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Abstract: Malicious attacks can cause significant damage to the structure and functionality of complex
networks. Previous research has pointed out that the ability of networks to withstand malicious
attacks becomes weaker when networks are coupled. However, traditional research on improving the
robustness of networks has focused on individual low-order or higher-order networks, lacking studies
on coupled networks with higher-order and low-order networks. This paper proposes a method for
optimizing the robustness of coupled networks with higher-order and low-order based on a simulated
annealing algorithm to address this issue. Without altering the network’s degree distribution, the
method rewires the edges, taking the robustness of low-order and higher-order networks as joint
optimization objectives. Making minimal changes to the network, the method effectively enhances
the robustness of coupled networks. Experiments were conducted on Erdős–Rényi random networks
(ER), scale-free networks (BA), and small-world networks (SW). Finally, validation was performed on
various real networks. The results indicate that this method can effectively enhance the robustness of
coupled networks with higher-order and low-order.

Keywords: malicious attacks; coupled networks; simulated annealing algorithm; robustness

1. Introduction

With the progressive advancement of human civilization, many intricate systems,
including communication systems, transportation systems, and the Internet, have wit-
nessed remarkable expansion. These complex systems exhibit shared characteristics of
self-organization, adaptability, and evolution. In recent decades, researchers have begun
employing network science methodologies to explore the intricacies of complex systems.
Propelled by advancements in network information technology, notably exemplified by the
Internet, the proliferation of complex networks has gained momentum since the 1980s [1–3].
Researchers have harnessed graph theory as a foundational framework to investigate com-
plex networks’ properties, leveraging high-performance computers to simulate network
dynamics [4,5]. Complex networks have become interwoven with human production
and daily existence in the present-day milieu. Communication, transportation, social, and
biological networks profoundly influence human activities [6,7]. Consequently, scholars
from diverse disciplines are ardently engaged in studying complex networks.

In the early 21st century, Milo et al. introduced network motifs to elucidate the
underlying structural principles governing complex networks. Network motifs pertain to
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recurring patterns of interconnections within complex networks that exceed the frequency
observed in random networks. These patterns have been observed in diverse domains,
such as ecological food webs, neural networks, and the World Wide Web [8]. Shen-Orr et al.
investigated network motifs within the transcriptional interaction network of Escherichia
coli. Their study unveiled that most of the network’s architecture comprised a small
yet crucial set of three motifs that exhibited repetitive occurrences. Notably, each motif
manifested specific functional characteristics related to distinct facets of gene expression.
The research methodologies employed in this network analysis also hold promise for
elucidating other biological networks [9]. The study of network motifs mentioned above
has promoted the development of complex networks and laid the foundation for studying
higher-order networks.

Network robustness has always been an important issue. The functionality of a net-
work is often contingent upon the integrity of its giant components, and any significant
compromise to these giant components can consequently impact the overall functionality of
the network [10]. The study of complex network robustness holds profound implications
for real-world systems. In the infrastructure domain, the study of network robustness
involves assessment of the stability of infrastructure network designs, thereby facilitating
the development of more robust infrastructure networks [11]. In economics, the robustness
of banking network systems is crucial in reducing latent financial risks within economic sys-
tems [12]. Furthermore, it has been observed that the robustness of higher-order networks
plays a pivotal role in various complex networks. Instances include the significant influence
of higher-order structures in social and neural networks, such as triangular patterns and
bi-directional wedges, respectively [13,14]. Moreover, many real-world networks are inter-
dependent and engage in mutual interactions. Addressing the enhancement of network
robustness in scenarios where low-order and high-order networks interact, particularly in
the aftermath of deliberate attacks causing damage to the network, remains a significant
research question.

This article presents an approach to optimize the robustness of high-low-order coupled
networks by utilizing a simulated annealing algorithm. In complex networks, there are
many problems involving optimization. Problems in complex networks usually have many
locally optimal solutions, which greedy algorithms can easily fall into. We thus need to
use more effective algorithms to address the local optimum issue, such as the simulated
annealing algorithm, the ant colony algorithm, and the genetic algorithm. In this paper,
we chose the relatively simple and effective simulated annealing algorithm. The exper-
iments show that our algorithm performs well. By preserving the original (low-order)
network degree distribution, this method effectively enhances the structural arrangement
of both the low-order and higher-order networks by strategically rewiring the low-order
networks’ interconnections. The objective is to fortify the robustness of both low-order
and higher-order networks, thereby bolstering the overall robustness of the high-low-order
coupled network.

