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Abstract: We present the truncated Lindley-G (TLG) model, a novel class of probability distributions
with an additional shape parameter, by composing a unit distribution called the truncated Lindley
distribution with a parent distribution function G(x). The proposed model’s characteristics including
critical points, moments, generating function, quantile function, mean deviations, and entropy are
discussed. Also, we introduce a regression model based on the truncated Lindley–Weibull distribution
considering two systematic components. The model parameters are estimated using the maximum
likelihood method. In order to investigate the behavior of the estimators, some simulations are run
for various parameter settings, censoring percentages, and sample sizes. Four real datasets are used
to demonstrate the new model’s potential.
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1. Introduction

Suppose that G is a cumulative distribution function (cdf) that is defined on the real
line, several papers have proposed composing a unit distribution with G (a parent cdf) to
produce a new cdf. Eugene et al. (2002) [1] combined the cdf of the beta distribution with
G to create the Beta-G model with cdf

F(x) = IG(x)(a, b),

where Ix(a, b) =
∫ x

0 ta−1(1− t)b−1dt/B(a, b) is the regularized incomplete beta function.
Alexander et al. (2012) [2] and Nadarajah et al. (2014b) [3] generalized the Beta-G to the
generalized-Beta-G and the modified-Beta-G. Cordeiro and Castro (2011) [4] developed
the Kumaraswamy-G model by combining the Kumaraswamy cdf F(x) = 1− [(1− x)a]b,
x ∈ [0, 1] with the parent cdf G.

Based on a valid cdf, F(x) for x ∈ R, for any continuous distribution, we can construct
a unit distribution as a truncated version of F(x) with a cdf (monotonically increasing with
limx→0 F(x) = 0 and limx→1 F(x) = 1) given by

FUT(x) =
F(x)
F(1)

, x ∈ [0, 1], (1)
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The truncated-G (TG) model is constructed by composing this truncated version of
the cdf (or its associated survival function F̄(x)) with a parent cdf G (or its associated
survival function Ḡ(x)) to give the parent distribution additional modeling ability and
produce a new family of univariate distributions with cdfs (monotonically increasing with
limx→−∞ F(x) = 0 and limx→∞ F(x) = 1) given by

F1(x) = FUT(G(x)), x ∈ R, (2)

F2(x) = 1− FUT(1− G(x)), x ∈ R. (3)

A list of TG models are given in Table 1.

Table 1. Previous work on TG models.

Model Author(s) cdf

Poisson-G Ristic and Nadarajah (2013) [5] 1−e−a Gb (x)

1−e−a

Truncated-exponential skew-symmetric-G Nadarajah et al. (2014a) [6] 1−e−aG(x)

1−e−a

Truncated-Fréchet-G Abid and Abdulrazak (2017) [7] ea[1−G(x)−b]

Truncated inverted Kumaraswamy-G Bantan et al. (2019) [8] [1−(1+G(x))−a]
b

(1−2−a)b

Type II truncated Fréchet-G (truncated in-
verse Weibull-G)

Aldahlan et al. (2019) [9] 1− e1−(1−G(x))−a

Exponentiated truncated inverse Weibull-G Almarashi et al. (2020) [10] [1− e1−(1−G(x))−a
]b

Truncated Burr-G Jamal et al. (2020) [11] 1−[1+Gc(x)]−k

1−2−k

Truncated Muth-G Almarashi et al. (2021) [12] 1−e[α G(x)−(eαG(x)−1)/α]

1−e[α−(eα−1)/α]

Truncated generalized Fréchet-G ZeinEldin et al. (2021) [13]
1−[1−e−α/G(x)]

b

1−(1−e−α)b

Truncated inverse Lomax-G Algarni et al. (2021) [14] 1− 2α
[
1 + (1− G(x))−1]−α

Truncated Burr X-G Bantan et al. (2021) [15]

(
1−e−α2G2(x)

)θ

(1−e−α2 )θ

In this paper, we generate a new family of continuous distributions using a truncated
version of the Lindley distribution.

The new distribution is necessary and helpful because it provides an alternative option
for failure time analysis. While there are already numerous existing distributions available
for this purpose, having a new distribution adds to the range of choices researchers and
analysts have when analyzing failure times. The existing distributions may not always
adequately capture the characteristics or behavior of the data being analyzed. Different
distributions have different assumptions and properties, and no single distribution can fit
all scenarios perfectly. Therefore, having a new distribution can be beneficial in situations
where none of the existing options are suitable or provide a good fit to the data. Additionally,
the new distribution may offer advantages over existing ones in terms of interpretability,
flexibility, or computational efficiency. It could introduce novel features or modeling
capabilities that were previously unavailable with other distributions. This can lead to
improved accuracy and reliability in failure time analysis.

In summary, while there are already many distributions available for failure time
analysis, the introduction of a new distribution expands the options and possibilities for
researchers, allowing them to choose the most appropriate model for their specific data
and research objectives.

On the other hand, in several research areas (medical, engineering, biology, agronomy,
etc.), the failure times are affected by explanatory variables. In this paper, we propose a
regression model with censored observations, based on the truncated Lindley–Weibull
distribution, which is a feasible alternative for modeling failure time data. Also, different
simulation studies are presented to study the behavior of maximum likelihood estimation
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(MLE), as well as the residual analysis of the proposed regression model. The paper is
structured as follows: Section 2 describes the unit truncated Lindley distribution which
is the main component of the proposed new model. We discuss its properties, including
moments, mode, quantile function (qf), mean deviations, and generating function. Section 3
discusses the proposed TLG model (linear representation, properties, shapes of the TLG,
stochastic representation, truncated Lindley–Weibull (TLW) submodel and estimation
of the parameters using the maximum likelihood method). In Section 4, we propose
a regression model based on the TLW distribution and estimate its parameters using
maximum likelihood. Also, we perform some simulation studies for the TLW regression
model under different sample sizes and censoring proportions. The TLW regression model
application is illustrated by examining four real datasets in Section 5. Finally, Section 6
summarizes the result and presents the conclusions.

2. The Unit Truncated Lindley Model

Lindley (1958) [16] first described the Lindley distribution as a lifetime distribution
with one parameter. The probability density function (pdf) and the cdf are provided by

fL(x; θ) =
θ2

θ + 1
(1 + x)e−θx, x > 0, θ > 0, and

FL(x; θ) = 1−
(

1 +
θx

θ + 1

)
e−θx, x > 0, θ > 0,

respectively. We suggest a new unit distribution, the unit truncated Lindley (UTL) distribu-
tion, based on the cdf of the Lindley distribution, which is a truncated form of FL(x) with
the cdf and pdf provided by

FUTL(x) = Cθ

[
1 + θ − (1 + θ + θx) e−θ x

]
x ∈ [0, 1], θ 6= 0, (4)

fUTL(x) = θ2 Cθ(1 + x) e−θx x ∈ [0, 1], θ 6= 0, (5)

where Cθ = 1/(1 + θ − e−θ − 2θ e−θ) > 0.
The properties of the UTL model are given in Appendix A.

3. The Truncated Lindley-G Model

The Truncated Lindley-G (TLG) model is constructed by applying the TG composition
scheme (2) on the cdf of the UTL model given in Equation (4), i.e.,

FTLG(x) = FUTL(G(x)).

