aNt(θ̃i) represents the steering vector pointing to the desired
direction θi, which is given by

aNt(θi) =
[
1, ejπ sin θi , . . . , ej(Nt−1)π sin θi

]T
. (4)

Thanks to the asymptotic orthogonality of the massive antenna array, the ith target’s com-
munication channel is predominantly line-of-sight (LoS) after transmitting the beamformer,
which is expressed as

Ci
DD(τ, ν) = hiaNu(θi)aH

Nt
(θi)δ(τ − τi)δ(ν− νi), (5)

where hi =
√

c
4π fcd2

i
represents the channel gain. Here, the term c represents the signal

propagation speed, fc is the carrier frequency, di is the range distance to the ith target, and
τi and νi represent the delay and Doppler shift, respectively. The received signal can be
written as

yi(t) = hiuH
i aNu(θi)aH

Nt
(θi)wixi(t− τi)ej2πνi(t−τi) + zi(t), (6)

where ui ∈ CNu×1 represents the received beamformer, and zi(t) denotes the noise signal in
the time domain. With a received pulse shaping filter grx(t), the expression for the received
OTFS signal in the DD domain can be obtained by the Winger transform and the symplectic
Fourier transform (SFFT), i.e.,

Y[l, k] = hiuiHaNu(θi)aH
Nt
(θi)fiX[(l − li)M, (k− ki)N ] + Z[l, k], (7)

where the integers ki = νi NT and li = τi M∆ f , and Z[l, k] denotes the independent white
Gaussian noise sample with a power spectral density of N0.

2.3. Sensing Signal

In the downlink transmission, the information about the environment can be acquired
from the OTFS channel matrix, which is given by

H(t, τ) =
K

∑
i=1

γiaNr (θi)aH
Nt
(θi)δ(τ − ηi)ej2πvit, (8)

where γi, ηi, and νi represent the reflected coefficient, delay, and Doppler shift correspond-
ing to the ith target, respectively. The received sensing echoes at the RSU can then be
expressed as:

r(t) =
K

∑
i=1

γiaNr (θi)aH
Nt
(θi)x̃(t− ηi)ej2πvit + n(t), (9)
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where n(t) denotes the additional measurement noise. Recall that the steering vectors
with different angular values are asymptotically orthogonal for massive MIMO receive
antenna arrays [8], i.e., aH

Nr
(θi)aNr(θi0) ≈ 0 for θi 6= θi0. This implies that we can omit the

interference resulted from different targets in the sensing echoes and the RSU is capable
of differentiating various targets based on their angles of arrival (AoAs). Therefore, one
can extract the sensing echo from the ith target from r(t) using a receive beamformer
bi = aH

Nr
(θ̃i), which can be written as:

ri(t) = γibH
i aNr (θi)aH

Nt
(θi)fisi(t− ηi)ej2πvit + n(t). (10)

It is noteworthy that the angular parameter θi can also be inferred when processing the
receive beamformer by comparing the gains obtained from different beam directions.
Therefore, Equation (9) can be recast as:

ri(t) = Gaxi(t− ηi)ej2πvit + ni(t), (11)

where Ga denotes the composite antenna array gain. As a step forward, by means of an ideal
receive filter and operating OTFS demodulation, we have the input–output relationship in
the DD domain given by:

R[l, k] = Ga

N−1

∑
k′=0

M−1

∑
l′=0

H
[
l′, k′

]
· X
[(

l − l′
)

M,
(
k− k′

)
N

]
+ n[l, k], (12)

where H[l′, k′] represents the gain of the ith target at the DD grid (bin) with indices l0 and
k0 corresponding to the delay of l′

M∆ f and Doppler of k′
NT .

2.4. JCESD for OTFS-Based Vehicular Networks

In this subsection, we first present the OTFS-based ISAC system framework as il-
lustrated in Figure 3. At a time slot, the users receive the y(t) from the RSU via beam
assignment, while the RSU receives the reflected signal r(t) from the vehicles. Given the
received echo, the RSU performs OTFS demodulation to obtain the DD domain signal
R(l, k) as that establishes high-quality communication service quality, and the RSU needs
to obtain information about the vehicles’ azimuth angles. As mentioned before, the vehicle
status information can be acquired from the outcomes of the OTFS channel estimation
CDD(τ, ν), thus the RSU is capable of utilizing its antenna arrays to create “pencil-like”
beams, enabling a precise alignment with user locations. On the other hand, based on
the received signal, users estimate the channel matrix, containing sensing information
about the surrounding environment. More importantly, the receiver must accurately and
efficiently demodulate symbol information based on the channel information. For this
purpose, a low-complexity OAMP detection technique is employed.