2. Related Works

Traditional research on the robustness of complex networks typically focuses on low-
order networks. Albert et al. found that many scale-free networks exhibit strong robustness,
meaning that even if a portion of the nodes in the network fails, this rarely leads to the loss
of overall functionality. This robustness is attributed to redundant connections in complex
networks [15]. Herrmann et al. used a Monte Carlo method to swap edges in a network
while preserving the degree distribution to enhance network robustness. The experimental
results showed significant effectiveness, and the generated networks exhibited a structure
resembling an onion shape [16]. Smolyak et al. proposed a method to protect critical
nodes from mitigating cascading failures and validated the effectiveness of this method
on financial networks [17]. Lin W et al. proposed a novel network attack technique based
on a genetic algorithm that can operate in linear time for the size of the network, and the
results showed that the method struck a balance between attack quality and computational
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complexity [18]. Zhou B et al. found that malicious attackers with jamming capabilities
can exploit the vulnerability of the k-core structure to attack the network, emphasizing the
potential vulnerability of the k-core structure and the need to pay attention to its robustness
to ensure the security of graph algorithms [19].

Over the years, researchers have explored the impact of network motifs on complex
networks. It was not until 2016 that Benson et al. discovered that complex networks could
exhibit prosperous higher-order organization through different network motifs. Battiston et
al. argued that higher-order structures are better for depicting the structural organization of
many social networks, biological networks, and other complex networks. In reality, complex
networks often involve higher-order interactions among three or more units, while network
representations inherently describe only pairwise interactions. They proposed that higher-
order interactions can give rise to collective behavior and described three critical challenges
faced by the higher-order physics of systems [20]. Xia et al., based on percolation theory, delib-
erately and randomly attacked networks by progressively removing nodes or edges to analyze
the robustness of both low-order and higher-order networks. The results showed that higher-
order networks tend to be more fragile than low-order networks [21]. Lai Y et al. investigated
the robustness of interdependent higher-order networks by performing random attacks. The
robustness of the interdependent higher-order network structure was found to be higher than
the original interdependent network structure [22].

However, the studies mentioned above have predominantly focused on investigating
the characteristics of either low-order or higher-order networks in isolation, overlooking the
impact of their mutual interactions on the network. Research has shown that disrupting the
connectivity of higher-order networks can significantly impair the functionality of low-order
networks. Additionally, the functionality of complex networks depends on the presence
of giant components in the low-order networks, indicating that network functionality is
influenced by both the low-order network itself and its corresponding higher-order network.
The rapid development of complexity science has deepened our understanding of complex
networks, and research on higher-order networks, coupled networks, and network robustness
has played a vital role in exploring the structure and functionality of complex networks.
However, there are still gaps in current research, particularly regarding the cascading failures
that occur due to the interactions between networks when they experience failures. In the face
of network attacks and destruction, enhancing the robustness of low-order and higher-order
networks when they interact remains a challenge.

3. Methods
3.1. Network Motifs and Higher-Order Networks

Milo et al. revealed the structural principles of complex networks by defining network
motifs. Network motifs are network subgraphs composed of three or more nodes, which
are fundamental in constructing complex networks and play a crucial role in network
functionality [8,23]. Figure 1 presents 13 different three-node network motifs in a directed
network. For instance, the feed-forward loop (M5 in Figure 1) is vital in transcriptional
regulatory networks and social networks, while the open bidirectional wedge (M13 in
Figure 1) is critical in central brain structures.

M   4 M   5M   1 M   2 M   3 M   6

M   7 M   8 M   9 M    10 M    11 M    12

M    13

Figure 1. 13 types of motifs for directed networks.
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Using specific network motifs, corresponding higher-order networks can be generated
based on the original network. The specific generation process is illustrated in Figure 2.
Given a network and a motif, the adjacency matrix can be generated by computing the
number of times two nodes appear together in the motif. Based on this adjacency matrix,
an undirected higher-order network can be constructed. Exploring the characteristics of
higher-order networks can help researchers identify essential nodes within the network
and develop strategies to protect these critical nodes through specialized means [24].
Furthermore, higher-order networks can be employed to study the spread of pollutants in
the air, providing valuable insights for environmental governance [25]. Therefore, higher-
order networks play a significant role in complex networks, and studying them allows for
a deeper understanding of networks’ properties and dynamic behaviors [20,26].
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Figure 2. Generating higher-order networks corresponding to low-order networks based on motifs.