That is, the cdf and pdf of the TLG model are given by

FTLG(x) = Cθ

[
1 + θ − (1 + θ + θ G(x)) e−θ G(x)

]
, x ∈ R, θ 6= 0, (6)

and

fTLG(x) = θ2 Cθ g(x)[1 + G(x)] e−θG(x), x ∈ R, θ 6= 0, (7)

where Cθ = 1/(1 + θ − e−θ − 2θ e−θ).
The main reason for choosing the unit truncated form of the Lindley distribution is to

add a new parameter to the parent distribution to generate a new distribution. The prop-
erties of the generated distribution will need further investigation, as they are, generally,
different from those of the parent distribution.
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Following the expansion e−θG(x) = ∑n
i=0(−1)i[θG(x)]i/i!, the TLG cdf (6) has a linear

representation of the exponentiated-G (EG) cdf as

FTLG(x) = Cθ

{
1 + θ +

∞

∑
i=0

νi[(θ + 1)Hi(x) + θHi+1(x)]
}

. (8)

where Hj(x) = Gj(x) (for j = i, i + 1) is the EG cdf with power parameter j.
Differentiating (8) with respect to x, we obtain the linear representation of the TLG

pdf as follows:

fTLG(x) = Cθ

{ ∞

∑
i=0

νi[(θ + 1) hi(x) + θ hi+1(x)]
}

(9)

where νi = (−1)i+1θi/i!, hi(x) = i g(x) G(x)i−1 and hi+1(x) = (i + 1) g(x) G(x)i are the
EG densities with power parameters i and i + 1, respectively. On the basis of the linear
representation (9), some TLG models’ properties are similar to the EG properties reported in
several references, such as AL-Hussaini and Ehsanullah (2015) [17]. Henceforth, Yi denotes
that an rv has an EG distribution, with power parameter i and density hi(x).

3.1. Some Properties of the TLG Model
3.1.1. Critical Points

As FTLG(x) = FUTL(G(x)), we have fTLG(x) = g(x) fUTL(G(x)). Hence, the deriva-
tive of fTLG(x) is

f ′TLG(x) = g′(x) fUTL(G(x)) + g2(x) f ′UTL(G(x)).

Using the identities fUTL(y) = θ2Cθ(1 + y)e−θy and f ′UTL(y) = θ2Cθ [1− θ(1 + y)]e−θy, the
above identity is written as

f ′TLG(x) = θ2Cθe−θG(x){g′(x)(1 + G(x)) + g2(x)[1− θ(1 + G(x))]
}

.

Then, all critical points x0 of fTLG satisfy f ′TLG(x0) = 0, or equivalently,

[g′(x0)− θg2(x0)](1 + G(x0)) + g2(x0) = 0. (10)

Depending on the choice of the cdf G, the above equation can be reduced and its maximum
(modes) and minimum points characterized. For an example where the function G is
chosen to be the Weibull distribution, see Section 3.2.

3.1.2. Moments

Moments allow the examination of some of the distribution’s most significant features
and characteristics. The kth raw moment (for r = 1, 2, . . .) of the TLG model is

µ′k =
∫ ∞

−∞
xk fTLG(x) dx = θ2 Cθ

∫ ∞

−∞
xkg(x)[1 + G(x)] e−θG(x)dx

= θ2 Cθ

∫ 1

0
[QG(y)]

k[1 + y] e−θydy,

where QG is the qf associated with the parent cdf G.
Furthermore, the kth raw moment can be expressed from (9) using the moments of the

EG distribution as

µ′r = Cθ

{ ∞

∑
i=0

νi
[
(θ + 1) E(Yr

i ) + θ E(Yr
i+1)

]}
.
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3.1.3. Quantile Function

The qf is a highly desirable property in statistical distributions and is especially helpful
in the computation of several values in statistical modeling and inferences. By inverting
the cdf of the TLG distribution in (6), the qf for the TLG distribution can be expressed using
the qf associated with the parent cdf G as

QTLG(u) = QG

{
− 1− 1

θ
− 1

θ
W
[
(uC−1

θ − θ − 1)e−θ−1
]}

, u ∈ (0, 1) (11)

Therefore, X = QG(U) follows the TLG distribution with pdf (7) if U is a uniform variate
on the unit interval.

3.1.4. Mean Deviations

The following relationships can be used to describe, respectively, the mean deviations
of X about the mean µ = E(X) and the median M.

δ1 =
∫ ∞

−∞
|x− µ| fTLG(x) dx = 2µ F(µ)− 2Cθ

∞

∑
i=0

νi [(θ + 1) Ii(µ, 1) + θ Ii+1(µ, 1)], and

δ2 =
∫ ∞

−∞
|x−M| fTLG(x) dx = µ− 2Cθ

∞

∑
i=0

νi [(θ + 1) Ii(M, 1) + θ Ii+1(M, 1)],

where Ij(t, k) is the kth incomplete moment of the rv Yj that has an EG distribution with
power parameter j (i.e., Yj ∼ hj(x)).

3.1.5. Moment Generating Function

The mgf of X ∼ TLG can be expressed in an integral form as

MX(t) = E(etX) =
∫ ∞

−∞
etx fTLG(x)dx

= θ2 Cθ

∫ ∞

−∞
g(x)[1 + G(x)]e−[θG(x)−tx] dx

= θ2 Cθ

∫ 1

0
[1 + y]e−[θy−t QG(y)] dy.

Furthermore, it can be expressed using the mgf of the EG distribution as

MX(t) = Cθ

{ ∞

∑
i=0

νi[(θ + 1) Mi(t) + θ Mi+1(t)]
}

,

where Mj(t) is the mgf of an rv Yj that has an EG distribution with power parameter j
(Yj ∼ hj(x)).

3.1.6. Entropy

Entropy measures the change in the uncertainty in physical systems. The Shannon
and Rényi entropies are two well-known entropy measurements. Entropy values range
from very small to very large, with larger values indicating greater data uncertainty. In this
section, we derive the continuous Rényi and Shannon entropies of the TLG distribution.
The Rényi entropy, R(τ) where τ > 0, τ 6= 1 of the TLG distribution is given by

R(τ) =
1

1− τ
log

∫ ∞

−∞
f τ
TLG(x)dx =

1
1− τ

log
[

θ2τ Cτ
θ

∫ ∞

−∞
g(x)τ [1 + G(x)]τ e−r θ G(x)dx

]
.
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It follows from the expansions [1 + G(x)]r = ∑∞
j=0 (

r
j)G(x)j and e−r θG(x) = ∑n

i=0
(−1)i

i! [r θ G(x)]i

that

R(τ) =
1

1− τ
log

[
θ2τ Cτ

θ

τ

∑
j=0

n

∑
i=0

(
τ

j

)
(−1)i(τθ)i

i!

∫ ∞

−∞
g(x)τG(x)i+jdx

]
.

The Shannon entropy of the TLG distribution is given

S(τ) = −E[log fTLG(X)] = − log(θ2 Cθ)− E[log g(X)]− E[log(1 + G(X))] + θE[G(X)],

using the expansion

log[1 + G(x)] =
∞

∑
i=1

(−1)i+1

i
Gi(x),

we have

η = − log(θ2 Cθ) + ηG −
∞

∑
i=1

(−1)i+1

i
E[Gi(X)] + θE[G(X)],

where ηG is the Shannon entropy for the parent distribution. Since G(X) ∼ U(0, 1), then

η = − log(θ2 Cθ) + ηG −
∞

∑
i=1

(−1)i+1

i(i + 1)
+

θ

2
,

= − log(θ2 Cθ) + ηG + 1− 2 log 2 +
θ

2
.