OAMP Detection
OTFS 

Demodulation
DL-based Channel 

Estimation

Sensing for 
Environment

Communication

( )y t ( , )Y l k

( , )X l k( , )DDC  

( )r t ( , )R l k

( , )H  

( , )DDC  

Received signal for users

Echo for the RSU

Figure 3. JCESD for OTFS-Based vehicular networks.

3. The Joint Channel Estimation and Symbol Detection

To ensure precise CSI for sensing and communication, we introduce a deep learning
(DL)-based framework for the OTFS-assisted ISAC system, as illustrated in Figure 4. In this
section, we first present an embedded pilot-aided scheme, which involves incorporating
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pilot symbols into the transmitted symbol matrix to facilitate the preprocessing of the
channel estimation. Next, we convert the OTFS channel estimation problem into an issue
about sparse image denoising. In particular, we utilize a DL-based framework for accurate
channel estimation. Finally, upon acquiring the precise OTFS channel matrix, the RSU
performs the OAMP detection to demodulate symbols effectively.

OAMP Detection

Radar Parameters 
Estimation

Extract
& Energy Normalization Deconvolution 

&  Expansion
DNN

Input Output

Received symbol Recovered Channel

Target or User

Figure 4. The framework for JCESD.

3.1. Pilot Placement

Pilot symbols can be inserted into the transmitted signal to aid the channel estimation,
which is applicable in the OTFS-assisted ISAC system, as shown in Figure 5. In this
paper, we consider the case of integer delay and Doppler frequencies. Let xp = Xdd[lp, kp]
represent the pilot symbol.

pk

Nk

0 0( , )k l Mlpl

pk

Nk

0 0( , )k l Mlpl

pk

Nk

0 0( , )k l Mlpl

PilotData Symbol Guard Symbol Data Symbol Guard SymbolTarget or User Zero

maxk

maxk

maxk

maxk

maxl
maxl maxl

maxlmaxl

maxk

(b) Transmitted Symbol (c) Received Symbol(a) Channel Information

Target or User

Figure 5. The embedded pilot scheme.

The entries of the DD domain matrix satisfy [22]

Xdd[l, k] =


xp l = lp, k = kp,
0 l ∈ [lp − lmax, lp + lmax],

k ∈ [kp − 2kmax, kp + 2kmax],
data symbol otherwise.

, (13)

where lmax and kmax denote the spacing between the data symbol and the pilot symbol,
which also corresponds to the maximum delay and Doppler shift of the target. Define Xd
and Xp as the data matrix and pilot matrix which satisfy

Xd[l, k] =


0 l ∈ [lp − lmax, lp + lmax]

k ∈ [kp − 2kmax, kp + 2kmax],
data symbol otherwise.

(14)
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and

Xp[l, k] =

{
xp l = lp, k = kp,
0 otherwise.

. (15)

Subsequently, Equation (7) can be reformulated as

Ydd[l, k] = Hdd[l, k]~ Xdd[l, k] + Zdd[l, k]

= Hdd[l, k]~
(
Xd[l, k] + Xp[l, k]

)
+ Zdd[l, k],

(16)

where ~ denotes the cyclic convolution operation. In order to obtain the CSI by using the
pilot symbol, we introduce a received pilot matrix Yp ∈ CM×N , which satisfies

Yp[l, k] = Hdd[l, k]~ Xp[l, k] + Zdd[l, k]. (17)

Since Xp is known by the RSU, and Yp can be obtained by setting some entries of Ydd to 0,
the channel estimation problem in the proposed framework can be formulated as a sparse
image denoising problem, represented by:

Yp = Hp + Zdd, (18)

where
Hp[l, k] = Hdd[l, k]~ Xp[l, k]. (19)

Here, the matrix Hp[l, k] incorporates the OTFS effective channel Hdd[l, k], where each
element is characterized by a Bernoulli–Gaussian distribution instead of a Gaussian PDF.
Consequently, employing a Bayesian general linear model is unfeasible for the data model,
e.g., a linear minimum mean square error (LMMSE). Moreover, the noise component Zdd is
not limited to a Gaussian distribution but can include arbitrary noise. As a result, obtaining
an explicit expression for a Bayesian estimator within the model-driven approach becomes
intractable. In contrast, we employ a data-driven approach to introduce convolutional
neural networks (CNNs)-based channel estimation framework for OTFS systems in the
subsequent section.