3.2. High-Low-Order Coupled Network

Many studies in the field of complex networks focus on analyzing individual networks.
However, many complex networks are coupled and interact in the real world. In a directed
network (blue nodes in Figure 3), the theory of higher-order networks proposed by Benson
and colleagues is utilized. An adjacency matrix is constructed by counting the occurrences
of two nodes appearing together in a motif in the low-order network, which is then used
to generate an undirected network representing the corresponding higher-order network
(green nodes in Figure 3) [27,28]. When the triangular structures in the higher-order network
are disrupted, the corresponding connectivity patterns in the low-order network are also
affected. At the same time, the structure of the low-order network also influences the higher-
order network. Considering this interactive relationship, the low-order and higher-order
networks are coupled, forming a coupled network.

1
2

43
6

7

5

1
2

43
6

7

5

Low-order network

Higher-order network

Motif

Figure 3. Model of coupled network.

3.3. Network Robustness and Network Percolation

If some vertices in a network are removed, along with the edges connected to these
vertices, this process is referred to as percolation. When the removed elements are nodes
within the network, it is known as site percolation. For instance, in the case of a local area
network, when routers experience failures, the corresponding nodes and their interconnect-
ing edges are removed. Similarly, when edges are removed from the network, it is termed
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bond percolation. For example, in a communication network, communication lines may
encounter failures, resulting in the inability of routers to communicate with each other.

The percolation model is commonly employed to investigate the robustness of com-
plex networks. In this model, a certain proportion of nodes or edges in a network are
occupied, and there is subsequent examination of whether the occupied nodes or edges
reach the percolation state (whether the occupied nodes or edges can form a network that
is comparable to the original network in terms of its functional structure). The size of
the giant component formed by the remaining nodes in the network after an attack is an
important metric for assessing network robustness. A larger giant component among the
remaining nodes indicates stronger network robustness, while a smaller giant component
suggests weaker network robustness. As shown in Figure 4, occupying a proportion p of
nodes in the network is equivalent to deleting a proportion 1− p of nodes from the network.
The examination focuses on whether the remaining nodes in the network form a giant
component, which is analogous to assessing whether the occupied nodes have reached the
percolation state. The formation and disintegration of the giant component are referred to
as percolation transition, and the critical value at which the percolation transition occurs is
called the percolation threshold. The relative size of the giant component, denoted as P∞,
serves as an order parameter.

P∞ =
N′

N
(1)

Easy to know: P∞ ∈ [0, 1]. N′ represents the number of nodes in the giant component, N
represents the total number of nodes in the entire network, and p is the parameter determining
the proportion of remaining nodes after node removal. The critical point pc, at which the giant
component emerges, is commonly used to measure the robustness of the network. A larger pc
indicates poor network robustness; a significant deletion of nodes would cause severe damage
to the network. Conversely, a smaller pc indicates good network robustness.

Based on percolation theory, another widely used method to define network robustness
relates robustness to the ratio of the largest connected component when nodes are removed.
After removing p′ nodes and summing the proportions of nodes in the largest connected
component, denoted as P∞(p′), the robustness metric can be represented as follows:

R =
1
N

N

∑
p′=1

P∞
(

p′
)

(2)

Here, N represents the total number of nodes in the entire network, and 1
N is the normal-

ization factor. R ∈ [ 1
N , 0.5]; a higher value of R indicates stronger network robustness.

A lower value of R indicates weaker network robustness. In economics, studying the
robustness of networks can help identify risks in economic systems [12]. In the case of
infrastructure networks, analyzing network robustness enables assessment of the stability
of the infrastructure and design of more resilient infrastructure networks [11].