3.2. Truncated Lindley–Weibull (TLW) Model

Consider the parent distribution is the Weibull distribution with shape parameter
k > 0, and scale parameter λ > 0, the cdf and pdf are given by

G(x) = G(x; k, λ) = 1− e−(x/λ)k
, and

g(x) = g(x; k, λ) =
k
λ

( x
λ

)k−1
e−(x/λ)k

, x > 0.
(12)

The cdf and pdf of the truncated Lindley–Weibull (TLW) model are given by

FTLW(x) = Cθ

{
1 + θ −

[
1 + θ + θ

(
1− e−(x/λ)k

)]
e−θ
(

1−e−(x/λ)k
)}

, x, k, λ > 0, θ 6= 0, and (13)

fTLW(x) =
k θ2 Cθ

λ

( x
λ

)k−1(
2− e−(x/λ)k

)
e−(x/λ)k−θ

(
1−e−(x/λ)k

)
, x, k, λ > 0, θ 6= 0, (14)

respectively, where Cθ is as in Equation (7). Note that

lim
x→0+

fTLW(x) =


∞, k < 1,

θ2Cθ

λ
, k = 1,

0, k > 1,

and lim
x→∞

fTLW(x) = 0. (15)

The TLW model’s pdf is shown in Figure 1 for various values of θ, k, and λ. Figure 1
illustrates how the TLW distribution’s density function is flexible and changes in shape
depending on the parameter values.
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Figure 1. The pdf of the TLW model.

3.2.1. Shapes of the TLW pdf

Considering G and g as given in (12), the Equation (10) of critical points is written as

0 = [g′(x0)− θg2(x0)](1 + G(x0)) + g2(x0) = [g′(x0)− θg2(x0)]
[
2− e−(x0/λ)k]

+ g2(x0).

As g′(x) = −g(x)
{

k[(x/λ)k − 1] + 1
}

/x, the above identity becomes

0 = −g(x0)

{
k[(x0/λ)k − 1] + 1

x0
+ θg(x0)

}[
2− e−(x0/λ)k]

+ g2(x0).

Since g(x) = (k/λ)(x/λ)k−1e−(x/λ)k
and g(x0) > 0 for each x0 > 0, the above identity is

equivalently written as

A(z0) = Bθ,k(z0), (16)

where for z0 = (x0/λ)k and θ 6= 0, we denote

A(z0) ≡ −z0e−z0 , Bθ,k(z0) ≡
2
θ

z0(1− e−z0)

2− e−z0
+ τ∗ and τ∗ ≡ 1

θ

(
1− k

k

)
.

A simple calculation shows that the function z0 7→ Bθ,k(z0) is increasing (respectively,
decreasing) when θ > 0 (respectively, θ < 0). Furthermore, notice that the function
z0 7→ A(z0) reaches the minimum value −1/e at z0 = 1. Using the graphs of the functions
A and Bθ,k, and varying the parameters θ and τ∗, we can find the points of intersection of
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both graphs. Therefore, we can compactly classify the number of roots of Equation (16), as
indicated in Table 2.

Table 2. Number of roots of equation A(z0) = Bθ,k(z0) in (16) when varying the parameters θ and τ∗.

l
l
l
l

θ

τ∗

6− 1
e > − 1

e ∧< 0 >0

>0 single root single root no root

<0 no root two roots single root

Based on Table 2, in what follows we divide our analysis into the following cases.

1. If θ > 0

(a) and τ∗ 6 −1/e, then k > 1 and, by Table 2, there is a single root, z0 = (x0/λ)k,
of Equation (16). That is, x0 = λz1/k

0 , with k > 1, is a single critical point
of fTLW . But, by (15), limx→0+ fTLW(x) = limx→∞ fTLW(x) = 0 for k > 1.
Consequently, x0 is a single maximum point of the TLW pdf. Hence, for θ > 0
and τ∗ 6 −1/e, the TLW pdf is unimodal with mode x0.

(b) and −1/e < τ∗ < 0, then k > 1. Following the same steps as in Item 1(a) we
have that fTLW is unimodal.

(c) and τ∗ > 0, then k 6 1 and, by Table 2, there is no root of Equation (16). I.e.,
there is no critical point of fTLW . But, by (15), limx→0+ fTLW(x) = ∞ for k < 1
(and = θ2Cθ/λ for k = 1) and limx→∞ fTLW(x) = 0. Consequently, for θ > 0
and τ∗ > 0, the TLW pdf is decreasing.

2. If θ < 0

(a) and τ∗ 6 −1/e, then k < 1. Following the same steps as in Item 1(c) we have
that fTLW is decreasing.

(b) and −1/e < τ∗ < 0, then k < 1, by Table 2, there are two roots, z0 = (x0/λ)k

and z1 = (x1/λ)k, of Equation (16). In other words, x0 = λz1/k
0 and x1 = λz1/k

1 ,
with k < 1, are two critical points of fTLW . Without loss of generality, assume
that x0 < x1. By (15), limx→0+ fTLW(x) = ∞, for k < 1, and limx→∞ fTLW(x) =
0. Consequently, fTLW has an decreasing–increasing–decreasing shape with
minimum point x0 and maximum point x1.

(c) and τ∗ > 0, then k 6 1. Following the same steps as in Item 1(a) we have that
fTLW is unimodal.

Table 3 summarizes the shapes of fTLW obtained in Items 1 and 2 above.

Table 3. Shapes of TLW pdf when varying the parameters θ and τ∗.

HH
HH

θ τ∗ 6− 1
e > − 1

e ∧< 0 >0

>0 Unimodality Unimodality Decreasing

<0 Decreasing Decreasing–increasing–
decreasing Unimodality

Note that the parameters θ and τ∗ obtained from Figure 1 obey the pdf shapes obtained
in Table 3.

By way of illustration in Figure 2, we represent the shapes of the TLW pdf shown in
Table 3.
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Figure 2. Regions of the Cartesian plane θτ∗ where different forms of the TLW pdf occur.

3.2.2. Stochastic Representation

Let X and Y be two random variables with TLW and UTL distributions, respectively.
As FTLW(x) = FUTL(G(x)) with G(x) = 1− e−(x/λ)k

, we obtain

FTLW(x) = P(X 6 x) = P(Y 6 G(x)) = P(G−1(Y) 6 x) = P
(
λ[− log(1−Y)]1/k) 6 x

)
, ∀x.

Therefore, X has the stochastic representation

X d
= λ[− log(1−Y)]1/k,

with d
= being equality in distribution. In addition to generating random numbers, a stochas-

tic representation is useful for determining moments, characteristic functions, quantiles, etc.