3.2. The Architecture of the DL Network

Note that CNNs possess a favorable capability to extract features from matrices
containing noisy observations. In addition, the subtraction architecture employed in
deep neural networks (DNNs) facilitates the exploration of the additive characteristics
of the noise [23,24]. Based on the CNNs and residual subtraction architecture [15], we
developed a deep residual denoising network (DRDN) to effectively learn and eliminate
the residual noise from received symbols while eliminating irrelevant features. Figure 6
illustrates the general structure of the DRDN. It comprises several components, including
an input transformation layer, D denoising blocks, and an adaptive soft threshold layer.
The hyperparameters associated with the DRDN are presented in Table 1. In the subsequent
sections, we provide an introduction to each layer of the network.

Y =

[ [
Yp<

][
Yp=

] ], H =

[ [
Hp<

][
Hp=

] ], (20)

where Y ∈ C2kmax×lmax×2 and H ∈ CM×N×2 are the real-valued received signals and the
channel coefficients, respectively. Here, subscripts< and= represent the real and imaginary
components of the input variable, respectively. Therefore, it is possible to devise an efficient
denoiser using a DRDN approach to enhance the OTFS channel estimation.
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NxNx2

…

Residual noise

Subtraction

…

Residual noise

Subtraction

Conv+BN+ReLU Conv+BN+ReLU
NxNx2



Sub-net

Figure 6. Architecture of DRDN.

Table 1. Hyperparameters of the DRDN.

Input layer: real-valued matrix with dimension 2kmax × lmax

Denoising Module: D denoising blocks share the same construction
Layers Operation Filter size

1 Conv + BN + ReLU 128× (3× 2× 2)
2~L− 1 Conv + BN + ReLU 128× (3× 2× 128)

3 Conv 2× (3× 2× 128)

Subnetwork: generate the threshold array
Module Name Operation Parameters

f1(·) Conv + BN + ReLU 32× (3× 2× 2)
f2(·) FC + BN + ReLU 2× 1× 1

Output layer: recovery channel matrix of size M× N × 2

Denoising Block: Convolutional Neural Networks (CNNs) are widely employed in
numerous DL applications [25,26] due to their remarkable feature extraction capabilities.
As illustrated in Figure 6, the proposed DRDN model follows a general architecture. The de-
noising performance is gradually enhanced by leveraging the D denoising blocks with
identical structures. Each denoising block comprises a residual subnetwork and an ele-
mentwise subtraction operation. The residual subnetwork consists of L layers that employ
three types of functions. In the first layer, the “Conv+BN+ReLU” composition is employed
to extract the spatial characteristics of the channel matrix. This composition involves
applying convolution (Conv) and rectified linear unit (ReLU) operations. Batch normal-
ization (BN) is incorporated between the Conv and ReLU operations to enhance network
stability and expedite training. The second composition, with L− 2 layers, employs the
same structure but employs a kernel size suitable for nonlinear transformations among the
features. The ultimate layer employs a solitary convolution operation to generate the noise
matrix for subsequent elementwise subtraction. Specifically, the denoised channel matrix is
obtained through the process of subtracting each element of the residual subnetwork from
the corresponding element of the original input.

TN = I−
D−1

∑
i=0

Si = I−
D−1

∑
i=0

fθi (Ii). (21)

Here, fθi , TN , and I denote the function of the ith DB, the output, and input of DB. The resid-
ual term, referred to as the residual noise, is denoted as Si.

DL-based threshold layer: At the last layer, a soft shrinkage function is designed to
represent the sparse features, which is inspired by sparse code in image denoising [27].
To choose an appropriate threshold, we designed an adaptive thresholding layer, where
the threshold is determined by a subnetwork. Figure 7 illustrates the proposed adap-
tive thresholding module, which begins by applying a nonlinear operation to the feature
map TN obtained from the denoising module. The subnet f1(·) is adopted to obtain
the coarse estimation λt. In particular, the global average pooling (GAP) is used to ac-
quire C× 1× 1 dimensional output. Subsequently, λt is propagated through a two-layer
fully connected network to calculate the scaling parameter α using the sigmoid function,
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i.e., α = sigmoid(λt). This scaling parameter α represents the threshold scaling factor,
which is used to compute the final threshold given by

λ = αλt (22)

The final channel estimation is performed by comparing each element in TN with the
threshold λ. If an element is greater than λ, it is retained; otherwise, it is set to 0, effectively
performing a filtering operation. Mathematically, it can be expressed as follows

η(λ, TN) = sign(TN)max{|TN | − λ, 0}, (23)

where η is the adaptive threshold filtering function, sign(·) denotes the sign function,
and its value is 1 when the value of x is greater than zero and −1 when it is less than 0.
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1( )f  2 ( )f Sub-net

Figure 7. The subnet for the adaptive threshold.