Giant Component

Figure 4. The giant component formed by the remaining nodes after deleting the specified nodes.
The nodes highlighted in red in the figure represent the nodes that are to be deleted.
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3.4. Simulated Annealing Algorithm with Edge Rewiring

Building upon the edge rewiring strategy proposed in Section 4.1, we formulate exper-
iments guided by the principles of simulated annealing. The objective is to enhance the
robustness of both high-order and low-order networks concurrently. This approach estab-
lishes a higher-order network through motif constructions derived from the lower-order
network. Subsequently, two edges are randomly chosen from the lower-order network for
edge rewiring, followed by the computation of robustness metrics for both the higher-order
and lower-order networks. If the robustness of both networks exhibits simultaneous im-
provement, the results of the edge rewiring are retained. In cases where the robustness fails
to increase concurrently in both networks, there exists a probability of accepting this edge
modification. Over a specified number of iterations, the probability parameter (denoted
as P) undergoes a gradual reduction (the parameter of simulated annealing can be seen
in Section 5). The process of edge rewiring is iterated until a point is reached where the
robustness ceases to increase. At this juncture, the algorithm terminates, yielding an opti-
mized lower-order network. The specific algorithmic details and processes are outlined
as follows:

Step 1: Randomly select two existing edges, e1 = {vi, vj} and e2 = {vx, vy}, from the
low-order network and rewire them. This results in two new edges, e′1 = {vi, vy} and
e′2 = {vx, vj}. It is important to note that the new edges should not already exist in the
network, ensuring no duplicate edges or self-loops involving the network’s nodes.

Step 2: Calculate the network’s robustness measure R after the edge rewiring and use
it as the optimization metric. If the robustness of the network is enhanced, then retain the
edge rewiring operation. Otherwise, this rewiring process is reserved with a probability
(P). Furthermore, the probability (P) decreases as the number of iterations increases.

Step 3: Repeat Steps 1 and 2 until the ratio of effective reconnected edges reaches the
required (default is 5%). Stop the iteration to obtain the optimized network.

Where R can be obtained by calculating R using Equation (2). Define t as the improve-
ment rate of robustness; then, we have:

t =
Ra f ter − Rbe f ore

Rbe f ore
× 100% (3)

where Rbe f ore is the initial robustness of the network and Ra f ter is the robustness of the
network after optimization using the simulated annealing algorithm.

4. Network Robustness Optimization Based on Simulated Annealing Algorithm

As shown in Figure 5, this section describes the proposed network robustness op-
timization model based on a simulated annealing algorithm, explicitly focusing on the
high-low-order coupled network. The process begins by randomly selecting two edges in
the low-order network. These selected edges are then disconnected, and an exchange is
made to reconnect them. It is important to note that this process does not alter the node
degrees. After the disconnection and reconnection of edges, the robustness of both the low-
order and higher-order networks is evaluated. If the robustness of both networks improves,
it indicates the effectiveness of the operation, and the reconnected edges are retained in the
network. Conversely, if the robustness does not improve, this rewiring process is reserved
with a probability (P). During this process, if the ratio of effective reconnected edges reaches
the required level, the iteration for reconnecting edges is concluded.
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Figure 5. Network Robustness Optimization.

4.1. Edge Rewiring

Edge rewiring refers to disconnecting edges in a network and then re-establishing
the same number of edges according to certain rules. As shown in Figure 6a, the network
contains two edges e1 and e2, where e1 = {v1, v2}, e2 = {v4, v3}. Subsequently, these two
edges are disconnected, and a new edge is added between nodes v1 and v3, and another
new edge is added between nodes v4 and v2. These new edges are denoted e′1 = v1, v3 and
e′2 = v4, v2, respectively. Figure 6b illustrates the resulting network after edge rewiring.
It is important to note that this method does not alter the node’s in-degree and out-degree.
For instance, the in-degree of node 1 remains 0, while the out-degree remains 2.

1 2

34
 

 

(a)

1 2

34
 

 

(b)

Figure 6. Edge rewiring. (a): Before rewiring. (b): After rewiring.

4.2. Experimental and Evaluation

To study the network’s robustness, we employ malicious node attacks to target the
network. Malicious attacks refer to purposefully selecting nodes for targeted attacks. In this
study, we employ a high-degree node prioritization attack strategy, which involves first
attacking nodes with higher degrees. Malicious attacks expedite the network’s collapse,
thereby providing a more intuitive demonstration of the effectiveness of the optimization
algorithm. In the second step of the algorithm presented in Section 3.4, three cases need to
be discussed:

(1) Optimizing solely based on the robustness of the low-order network.
(2) Optimizing solely based on the robustness of the higher-order network.
(3) Optimizing based on the robustness of both the higher-order and low-order networks.