3.3. Maximum Likelihood Estimation

Let x1, . . . , xn represent the observed values from the TLW model with the pdf given in
(14). For the vector of parameters Θ = (θ, k, λ)>, the log-likelihood function is provided by

` = `(Θ) = n
[
log θ2 + log Cθ + log k− k log λ

]
+ (k− 1)

n

∑
i=0

log xi

+
n

∑
i=0

log
[
2− e−(xi/λ)k

]
− θ

n

∑
i=0

[
1− e−(xi/λ)k

]
. (17)

The following are the elements comprising the score vector U(Θ)

Uθ = n
[

2
θ
− 1− e−θ + 2θ e−θ

1 + θ − e−θ − 2θ e−θ
+

1
k
− 1

λ

]
−

n

∑
i=0

[
1− e−(xi/λ)k

]
,

Uk =
n
k
− n log λ +

n

∑
i=0

log xi −
n
λk

n

∑
i=1

xk
i +

1
λk

n

∑
i=1

xk
i (log xi − log λ) e−(xi/λ)k

2− e−(xiλ)
k

− θ

λk

n

∑
i=0

xk
i (log xi − log λ)e−(xi/λ)k

,

Uλ = −n k
λ

+
k

λk+1

n

∑
i=0

xk
i +

k
λk+1

n

∑
i=1

xk
i e−(xi/λ)k

2− e−(xi/λ)k +
k θ

λk+1

n

∑
i=0

xie−(xi/λ)k
.
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Traditionally, the MLEs of the three parameters can also be calculated by setting the preced-
ing equations to zero and simultaneously solving them. Since it appears impossible to find
a closed form estimator for Θ, direct maximization of (17), as a multidimensional nonlinear
unconstrained function, via a quasi-Newton optimization technique such as BFGS, SANN,
Nelder–Mead, or CG might be appropriate for finding the maximum likelihood estimates
of Θ = (θ, k, λ)>.

3.4. Monte Carlo Simulation

By generating n observations from the TLW distribution with varying parameter
values, we conduct simulations to validate the performance of the MLEs of the TLW
distribution parameters. The BFGS method from the R package is utilized to estimate
the parameter values. The sample sizes considered are n = 20, 50, 100, 150, and 300, and
the replicates number is N = 5000. The simulation results are evaluated using the mean
absolute bias (MAB), the mean square error (MSE), and the average estimates (AEs), where
for Θ = (θ, k, λ)> we have

MAB(Θ̂) =
1
N

N

∑
i=1
|Θ̂−Θ|, MSE(Θ̂) =

1
N

N

∑
i=1

(Θ̂−Θ)2, AE(Θ̂) =
1
N

N

∑
i=1

Θ̂i. (18)

The results in Tables 4 and 5 show that the AEs tend to the true values and that the MABs
and MSEs vanish as n increases, which reveals the asymptotic consistency of the MLEs of
the TLW parameters.

Using Equation (11), for the Weibull distribution we have QW(u) = λ [− log (1− u)]
1
k ,

implying that the qf of the TLW distribution is

QTLW(u) = λ

{
− log

[
2 +

1
θ
+

1
θ

W−1

(
(uC−1

θ − θ − 1) e−θ−1
)]} 1

K

.

The data are generated from

X = λ

{
− log

[
2 +

1
θ
+

1
θ

W−1

(
(U C−1

θ − θ − 1) e−θ−1
)]} 1

K

, U ∼ U(0, 1).

Table 4. Average estimates from simulations of the TLW distribution.

Parameters ME

θ k λ n θ̂ k̂ λ̂

0.5 0.5 0.5

20 0.3927 0.5982 0.5915
50 0.3959 0.5104 0.5143
100 0.5818 0.5086 0.4582
150 0.5782 0.5078 0.4737
300 0.5052 0.5003 0.5012

0.5 2 2

20 0.3821 2.1788 2.4017
50 0.3828 2.1724 2.3466
100 0.5195 2.1554 2.1472
150 0.4945 2.1159 2.0617
300 0.4984 2.0195 2.0324

2 2 0.5

20 2.8780 2.8245 0.6463
50 2.6245 2.2245 0.4403
100 2.1419 2.0419 0.5388
150 2.0545 1.9545 0.5036
300 2.0044 1.9994 0.5004
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Table 4. Cont.

Parameters ME

θ k λ n θ̂ k̂ λ̂

3 0.5 3

20 2.4702 0.6231 2.2937
50 2.6202 0.3798 3.2610
100 2.8369 0.4631 3.2424
150 2.8535 0.5146 3.1024
300 2.9823 0.5018 3.0635

2 5 2

20 2.7795 5.9724 1.6501
50 2.3405 5.4046 2.2949
100 1.8551 5.1855 1.7808
150 2.0733 5.0733 2.0985
300 1.9930 4.9790 2.0104

5 3 3

20 6.1274 3.2987 2.6354
50 5.2781 3.1288 2.6674
100 4.8956 3.1146 2.8674
150 4.9895 3.0985 2.9631
300 5.0013 3.0043 2.9985

5 4 2

20 4.4533 4.5847 2.8655
50 5.2474 3.8812 2.4652
100 4.9521 3.8932 2.4245
150 5.1124 3.9958 2.1135
300 4.9821 4.0024 2.0075

Table 5. MABs and MSEs from simulations of the TLW distribution.

Parameters MAB MSE

θ k λ n θ̂ k̂ λ̂ θ̂ k̂ λ̂

0.5 0.5 0.5

20 0.1073 0.0982 0.0915 0.4927 0.3251 0.2520
50 0.1041 0.0104 0.0143 0.1538 0.1607 0.2497

100 0.0818 0.0086 0.0418 0.1353 0.0656 0.1960
150 0.0782 0.0078 0.0263 0.0230 0.0421 0.0540
300 0.0052 0.0003 0.0012 0.0110 0.0215 0.0301

0.5 2 2

20 0.1179 0.1788 0.4018 0.3210 0.4573 0.4200
50 0.1172 0.1724 0.3466 0.1420 0.2923 0.2584

100 0.0195 0.1554 0.1472 0.0732 0.0832 0.1453
150 0.0055 0.1159 0.0617 0.0612 0.0549 0.1087
300 0.0016 0.0195 0.0324 0.0139 0.0490 0.0359

2 2 0.5

20 0.8780 0.8245 0.1463 0.7810 0.5427 0.7147
50 0.6245 0.2245 0.0597 0.6531 0.4417 0.6984

100 0.1419 0.0490 0.0388 0.1456 0.2542 0.1825
150 0.0545 0.0455 0.0036 0.0574 0.0088 0.0821
300 0.0044 0.0006 0.0004 0.0035 0.0015 0.0674

3 0.5 3

20 0.5298 0.1231 0.7063 1.0745 0.8945 0.7984
50 0.3798 0.1202 0.2610 0.6870 0.3017 0.5203

100 0.1631 0.0369 0.2424 0.2153 0.1465 0.2257
150 0.1465 0.0146 0.1024 0.1040 0.0896 0.0357
300 0.0177 0.0018 0.0635 0.0862 0.0651 0.0089

2 5 2

20 0.7795 0.9724 0.3499 0.8691 1.2143 1.1401
50 0.3405 0.4046 0.2949 0.4041 0.9674 0.5189

100 0.1449 0.1855 0.2192 0.3540 0.6307 0.5021
150 0.0733 0.0733 0.0985 0.0957 0.0390 0.1008
300 0.0070 0.0210 0.0104 0.0068 0.0107 0.0096
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Table 5. Cont.