Output layer: At the end of the neural network, the effective area Ỹp ∈ C2kmax×lmax

needs to be converted to complete channel matrix Hdd ∈ CM×N , and is then applied to the
sensing and communication. In summary, this paper introduces the DRDN architecture in
channel estimation to improve the denoising performance. The architecture incorporates D
denoising blocks, which systematically eliminate complex noise in unmodeled scenarios.
Additionally, a DL-based soft shrinkage operation is employed to accurately determine the
delay and Doppler parameters, which in turn facilitate effective target sensing and OTFS
symbol detection.

3.3. Estimation of Neural Network

Utilizing the DRDN architecture as a foundation, we subsequently develop a channel
estimation scheme which comprises two distinct phases: offline training and online estimation.

Offline training: In the offline training phase, a large quantity of data are used to train
the network, eventually resulting in a trained model. The training data are denoted by

(Ỹ ,H) =
{(

Ỹ(1), H(1)
)

, · · · ,
(

Ỹ(N), H(N)
)}

, (24)

where
(

Ỹ(i), H(i)
)

, i ∈ {1, 2, . . . N}, is the ith training example of (Ỹ ,H). Moreover,

Ỹ(i) ∈ C2kmax×lmax , H(i) ∈ C2kmax×lmax are the input of the DRDN and the label. According
to the mean square error (MSE) criterion, the cost function of the offline training phase can
be formulated as

JMSE(θ) =
1
N

N

∑
i=1

∥∥ fθ(Ỹi)−Hi
∥∥

2. (25)

Based on this formulation, the DRDN model can utilize the backpropagation (BP) algorithm
to achieve effective training. Specifically, the loss function is equivalent to the MMSE
estimator when N → ∞ [25]. That is, the performance of the DRDN estimator tends to
converge to the optimal estimator as the size of the training data increases sufficiently.

Online estimation: In the online estimation, the initial coarse channel estimation result,
denoted as Ỹtest, is obtained from the received symbols. Subsequently, the data are sent into
the DRDN estimator, and the process of online estimation can be represented as follows:

Hest = hθ( fθ(Ỹtest)), (26)
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where hθ denotes the hard-shrink operation. The developed channel estimation method
based on the DRDN is a universal approach that enhances system performance by achieving
superior channel estimation.

3.4. Communication Symbol Detection

In this section, we provide a brief introduction to the OAMP algorithm that we utilized
to perform the OTFS symbol detection in the ISAC system, where the estimated effective
channel matrix from the DRDN is utilized.

Now, let us develop the OTFS detection problem within the perspective of OAMP.
To the best of our knowledge, the OTFS system can be considered as a linear system under
a linear constraint Γ as well as a nonlinear constraint Φ, given by:

Linear constraint Γ : y = Ĥeffx + ñ, (27a)

Nonlinear constraint Φ : X[m, n] ∈ A, ∀m, n, (27b)

where Ĥeff ∈ CMN×MN is the estimated effective channel matrix, ñ represents the additive
white Gaussian noise with half power spectral density N0, and A is the constellation
alphabet (e.g., QPSK) with cardinality |A|. Our objective is to find the minimum mean
square error (MMSE) estimation of x, i.e.,

x̂ = E{x|y, Ĥeff, Γ, Φ}. (28)

The aforementioned problem can be solved by OAMP with the aid of an iterative method
that includes an orthogonal linear estimator (LE) γ and an orthogonal nonlinear estima-
tor (NLE) φ. We now invoke the OAMP following the standard procedures shown in
Ma et al. [28] as:

Orthogonal LE γ : x̂γ→φ = γ(x̄φ→γ), (29a)

Orthogonal NLE φ : x̄φ→γ = φ(x̂γ→φ). (29b)

The core of OAMP is that both the LE and NLE should be designed orthogonally [28].
Hence, the correlation problem, arising from the errors of the iterative process, can be
solved thanks to the orthogonality of LE and NLE. Furthermore, the orthogonality can
also make the iterative process gradually and steadily converge to the MMSE. It should be
noted that both the orthogonality LE and NLE hold if and only if the following constraints
are satisfied for iteration l ≥ 0:

E
{
(ξ

γ→φ
l )Hξ

φ→γ
l

}
= 0,

E
{
(ξ

φ→γ
l )Hξ

γ→φ
l+1

}
= 0,

(30)

where ξ
γ→φ
l and ξ

φ→γ
l represent the associated Gram–Schmidt (GS) errors, which are

written as

x̂γ→φ
l = α

γ→φ
l x + ξ

γ→φ
l , (31a)

x̄φ→γ
l = α

φ→γ
l x + ξ

φ→γ
l , (31b)

with α = 1
NE{x̂Tx} and E{xTξ} = 0. The optimal OAMP is then constructed for both LE

and NLE using the GS orthogonalization (GSO) given by:
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Orthogonal LE γ : x̂γ→φ
l = γ(x̄φ→γ

l )

= γ̂(x̄φ→γ
l )− Bγ̂x̄φ→γ

l ,

Orthogonal NLE φ : x̄φ→γ
l+1 = φ(x̂γ→φ

l )

= φ̂(x̂γ→φ
l )− Bφ̂x̂γ→φ

l ,

(32)

where γ̂ is a linear MMSE (LMMSE) estimator, φ̂ represents an MMSE detector, e.g., a
symbolwise constellation demapper, Bγ̂ and Bφ̂ denote the respective generalized signal
orthogonalization (GSO) coefficients. These coefficients are designed to fulfill the orthog-
onality conditions stated in Equation (30). For instance, the value of Bγ̂ for the LMMSE
estimator is expressed as

Bγ̂ = vγ̂/vx̄, (33)

where vγ̂ = 1
NE{‖γ̂(x̄φ→γ

l ) − x‖2} and vx̄ = 1
NE{‖ξφ→γ

l ‖2}. The computational com-
plexity of OAMP consists of the complexity of the orthogonal LE and orthogonal NLE,
where the orthogonal LE contains the LMMSE and orthogonalization operations, whose
complexities are O((MN)3) and O(MN), respectively, and the nonorthogonal NLE mainly
contains the constellation demapper and orthogonalization operations, both of which have
a complexity of O(MN). Hence, the overall complexity of OAMP is O((MN)3 + MN).

4. Simulation Result

In this section, we substantiate the efficiency of the proposed algorithm based on the
DRDN through a comprehensive analysis of simulation outcomes. We also provide details
of the simulation setups.

4.1. Simulation Setups

In this study, the OTFS frame was configured with the parameters N = 32 and M = 32,
indicating the presence of 32 time slots and 32 subcarriers in the time–frequency (TF)
domain, as [3]. According to [29], the carrier frequency can be set to 3 GHz, while the
subcarrier spacing was maintained at 7.5 kHz. To characterize the channel, we considered
a total number of paths denoted as P, which was set to six. Due to the limitation of the
size of the OTFS data frame, the maximum Doppler shift and maximum delay shift were
normalized and denoted by kmax = 4 and lmax = 5, respectively. The channel gain was
modeled by a complex Gaussian distribution with zero mean and a variance of 1

P [30].
Finally, we employed quadrature amplitude modulation (QAM) for efficient bit mapping in
our system. For the neural network training, we used the Monte Carlo method to generate
2× 104 samples. The learning rate was set as 0.01, the batch size was B = 256, and a weight
decay = 0.001 was adopted to deal with overfitting.

4.2. Sensing Channel Estimation

To evaluate the performance of the channel estimation, a comparison of the proposed
DL-based method with four baseline algorithms (i.e., the LS, the LMMSE, the orthogo-
nal match pursuit (OMP) [31], and the threshold-based method) was made. Note that
the threshold-based method is the optimal algorithm in scenarios with a Gaussian white
noise when the noise variance is known at the receiver [22]. In addition, the evaluation
metric employed was the normalized mean squared error (NMSE), which is defined as

NMSE = 10 log10
‖Ĥ−H‖2

2
‖H‖2

2
, where Ĥ and H are the estimated and ground truths, respectively.