Our research demonstrates that focusing solely on optimizing the robustness of the
low-order network does not necessarily lead to an enhancement in the robustness of the
higher-order network. As shown in Figure 7, the experimental results demonstrate that
the robustness of the low-order network has been significantly improved, as indicated by
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the observed enhancements in Figure 7a–c. However, the robustness of the higher-order
network shows minimal changes, as depicted in Figure 7d–f. For instance, in Figure 7a,
the calculation yields Ra f ter = 0.193, Rbe f ore = 0.138, resulting in a value of t = 40%.
This indicates that the robustness of the low-order network in CELEGANS has been
enhanced by approximately 40%. However, in Figure 7d, while the robustness of the
low-order network experiences a significant improvement, the robustness of the higher-
order network in CELEGANS not only fails to increase but experiences a decrease, from
the original Rbe f ore = 0.138 to Ra f ter = 0.134. As a result, the overall robustness of the
high-low-order coupled network is not enhanced.

(a) (b) (c)

(d) (e) (f)

Figure 7. Optimizing based on the robustness of the low-order network only. (a–c) illustrate the
alterations in the robustness of the low-order network, while (d–f) represent the corresponding
modifications in the robustness of the higher-order network.

Similarly, optimizing solely based on the robustness of the higher-order network does
not necessarily enhance the robustness of the low-order network. As shown in Figure 8,
the experimental results reveal that the robustness of the higher-order network exhibits
improvements (Figure 8d–f), whereas the robustness of the low-order network displays
minimal changes (Figure 8a–c). For instance, in Figure 8d, by computing Ra f ter = 0.227
and Rbe f ore = 0.192, we observe a t = 18%, indicating an approximate 18% enhancement in
the robustness of the higher-order network in CELEGANS. Conversely, in Figure 8a, the
robustness of the low-order network showcases negligible variations, maintaining results
comparable to the initial state. Consequently, the overall optimization of the high-low-order
coupled network’s robustness has not been effectively achieved.

In summary, improving the high-low-order coupled network’s robustness necessitates
considering both the low-order and higher-order networks’ robustness. Consequently,
the subsequent approach detailed in this paper considers both networks’ robustness as
optimization criteria, utilizing a simulated annealing algorithm to optimize the robustness
of the high-low-order coupled network effectively.
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(a) (b) (c)

(d) (e) (f)

Figure 8. Optimizing solely based on the robustness of the higher-order network. (a–c) illustrate
the alterations in the robustness of the low-order network, while (d–f) represent the corresponding
modifications in the robustness of the higher-order network.

5. Experimental Simulation and Analysis

The simulated annealing algorithm we designed needs to have an initial probability
of P and the value of P gradually decreases in the process. P determines the probability of
accepting the edge rewiring even if the robustness of the network decreases after the edge
rewiring. If P is too small, the algorithm tends to be a greedy algorithm, and in the case
of a large value of P, the algorithm tends to be stochastic. Therefore, P is a very important
parameter; according to our experiment, we choose P = 0.01 and set P = P − 0.001 after
every 1000 edge rewiring. Our experiment showed that the algorithm performs well under
the parameters.

5.1. Robustness Optimization of Coupled Networks Based on Three Classic Networks
5.1.1. Data Description

In this study, three well-known undirected networks are employed: the Erdős–Rényi
(ER) network [29], the Barabási–Albert (BA) network [30,31], and the small-world (SW)
network [32]. Each network has an average degree of < k >. Subsequently, each undirected
edge was assigned a random direction to introduce directionality, thereby transforming
these three undirected networks into directed networks. The references to ER, BA, and
SW networks in the subsequent text pertain to their corresponding directed networks.
Given that real-world networks typically have a relatively low number of bidirectional
edges, this study does not consider bidirectional edges. For instance, in the neural network
CELEGANS, the proportion of bidirectional edges is merely 8.4% [32], while in the chess
competition network CHESS, it is only 6.9% [33]. If not explicitly stated, the default number
of nodes in the generated networks is 1000.

5.1.2. Results Analysis

The experimental results are depicted in Figure 9. In the ER network and BA network,
both the low-order and higher-order networks demonstrate improved robustness, as evi-
dent in Figure 9a,b,d,e. However, in the case of the SW network, the network’s robustness
remains relatively unchanged, as illustrated in Figure 9c,f.
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(a) (b) (c)

(d) (e) (f)

Figure 9. Robustness optimization of three classic networks. (a–c) illustrate the alterations in the
robustness of the low-order network, while (d–f) represent the corresponding modifications in the
robustness of the higher-order network.