Parameters MAB MSE

θ k λ n θ̂ k̂ λ̂ θ̂ k̂ λ̂

5 3 3

20 1.1274 0.2987 0.3646 1.8752 2.0145 1.4571
50 0.2781 0.1288 0.3326 1.0587 1.5124 0.6501

100 0.1044 0.1146 0.1326 0.6321 0.8210 0.0893
150 0.0105 0.0985 0.0369 0.2480 0.6347 0.0101
300 0.0013 0.0043 0.0015 0.0472 0.0086 0.0054

5 4 2

20 0.5467 0.5847 0.8655 2.1768 1.7456 1.9087
50 0.2474 0.1188 0.4652 0.8740 1.0157 0.9889

100 0.0479 0.1068 0.4245 0.6531 0.8751 0.2350
150 0.1124 0.0042 0.1135 0.0478 0.1450 0.0842
300 0.0179 0.0024 0.0075 0.0023 0.0541 0.0357

4. The TLW Regression Model with Censored Data and Two Systematic Components

Statistical analysis of lifetimes is an important topic used in different areas such as, for
example, medicine, biology, epidemiology, engineering, among others. Failure time refers
to the time until the occurrence of an event of interest, which may be death, the appearance
of a tumor, the development of a disease, the breakdown of an electronic component,
among other examples.

We relate the parameters λ and k to
v = (v1, . . . , vp)T covariates by the logarithm link function

λi = exp(vT
i β1) and ki = exp(vT

i β2), i = 1, . . . , n,

respectively, where β1 = (β11, . . . , β1p)
T and β2 = (β21, . . . , β2p)

T denote the vectors of
regression coefficients and vT

i = (vi1, . . . , vip).
The survival function of X|v is given by

S(x|v) = 1− cθ{1 + θ − [1 + θ + ω(x|v)] exp[−ω(x|v)]}, (19)

where

ω(x|v) = θ

{
1− exp

[
−
(

x
exp(vT β1)

)exp(vT β2)
]}

.

Equation (19) is referred to as the TLW parametric regression model. This regression model
opens new possibilities for fitting many different types of data.

Consider a sample (x1, v1), . . . , (xn, vn) of n independent observations, where each
random response is defined by xi = min{x∗i , ci}, where c1, · · · , cn are the censoring times
and x∗1 , · · · , x∗n are the observed lifetimes. We assume non-informative censoring such that
the observed lifetimes and censoring times are independent. Let F and C be the sets of
individuals for which xi is the lifetime or censoring, respectively. The total log-likelihood
function for τ = (θ, βT

1 , βT
2 )

T reduces to

l(τ) = r log
(

θ2 cθ

)
+ ∑

i∈F
log

(
ki

λ
ki
i

)
+ ∑

i∈F
(ki − 1) log(xi)−∑

i∈F

(
xi
λi

)ki

+

∑
i∈F

log

{
2− exp

[
−
(

xi
λi

)ki
]}
−∑

i∈F
q(xi|vi) +

∑
i∈C

log{1− cθ{1 + θ − [1 + θ + q(xi|vi)] exp[−q(xi|vi)]}}, (20)
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where r is the number of uncensored observations (failures) and

q(xi|vi) = θ

{
1− exp

[
−
(

xi
λi

)ki
]}

. By maximizing the log-likelihood (20), the MLE of

the vector of unknown parameters can be calculated. We use the R software to determine τ̂.

4.1. Residual Analysis

For the TLW regression model with censored observations, we present two types
of residuals to evaluate deviations from the error assumptions and detect outliers. The
deviance residuals have been used more frequently in the literature because they take into
account the information of censored times. The TLW regression model can also use these
residuals. A reliable method for detecting atypical observations and confirming that the
fitted model is adequate is to plot the deviance residual against the observed times. It is
possible to express the deviance residual as

rDi = sign(rMi ){−2[rMi + δi log(δi − rMi )]}
1/2, (21)

where

rMi =



1 + log
{

1− cθ̂{1 + θ̂ − [1 + θ̂ + q̂(xi|vi)] exp[−q̂(xi|vi)]}
}

if δi = 1,

log
{

1− cθ̂{1 + θ̂ − [1 + θ̂ + q̂(xi|vi)] exp[−q̂(xi|vi)]}
}

if δi = 0,

is the martingale residual, δi = 1 means that the observation is uncensored, δi = 0 means
that the observation is censored and

q̂(xi|vi) = θ̂

{
1− exp

[
−
(

xi

λ̂i

)k̂i
]}

.

4.2. Simulation Study

To verify the accuracy of the MLEs of the TLW regression model, we carried out a
simulation study for different censoring percentages and sample sizes n = 100, 300, and 500.
For each sample size, we carried out N = 1000 replicates and considered the approximate
censoring percentages: 0% , 10% and 30%. A covariate v1 ∼binomial(1, 0.5) is included
from the following systematic components:

λi = exp(β10 + β11v1i), and ki = exp(β20 + β21v1i),

The inverse transformation method is used to obtain the lifetimes x1, · · · , xn from
the TLW(λi, ki, θ) distribution, and the censoring times c1, · · · , cn are determined from a
uniform distribution (0, γ), where γ controls the censoring percentages. The true values
used for generation are β10 = 0.3, β11 = 0.4, β20 = 0.2, β21 = 0.5, and θ = 0.6.

The Results are checked for τ> = (β̂10, β̂11, β̂20, β̂21, θ̂) from MABs, MSEs, and AEs
given in (18), where here Θ = τ. The simulation process is given by:

(i) Generate v1i ∼ binomial (n, 1, 0.5);
(ii) Calculate λi = exp(β10 + β11v1i) and ki = exp(β20 + β21v1i);
(iii) Generate x∗i ∼ TLW (n, λi, ki, θ);
(iv) Generate ci ∼ uniform(0, γ);
(v) Calculate the survival times xi = min(x∗i , ci);
(vi) If x∗i < ci, then δi = 1; otherwise, δi = 0, for i = 1, . . . , n, where δ is the censoring

indicator.
(vii) Calculate AEs, biases, and MSEs.
Table 6 displays these values. It is verified that for all scenarios the averages of the

estimates approach the true values of the parameters and the MABs and MSEs decrease as
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the sample size increases. These results illustrate that the estimates are consistent, even at
higher censoring percentages.

Table 6. Simulation results of TLW regression models for different censoring percentages (%) with
true values: β10 = 0.3, β11 = 0.4, β20 = 0.2, β21 = 0.5, and θ = 0.6.

n = 100 n = 300 n = 500

% θ AEs MABs MSEs AEs MABs MSEs AEs MABs MSEs

0%

β10 0.2949 −0.0051 0.0239 0.3018 0.0018 0.0091 0.3056 0.0056 0.0054
β11 0.4077 0.0077 0.0232 0.3994 −0.0006 0.0071 0.3960 −0.0040 0.0044
β20 0.2234 0.0234 0.0137 0.2073 0.0073 0.0046 0.2087 0.0087 0.0026
β21 0.5014 0.0014 0.0260 0.5019 0.0019 0.0086 0.4971 −0.0029 0.0049
θ 0.6323 0.0323 0.2064 0.6241 0.0241 0.0984 0.6286 0.0286 0.0569

10%

β10 0.2933 −0.0067 0.0219 0.3012 0.0012 0.0090 0.3018 0.0018 0.0050
β11 0.4062 0.0062 0.0228 0.3990 −0.0010 0.0075 0.3991 −0.0009 0.0041
β20 0.2192 0.0192 0.0138 0.2100 0.0100 0.0051 0.2054 0.0054 0.0030
β21 0.5064 0.0064 0.0283 0.4983 −0.0017 0.0089 0.5028 0.0028 0.0054
θ 0.6188 0.0188 0.1765 0.6225 0.0225 0.0908 0.6144 0.0144 0.0491