As shown in Figure 8, we assessed the proposed methods in scenarios involving a
correlated noise [32] and a noise following a t-distribution [23], which are prevalent in
real-world settings. It can be observed that a performance gap exists between the LS
estimator and the LMMSE estimator, as seen in Figure 8a. This disparity arises because
the LS estimator treats the channel as an unknown constant with deterministically defined
attributes. In contrast, the LMMSE estimator involves the computation of the noise covari-
ance matrix, leading to a performance improvement of approximately 3 dB compared to
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the LS method in correlated-noise scenarios. The OMP method frequently employed in
compressed sensing algorithms outperforms both the LS and LMMSE algorithms, owing
to its consideration of the inherent sparsity within the recovery channel. Nevertheless,
the performance of this iterative algorithm experiences a significant degradation due to the
stringent convergence conditions and the influence of noise. In comparison to the previous
methods, the threshold-based methods perform better when the noise covariance is known
at the receiver. Under sparse channel conditions, most errors come from grid points other
than the main path. By setting an appropriate threshold, these noises can be effectively
removed, resulting in a better performance and robustness compared to the LS and LMMSE
methods. In comparison to the traditional LS, LMMSE, and threshold-based methods,
deep learning neural networks can more accurately estimate channel characteristics and
have a better robustness. By incorporating training into the network design, the absolute
value of the residual information can weaken the impact of the noise to a certain extent.
The proposed deep learning neural network outperforms existing threshold-based and
linear detection methods, improving the performance by approximately 8 dB compared to
the OMP method and approximately 2 dB compared to the threshold-based method. As
depicted in Figure 8a, in the scenario of a t-distribution noise, it is noticed that the proposed
DRDN demonstrates a significant enhancement in estimation performance, outperforming
all other considered algorithms. This is due to the inability of the model-based approach
to incorporate prior knowledge from the data. In contrast, the DRDN can substantially
enhance channel estimation performance due to its robust data-driven capability and the
incorporation of sparse prior information.
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Figure 8. NMSE comparisons with the proposed schemes and benchmarks with correlated noise (a)
and with t-distribution noise (b).

Figure 9 presents comparisons of the NMSE and BER achieved by the proposed
joint channel estimation and symbol detection scheme, as well as by several benchmarks,
including the LS, LMMSE, MP, and threshold-based methods. As illustrated in Figure 9,
both threshold-based methods and DNN-based methods have superior channel estimation
performance compared to traditional LS and LMMSE methods. Note that the LMMSE-
based method considers the variance of the noise, resulting in a performance approximately
5 dB higher than the LS method. In comparison with the threshold-based and LMMSE
methods, the DRDN method performs better, with a performance approximately 7 dB
higher than the OMP algorithm. In the Gaussian noise scenario, the threshold method is
the optimal solution when the noise level is ideally acquired at the receiver. In practice,
the DRDN has a higher adaptability and generalization ability in complex noise scenarios.
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The DRDN can accurately complete noise reduction tasks, effectively distinguishing the
main channel, and restore the channel.
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Figure 9. Joint channel estimation and symbol detection (a,b). (a) NMSE comparisons with the
proposed schemes and benchmarks with Gaussian noise. (b) BER comparisons with the proposed
schemes and benchmarks.

On the other hand, the results show that when the estimated channel information from
the DRDN is used as input, the proposed scheme achieves superior performance compared
to the other detectors. Specifically, the OAMP detector exhibits the best performance, while
the performance of the MP detector is close to that of OAMP. Furthermore, the results in
Figure 9 demonstrate the robustness of OAMP, which maintains good performance even at
lower SNR (Eb/N0) and with imperfect channel estimation. Overall, these findings confirm
the effectiveness of the proposed joint channel estimation and symbol detection scheme.

5. Conclusions

In this paper, we focused on the theme of ISAC-assisted OTFS receiver design, which
aims to perform channel estimation for sensing purposes and detect communication sym-
bols. In order to achieve an effective estimation of the channel, we proposed the utilization
of a novel DRDN within our framework. The DRDN was meticulously designed, incorpo-
rating a denoising block based on CNNs that encompassed an elementwise subtraction
structure. This unique architectural feature enabled the network to exploit both the spatial
characteristics of noisy channel matrices and the inherent additive properties of the noise
simultaneously. By capitalizing on the robust feature extraction and denoising capabilities
of CNNs, our proposed DRDN method showcased an exceptional accuracy in channel
estimation, surpassing alternative approaches in the field. The CNN-based channel estima-
tion approach for OTFS had a good potential with promising directions for future work,
including solving the fractional delay-Doppler cases and a novel network structure that
may require a smaller number of trainable parameters. For the OTFS symbol detection, we
utilized the OAMP detector, which had the potential for MMSE optimality and exhibited
excellent detection performance. Through simulations, we demonstrated the effectiveness
of the proposed system and compared its performance with traditional communication sys-
tems. The proposed system exhibited superior performance in challenging environments
such as a high Doppler frequency and delay spread, making it a promising solution for
future wireless communication systems.
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