We examined the factors contributing to the unaltered robustness of the SW network
by evaluating the parameter R. As depicted in Figure 10, Figure 10a,b illustrate the
optimization of robustness in the low-order and higher-order networks, respectively. It was
observed that the higher-order network demonstrates robustness from the outset within
the SW network. For example, the initial robustness of the ER network’s higher-order
network is 0.1, while in the SW network, it is 0.37–3.7 times higher than that of the ER
network. Thus, when evaluating robustness optimization criteria for both low-order and
higher-order networks, no further enhancement is feasible for the higher-order network in
the SW network. Consequently, neither the low-order nor the higher-order networks in
the SW network attain optimized robustness, underscoring the intrinsic robustness of the
SW network.

(a) (b)

Figure 10. Robustness optimization of three classic networks. (a): Robustness of low-order networks.
(b): Robustness of higher-order networks.

Table 1 illustrates the results obtained from optimizing the robustness of the three
aforementioned classical networks mentioned above. By strategically exchanging a pro-
portion of ee edges within the network, we observed the resulting changes in network
robustness. The improvement rates of robustness for the low-order and higher-order
networks are denoted by tlow and thigh, respectively. The initial portion of the ± signs
represents the percentage of robustness improvement, while the latter half denotes the
standard deviation of the data. For the ER and BA networks, both the low-order and



Entropy 2024, 26, 8 11 of 16

higher-order networks manifested specific improvements in robustness. As an example,
the robustness of the higher-order network in the ER network increased by 162%, whereas
the low-order network’s robustness improved by 14.6%. The relatively modest enhance-
ment in the robustness of the low-order network can be attributed to its already strong
robustness at the outset. Consequently, despite optimization endeavors, the degree of
enhancement remains constrained.

Table 1. Robustness optimization of three classic networks.

Network ee tlow thigh

ER 5% 14.6% ± 0.23% 162% ± 4.15%
BA 5% 20.9% ± 0.82% 64.5% ± 1.02%
SW 0% 0% 0%

The experiments demonstrate that network robustness can be enhanced through effec-
tive edge rewiring. Additionally, as presented in Tables 2–4, we collected data on network
characteristics before and after optimization for the three networks. In the low-order net-
work, the optimized ER and BA networks exhibited enhancements in the average shortest
path length < d >, the average clustering coefficient C, and the degree assortativity r.

Table 2. Statistical properties of the ER network.

Network N M < k > < d > C r

Low-order Network 1000 8000 16 3.554 0.008 0.008
Optimized Low-order Network 1000 8000 16 3.563 0.011 0.032

Higher-order Network 1000 1348 2.696 6.460 0.602 −0.038
Optimized Higher-order Network 1000 1539 3.078 5.594 0.496 −0.069

Table 3. Statistical properties of the BA network.

Network N M < k > < d > C r

Low-order Network 1000 8000 16 3.554 0.012 0.260
Optimized Low-order Network 1000 8000 16 3.565 0.014 0.276

Higher-order Network 1000 2341 4.682 3.697 0.506 0.286
Optimized Higher-order Network 1000 2631 5.262 3.833 0.435 0.367

Table 4. Statistical properties of the SW network. Due to the inherent robustness of the SW network,
the network did not achieve significant improvement through optimization. ∼ indicates that the
corresponding values remained unchanged after optimization.

Network N M < k > < d > C r

Low-order Network 1000 8000 16 4.688 0.263 0.001
Optimized Low-order Network ∼ ∼ ∼ ∼ ∼ ∼

Higher-order Network 1000 7276 14.552 20.128 0.632 −0.008
Optimized Higher-order Network ∼ ∼ ∼ ∼ ∼ ∼

5.2. Robustness Optimization of Coupled Networks Based on Real-World Networks

The preceding section successfully showcased the efficacy of the proposed robustness
optimization algorithm through experiments conducted on three classical networks. In the
subsequent section, the study aims to further evaluate the algorithm’s effectiveness by
subjecting it to testing on 14 real-world networks.