30%

β10 0.2902 −0.0098 0.0253 0.2997 −0.0003 0.0101 0.3033 0.0033 0.0057
β11 0.4114 0.0114 0.0266 0.3987 −0.0013 0.0088 0.3969 −0.0031 0.0055
β20 0.2313 0.0313 0.0208 0.2093 0.0093 0.0060 0.2072 0.0072 0.0033
β21 0.5005 0.0005 0.0404 0.5013 0.0013 0.0111 0.4980 −0.0020 0.0065
θ 0.6306 0.0306 0.1611 0.6125 0.0125 0.0960 0.6138 0.0138 0.0518

5. Data Analysis

In order to demonstrate the superiority of the new distribution over some other models,
we use two real datasets originating from different fields. We compare the fits of the TLW
model to those of the parent Weibull model (W), the Kumarswamy–Weibull model (KW)
from Cordeiro and Castro (2011) [4], the Weibull–Weibull model (WW) from Alzaatreh
et al. [18], the Geometric–Poisson–Weibull model (GPW) from Nadarajah et al. (2013) [19],
the Poisson–Weibull model (PW) from Ristic and Nadarajah (2013) [5] the beta-Weibull
model (BW) from Eugene et al. (2002) [1], the Marshall–Olkin–Weibull model (MOW) from
Marshall and Olkin (1997) [20] and the exponentiated generalized Weibull model (EGW)
from Cordeiro et al. (2013) [21]. The cdfs of these models are provided in Appendix B. The
parameter estimates are computed by maximizing (17) using the BFGS method available in
the adequacy model package in the R software [22].

The considered models are compared according to a collection of statistics (AIC, CAIC,
BIC, HQIC, minus maximum log-likelihood function (−`)) which assess the relative degree
of fit of these models to a dataset.

We also performed an application of the TLW regression model considering censored
data. We compared different systematic components for the proposed new regression
model and the Weibull regression model. In this part we use the RS algorithm in the gamlss
package in the R software to maximize the log-likelihood function (20) and we use the AIC
and global deviance (GD) statistics to select the most suitable models.
Dataset I: Temperature Dataset

This dataset, reported by Barakat et al. (2014) [23], depicts the average July tempera-
tures (◦C) for Neuenburg, Switzerland, between 1864 and 1993. The observations are as
follows.
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19.0 20.1 18.4 17.4 19.7 21.0 21.4 19.2 19.9 20.4 20.9 17.2 20.2
17.8 18.1 15.6 19.4 21.7 16.2 16.4 19.0 20.6 19.0 20.7 15.8 17.7
16.8 17.1 18.1 18.4 18.7 18.7 18.4 19.2 18.0 18.7 20.7 19.4 19.2
17.4 22.0 21.4 19.3 16.8 18.2 16.2 15.9 22.1 17.5 15.3 16.5 17.4
17.0 18.3 18.3 15.3 18.2 21.5 17.0 21.6 18.2 18.1 17.6 18.2 22.6
19.9 17.1 17.2 17.3 19.4 20.1 20.1 17.0 19.4 17.5 16.8 17.0 19.9
18.2 19.2 18.5 20.8 19.5 21.1 15.8 21.3 21.2 18.8 22.3 18.6 16.8
18.2 17.2 18.4 18.7 21.1 16.3 17.4 18.0 19.5 21.2 16.8 17.4 20.7
18.4 19.8 18.7 20.5 18.3 18.2 18.2 19.2 20.2 18.2 17.4 19.2 16.3
17.4 20.3 23.4 19.2 20.2 19.3 19.0 18.8 20.3 19.7 20.7 19.6 18.1

The MLEs and 95% CIs for the model parameters are shown in Table 7. Table 8
provides the competence of the considered models.

The TLW model fits the dataset with the lowest AIC, CAIC, BIC, HQIC, and minus
log-likelihood among the other models, as determined by the adequacy statistics presented
in Table 8. Therefore, it may be a viable option for modeling these data. Figure 3 compares
the empirical and fitted distributions of the data, displaying the histogram and fitted pdf,
the fitted and empirical cdfs, the P–P plot, and the Q–Q plot, respectively, to graphically
explain the appropriateness of the TLW for modeling these data.

Figure 3. Histogram and fitted pdf, empirical and fitted cdfs, and P–P and Q–Q plots of the TLW
model fitted to dataset I.

Table 7. Estimates of TLW parameters for dataset I.

MLE Std. Err Inf. 95% CI Sup. 95% CI

θ −28.44948 28.085548 −32.53708 −25.44727
k 3.454494 0.9554519 1.581842 5.327145
λ 12.75564 2.3338198 8.181439 17.32985
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Table 8. Competence of the models for the dataset.

Distribution No. of Estimated Parameters AIC CAIC BIC HQIC −`

TLW 3 507.124 507.314 515.726 510.619 250.562
W 2 524.667 524.762 530.402 526.998 260.334
KW 4 510.612 510.932 522.082 515.273 251.306
WW 4 528.667 528.987 540.137 533.328 260.334
GPW 4 512.800 513.120 524.270 517.460 252.400
PW 4 513.232 513.552 524.702 517.893 252.616
BW 4 511.523 511.843 522.993 516.184 251.762
MOW 3 513.522 513.713 522.125 517.018 253.761
EGW 4 512.706 513.026 524.176 517.367 252.353

Dataset II: Breaking Stress of Carbon Fibers
The breaking stress of 64 single carbon fibers of gauge length 10 mm (Cheng and

Traylor (1970) [24]). The observations are as follows.

1.901 2.132 2.203 2.228 2.257 2.35 2.361 2.396 2.397 2.4450 2.454
2.454 2.474 2.518 2.522 2.525 2.532 2.575 2.614 2.616 2.618 2.624
2.659 2.675 2.738 2.74 2.856 2.917 2.928 2.937 2.937 2.977 2.996
3.03 3.125 3.139 3.145 3.22 3.223 3.235 3.243 3.264 3.272 3.294
3.332 3.346 3.377 3.408 3.435 3.493 3.501 3.537 3.554 3.562 3.628
3.852 3.871 3.886 3.971 4.024 4.027 4.225 4.395 5.02

Table 9 displays the MLEs and 95% CIs for the model parameters, demonstrating
the validity of the considered models. According to Table 10, the TLW model fits the
dataset with the lowest AIC, CAIC, BIC, HQIC, and minus log-likelihood among the other
models. Therefore, it may be a viable option for modeling these data. Figure 4 compares
the empirical and fitted distributions of the data, displaying the histogram and fitted pdf,
the fitted and empirical cdfs, the P–P plot and the Q–Q plot to graphically demonstrate the
appropriateness of the TLW for modeling these data.

Table 9. Estimates of TLW parameters for dataset II.

MLE Std. Err Inf. 95% CI Sup. 95% CI

θ −49.54747 3.8976505 −57.18672 −43.9367
k 1.374038 0.4973775 0.399197 2.348880
λ 1.029519 0.6568050 −0.257795 2.316833

Table 10. Competence of the models for dataset II.