5.2.1. Data Description

The experimental datasets consist of 14 directed networks from diverse domains, in-
cluding CELEGANS [32]; EMAIL, GD06, TRUST, SPAM, PAIRS, PAGES, CHESS, CORA [33];
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POLBLOGS [34]; CL-1000, MARAGAL, UTM3060 [35]; and ODLIS [36]. A brief description
of each dataset is as follows:

(1) CELEGANS: A neural network of the nematode worm, where edges represent synap-
tic or gap junction connections between neurons.

(2) EMAIL: A directed email communication network where nodes correspond to users
and directed edges represent email exchanges between users.

(3) GD06: A software class dependency network where nodes represent classes and edges
indicate dependencies between classes.

(4) TRUST: A user trust network where nodes represent users and edges represent trust
relationships between users.

(5) SPAM: A hyperlink network indicating pages pointing to other pages.
(6) PAIRS: A network where nodes represent words and edges represent related words

associated with a particular word.
(7) PAGES: A social network representing user-following relationships.
(8) CHESS: A network of international chess competitions where nodes represent players

and edges represent matches between players.
(9) CORA: A citation network of scientific papers where nodes represent papers and

edges represent paper-to-paper citations.
(10) POLBLOGS: A hyperlink network among U.S. political blogs.
(11) CL-1000, UTM3060, and MARAGAL: Networks obtained from Internet downloads.
(12) ODLIS: An online dictionary network where nodes represent terms and edges repre-

sent one term describing the meaning of another term.

In Sections 3.1 and 3.2, we expounded on the genesis of high-order networks and
underscored the significance of coupled high-order and low-order networks. Scholars
have validated this theoretical framework in diverse domains, such as social, Internet,
biological, and information networks. To better substantiate our experimental findings,
the network datasets are carefully selected to align with these conditions. For instance,
datasets like EMAIL, TRUST, PAGES, POLBLOGS, and CHESS fall under the category of
social networks. Similar considerations apply to the other network types.

The structural statistical features of these experimental datasets are presented in
Table 5, arranged in ascending order based on node count. It is crucial to emphasize that,
due to the lack of strong connectivity in certain networks, experiments were performed
using the largest strongly connected component of each network [10].

Table 5. Statistical characteristics of real-world networks. Note: N represents the number of nodes,
M represents the number of edges, < k > represents the average degree of the network, < d >

represents the average shortest path length, C represents the clustering coefficient, r represents the
degree assortativity.

Network N M < k > < d > C r

CELEGANS 297 2345 15.79 3.99 0.17 −0.26
EMAIL 906 12,085 26.68 2.68 0.34 0.08
CL-1000 928 4897 10.55 3.26 0.10 −0.07

POLBLOGS 1224 19,022 31.08 3.19 0.22 −0.19
GD06 1538 8032 10.44 5.21 0.22 −0.12

MARAGAL 1964 26,692 27.18 3.23 0.10 −0.14
ODLIS 2900 18,241 12.58 4.59 0.18 0.01

UTM3060 3060 39,151 25.59 14.43 0.39 0.34
TRUST 4658 40,133 17.23 2.90 0.09 0.11
SPAM 4767 37,375 15.68 3.81 0.14 0.04
PAIRS 5018 63,608 25.35 4.26 0.13 −0.02
PAGES 7057 89,429 25.34 4.25 0.21 0.07
CHESS 7301 60,046 16.45 4.29 0.10 0.39
CORA 23,166 91,500 7.90 13.33 0.15 0.02



Entropy 2024, 26, 8 13 of 16

5.2.2. Results Analysis

The partial visualization results of the experiments are shown in Figure 11a,b. By incor-
porating the robustness of both the low-order and higher-order networks as optimization
criteria, the ratio of edge rewiring is controlled at 5%. As a result, CELEGANS, PAIRS, and
GD06 exhibit specific improvements in low-order and high-order networks.

(a) (b) (c)

(d) (e) (f)

Figure 11. Network Robustness Optimization In Real-World Networks. (a–c) illustrate the alterations
in the robustness of the low-order network, while (d–f) represent the corresponding modifications in
the robustness of the higher-order network.

To visually assess the robustness of the networks before and after optimization,
Figure 12 is presented, which compares the differences in robustness by calculating the R
values. The robustness of the networks significantly improves through the optimization
process employing the simulated annealing algorithm. For instance, in the CELEGANS net-
work, the robustness of the low-order network before optimization is Rbe f ore = 0.138, and
after optimization, it is Ra f ter = 0.188. This signifies an enhancement of 0.15 in the robust-
ness of the low-order network, corresponding to a percentage increase of 36% (t = 36%).
Likewise, the percentage increase in robustness for the higher-order network is calculated
as 16%. The optimized networks demonstrate a noteworthy enhancement in robustness.

(a) (b)

Figure 12. Robustness optimization of three classic networks. (a): Robustness of low-order networks.
(b): Robustness of higher-order networks.

The experimental results for the 14 real-world networks after optimization are sum-
marized in Table 6. To minimize the error due to randomness, we averaged the results
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of all experiments 10 times. As mentioned in the previous section, the initial portion of
the ± signs represents the percentage of robustness improvement, while the latter half
denotes the standard deviation of the data. Through the effective 5% edge swapped strat-
egy, the robustness of all networks has been significantly improved. The data clearly
demonstrate that even by optimizing a small fraction of edges in the low-order network,
both the low-order and higher-order networks can experience substantial enhancements
in robustness, leading to an overall improvement in the robustness of the high-low-order
coupled network. As an example, in the GD06 network, with only 5% of edges swapped,
the robustness of the low-order network increased by 64.7%, while the robustness of the
higher-order network increased by 37.9%. This optimization effect is noteworthy. When
both the low-order and higher-order networks exhibit improved robustness, it naturally
translates to a heightened overall robustness of the high-low-order coupled network.

Table 6. Enhancement of network robustness. ee represents the percentage of edges effectively
swapped in the low-order network. tlow denotes the improvement in robustness of the low-order
network and thigh represents the improvement in robustness of the higher-order network.

Network ee tlow thigh

CELEGANS 5% 36.1% ± 0.44% 16.1% ± 0.75%
EMAIL 5% 41.1% ± 0.32% 34.3% ± 0.42%
CL-1000 5% 21.2% ± 0.04% 22.1% ± 0.04%

POLBLOGS 5% 60.1% ± 0.92% 53.4% ± 1.18%
GD06 5% 64.7% ± 0.49% 37.9% ± 0.51%

MARAGAL 5% 18.2% ± 0.03% 22.3% ± 0.07%
ODLIS 5% 59.5% ± 0.62% 31.1% ± 0.39%

UTM3060 5% 30.7% ± 0.37% 29.1% ± 0.33%
TRUST 5% 42.3% ± 0.71% 33.5% ± 0.66%
SPAM 5% 69.3% ± 1.24% 75.2% ± 1.12%
PAIRS 5% 14.9% ± 0.02% 15.3% ± 0.04%
PAGES 5% 19.4% ± 0.13% 17.1% ± 0.52%
CHESS 5% 65.2% ± 1.78% 58.9% ± 1.32%
CORA 5% 45.1% ± 0.79% 39.4% ± 0.83%

6. Conclusions

This paper proposes a simulated annealing optimization algorithm to enhance the
robustness of high-low-order coupled directed networks. The proposed method simul-
taneously considers the robustness of both the low-order and higher-order networks as
optimization objectives. Unlike traditional methods that focus solely on improving the
robustness of the low-order network, the proposed algorithm optimizes the robustness
of both the low-order and higher-order networks. By rewiring a small fraction of edges
in low-order networks, while preserving the degree distribution of network nodes, the
algorithm achieves improved robustness in low-order and higher-order networks.

The effectiveness of the proposed method is demonstrated through an experimental
analysis conducted on ER, BA, and SW networks, as well as 14 real-world networks.
The results show that the algorithm effectively improves the robustness of both low-
order and higher-order networks. When both networks exhibit improved robustness,
the overall robustness of the high-low-order coupled network is also enhanced. Notably,
significant enhancements in robustness are achieved by optimizing only 5% of the edges
in the networks. Additionally, from a holistic perspective, as the number of network
nodes increases, the computational requirements of our algorithm demonstrate nearly
linear growth.

It is important to note that the proposed method is tailored explicitly for directed
networks, and its applicability to undirected networks necessitates additional investigation.
The approach based on the simulated annealing algorithm may also encounter limitations,
such as slow convergence speed and inability to guarantee the global optimal solution.
Potential future research directions could explore alternative methods, including heuris-
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tic approaches, methods based on complex network dynamics, or deep-learning-based
methods. These avenues aim to further enhance the robustness of coupled high-low-order
networks and overcome the limitations of the simulated annealing algorithm.
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