Distribution No. of Estimated Parameters AIC CAIC BIC HQIC −`

TLW 3 118.197 118.597 124.673 120.748 56.098
W 2 129.933 130.130 134.251 131.634 62.967
KW 4 121.642 122.320 130.278 125.044 56.821
WW 4 133.933 134.611 142.569 137.335 62.967
GPW 4 122.118 122.796 130.754 125.520 57.059
PW 4 123.742 124.420 132.377 127.144 57.871
BW 4 121.285 121.963 129.921 124.687 56.643
MOW 3 122.570 122.970 129.047 125.122 58.285
EGW 4 121.883 122.561 130.519 125.285 56.942
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Figure 4. Histogram and fitted pdf, empirical and fitted cdfs, and P–P and Q–Q plots of the TLW
model fitted to dataset II.

Dataset III: COVID-19
In this application we consider the regression model for censored data. This dataset

refers to patients hospitalized with COVID-19. The disease is caused by the pathogen iden-
tified as a new coronavirus, denominated severe acute respiratory syndrome coronavirus-2
(SARS-CoV-2). The epidemiological data were tallied by the Health Information System of
the Brazilian government, and are available at https://opendatasus.saude.gov.br/dataset/
srag-2020 (accessed on 1 May 2023).

This study involved 195 patients hospitalized in the city of Campinas, state of São
Paulo, in May 2020, with infection confirmed by RT-PCR and classified as SARS caused by
COVID-19. The survival time consisted of the time in days from the date of first symptoms
to the date of evolution of the case, either death (failure) or end of observation (censor-
ing). The censoring percentage was 56.92% and the following variables were considered:
(i = 1, · · · , 195):

• xi: observed time (in days);
• censi: censoring indicator (0 = censored, 1 = observed lifetime);
• vi1: sex (1 = male, 0 = female);
• vi2: age (in years).

There were 110 male patients (56.41%), of whom 42 (38.18%) died, while of the
85 women (43.58%), there were 42 deaths (49.41%). Figure 5a presents the Kaplan–Meier
survival curve broken down by sex. It can be seen that men had a higher risk of death.
Figure 5b depicts the histogram of the ages, where the greatest frequency was in the cate-
gory from 50 to 75 years old.

We compared the TLW regression model with the Weibull regression model based on
the following systematic components:

https://opendatasus.saude.gov.br/dataset/srag-2020
https://opendatasus.saude.gov.br/dataset/srag-2020


Entropy 2023, 25, 1359 18 of 26

Systematic =



M0 : log(λi) = β10 and log(ki) = β20;

M1 : log(λi) = β10 + β11vi1 + β12vi2 and log(ki) = β20;

M2 : log(λi) = β10 and log(ki) = β20 + β21vi1 + β22vi2;

M3 : log(λi) = β10 + β11vi1 + β12vi2 and log(ki) = β20 + β21vi1 + β22vi2.
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Figure 5. (a) Kaplan–Meier survival curve for the sex variable (1 = male, 0 = female); (b) histogram
of the age variable.

Table 11 reports the values of the selection criteria of the models, in which theM3-TLW
model was superior to the others. We also compared this model with theM3-Weibull model
by means of the residuals in Figure 6. In turn, Figure 6a,c illustrate the residuals versus the
index of the observations, showing that both models have residuals with random behavior
around zero, and no point is outside the interval (−3, 3). Nevertheless, Figure 6b,d indicate
that the TLW model behaved better, with all the points within the simulated envelope,
denoting its superiority. Finally, we illustrate the Kaplan–Meier curves and estimated
survival curves in Figure 7 for the TLW model, showing that this model is able to capture
the non-proportional curves of this dataset. The results of this model are shown in Table 12.
Some conclusions can be obtained as follows.

Table 11. AIC and GD values for TLW and Weibull regression models with different structures for
COVID-19 data.

Model
TLW Weibull

M0 M1 M2 M3 M0 M1 M2 M3

AIC 854.947 821.162 828.469 814.707 855.651 823.412 848.348 817.815
GD 848.947 811.162 818.469 800.707 851.651 815.412 840.348 805.815

Interpretations for λ:

• A significant difference exists between men and women in relation to survival time
(men have shorter survival). Various other studies have also indicated significant
differences between the sexes (see [25,26]);

• The survival time declines with advancing age. This result corroborates the findings
of several studies that have indicated that older age is a predictor of higher mortality
caused by COVID-19 (see [27–29]).
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Interpretations for k:

• A significant difference exists between men and women with regard to the variability
in the survival time;

• In relation to age, the variability in survival time increased with older age of the
patients.

(a) (b)
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Figure 6. Index plot and normal probability plot with envelope of the deviance residual from the
fitted regressions model to the COVID-19 data. (a,b):M3-TLW; (c,d):M3-Weibull.
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Table 12. MLEs, SEs, and p-values for theM3-TLW regression fitted to COVID-19 data.

MLEs SEs p-Values

β10 7.8325 0.2995 <0.01
β11 −0.419 0.1432 <0.01
β12 −0.0467 0.0040 <0.01
β20 −0.4240 0.1690 0.01
β21 0.4605 0.0939 <0.01
β22 0.0096 0.0027 <0.01
θ 3.6408 0.3289 <0.01

Dataset IV: Post-harvested
In this application, we consider the regression model for uncensored data. These

data refer to Musa acuminata banana species from a banana plantation in the Philippines.
A total of n = 194 banana tiers were chosen randomly, in which the numerical values
of the RGB colors (red, green, and blue) were obtained from images taken by hardware
of four banana classes, extra class, class I, class II, and reject, where the classes contain
65, 49, 30, and 50 samples, respectively. The dataset is available in the repository: https:
//data.mendeley.com/datasets/zk3tkxndjw/2 (accessed on 20 May 2023) and more details
can be seen in [30]. Each banana tier sample was captured with a white background in six
different views: front, back, left, right, top, and bottom views. Here, we consider the values
of B in front view. Figure 8 displays a boxplot by class, it is possible to observe differences
between the colors according to the class.

●

●●

●

●

●

●

●

●

30

50

70

90

Reject Class I Class II Extra
Class

C
ol

or
 v

al
ue

s

Figure 8. Boxplot of colors by class for the Post-harvested dataset.

The variables considered are (i = 1, . . . , 194):

• xi: color value;
• vij: banana class (factor with four levels, defined by three variable dummies j = 1, 2, 3).

We verified the relationship between colors and classes from the TLW and Weibull
models according to the following systematic components:

https://data.mendeley.com/datasets/zk3tkxndjw/2
https://data.mendeley.com/datasets/zk3tkxndjw/2
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Systematic =



M0 : log(λi) = β10 and log(ki) = β20;

M1 : log(λi) = β10 + β1jvij and log(ki) = β20;

M2 : log(λi) = β10 and log(ki) = β20 + β2jvij;

M3 : log(λi) = β10 + β1jvij and log(ki) = β20 + β2jvij.

Table 13 displays the AIC and GD values for these fitted models, in which it can be
seen that theM3-TLW model obtained the lowest values, being able to be chosen as the
best model. In addition, we compare theM3-TLW and theM3-Weibull from the quantile
residues (Figure 9). These plots agree with the results of Table 13, there is a high percentage
of points outside the confidence band of the Weibull model (Figure 9e) and many deviations
also from the confidence band worm plot confidence (Figure 9f).

Table 13. AIC and GD values for TLW and Weibull regression models with different structures for
the Post-harvested dataset.

Model
TLW Weibull

M0 M1 M2 M3 M0 M1 M2 M3

AIC 1520.226 1491.587 1487.429 1482.161 1519.985 1495.154 1514.562 1486.809
GD 1514.226 1479.587 1475.429 1464.161 1515.985 1485.154 1504.562 1470.809
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Figure 9. Index plot, normal probability plot with envelope, and worm plot of the quantile residuals
from the regression models fitted to the Post-harvested dataset: (a–c):M3-TLW; (d–f):M3-Weibull.

Finally, Table 14 presents MLEs, SEs, and p-values of the modelM3-TLW, in which
classes I, II, and extra are compared with the rejected class. We can obtain the following
conclusions: there is a significant difference between the color of class 1 and the rejects. Its
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effect is positive, that is, it presented higher color values. Class II and the extra class do not
present a significant difference with the rejected class. The extra class and class I’s colors
affect the shape of the distribution compared to the reject class’s color.

Table 14. MLEs, SEs, and p-values for theM3-TLW regression fitted to the Post-harvested dataset.

MLEs SEs p-Values

β10 4.1417 0.0380 <0.01
β11 0.1469 0.0471 <0.01
β12 −0.0800 0.0482 0.0987
β13 0.0354 0.0424 0.4044
β20 1.5394 0.1087 <0.01
β21 0.4443 0.1825 0.0159
β22 0.1994 0.1532 0.1949
β23 0.5335 0.1407 <0.01
θ 3.2938 0.2847

6. Conclusions

In this study, we propose a new class of distributions called the truncated Lindley-G
(TLG) distribution with application to the truncated Lindley–Weibull (TLW) distribution
with three parameters. Several structural properties of the TLG distribution, including an
expansion of the density function, critical points, explicit expressions of the ordinary and
incomplete moments, mean deviation, generating function, entropy, and quantile function,
are discussed. The parameters of the model are estimated using the maximum likelihood
technique. We fitted the TLW model to two sets of data to demonstrate the effectiveness of
the proposed distribution. In comparison to the Kumarswamy–Weibull, Weibull–Weibull,
Geometric–Poisson–Weibull, Poisson–Weibull, beta-Weibull, Marshall–Olkin–Weibull, and
exponentiated generalized Weibull distributions, the proposed model had a better fit on
four datasets. However, the goodness-of-fit measures for our model were not drastically
better than the comparison models that are currently used in statistical analyses. Based on
this new distribution, we propose a TLW regression model with two systematic components
very suitable for modeling censored and uncensored data. Several simulation studies are
performed for different parameter settings, sample sizes, and censoring percentages. We
anticipate the further application of the proposed model in disciplines such as engineering,
survival and lifetime data, and economics.
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Appendix A

The UTL model has the following properties:

(1) Moments
The UTL distribution’s kth raw moment (k = 1, 2, . . . ) is given by

µ′k = θ2 Cθ

[
−e−θ

θ
+

(
1 +

k + 1
θ

)
dk

]
,

where dk =
∫ 1

0 xke−θ xdx. Using integration by parts, dk can be calculated recursively
by

dk =
1
θ

(
k dk−1 − e−θ

)
, k = 1, 2, . . . ,

and
d0 =

1
θ

(
1− e−θ

)
.

The first three moments are

µ′1 =

(
2 + θ − 2e−θ − 3θe−θ − 2θ2e−θ

)
Cθ

θ
,

µ′2 =

(
6 + 2 θ − 6e−θ − 8 θ e−θ − 5 θ2e−θ − 2θ3e−θ

)
Cθ

θ2 , and

µ′3 =

(
24 + 6θ − 24e−θ − 30θe−θ − 18θ2e−θ − 7θ3e−θ − 2θ4e−θ

)
Cθ

θ3 .

The kth incomplete moment of X is given by

IX(t; k) = E
(

Xk | X ≤ t
)
=
∫ t

0
xk fUTL(x)dx = θ2 Cθ

[
− tke−θt

θ
+

(
1 +

k + 1
θ

)
dt,k

]
,

where dt,k =
∫ t

0 xke−θ x. Using integration by parts, dt,k can be calculated recursively
by

dt,k =
1
θ

(
k tk dt,k−1 − e−θ t

)
, k = 1, 2, . . . ,

and
dt,0 =

1
θ

(
1− e−θ t

)
.

(2) Mode
The mode of the UTL distribution is

Mode =


1−θ

θ if 0.5 ≤ θ ≤ 1,
0 if θ > 1,
1 if θ < 0.5.

(3) Quantile Function
Therefore The UTL distribution’s qf is

QUTL(u) = −1− 1
θ
− 1

θ
W
(
(uC−1

θ − θ − 1) e−θ−1
)

, u ∈ (0, 1),

where W(x) is the Lambert function satisfying W(x) eW(x) = x for x ∈ [−1/e, ∞) (see
Corless et al. [31] for the definition and properties of the Lambert function).
Therefore, the median of the UTL distribution is simply M = QUTL(0.5), that is,
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M = −1− 1
θ
− 1

θ
W
(
(0.5 C−1

θ − θ − 1) e−θ−1
)

.

(4) Mean Deviations
The UTL distribution’s mean deviation about the mean µ = E(X) is given by

δ1 =
∫ 1

0
|x− µ| fUTL(x)dx

=
∫ µ

0
(µ− x) fUTL(x)dx +

∫ 1

µ
(x− µ) fUTL(x)dx

= 2µ FUTL(µ)− 2
∫ µ

0
x fUTL(x)dx = 2[µFUTL(µ)− IX(µ; 1)]

and the mean deviation about the median M is

δ2 =
∫ 1

0
|x−M| fUTL(x) dx = µ− 2 IX(M; 1),

where IX(t; k) is the kth incomplete moment.
(5) Moment Generating Function

The UTL distribution’s moment generating function (mgf) can be expressed as

M(t) =
∫ 1

0
etx fUTL(x)dx = θ2Cθ

[
2t e−(θ−t) − 2θ e−(θ−t) − e−(θ−t) − t + θ + 1

t2 − 2 θ t + θ2

]
.

Appendix B

- The cdf of the Kumaraswamy-G model is given by

F(x) = 1− [1− Ga(x)]b, a, b > 0

- The cdf of the Weibull-G model is given by

F(x) = 1− exp
{
−
[
− log(1− G(x))

b

]a}
, a, b > 0

- The cdf of the Geometric-Poisson-G model is given by

F(x) =
exp[−a + aG(x)]− exp(−a)

1− exp(−a)− b + b exp[−a + aG(x)]
, a > 0, 0 < b < 1

- The cdf of the Poisson-G model is given by

F(x) =
1− exp [−a Gb(x)]

1− exp (−a)
, a, b > 0

- The cdf of the Beta-G model is given by

F(x) = IG(x)(a, b)

where Ix(a, b) =
∫ x

0 ta−1(1− t)b−1dt/B(a, b) is the regularized incomplete beta func-

tion, and B(a, b) =
∫ 1

0 ta−1(1− t)b−1dt is the beta function.
- The cdf of the Marshall–Olkin-G model is given by

F(x) =
G(x)

a + (1− a)G(x)
, a > 0
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- The cdf of the exponentiated generalized-G model is given by

F(x) = [1− [1− G(x)]a]b, a, b > 0
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