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Abstract: In the realm of online social networks, the spreading of information is influenced by a
complex interplay of factors. To explore the dynamics of one-time retweet information spreading,
we propose a Susceptible–Infected–Completed (SIC) multi-information spreading model. This
model captures how multiple pieces of information interact in online social networks by introducing
inhibiting and enhancement factors. The SIC model considers the completed state, where nodes
cease to spread a particular piece of information after transmitting it. It also takes into account the
impact of past and present information received from neighboring nodes, dynamically calculating
the probability of nodes spreading each piece of information at any given moment. To analyze
the dynamics of multiple information pieces in various scenarios, such as mutual enhancement,
partial competition, complete competition, and coexistence of competition and enhancement, we
conduct experiments on BA scale-free networks and the Twitter network. Our findings reveal that
competing information decreases the likelihood of its spread while cooperating information amplifies
the spreading of mutually beneficial content. Furthermore, the strength of the enhancement factor
between different information pieces determines their spread when competition and cooperation
coexist. These insights offer a fresh perspective for understanding the patterns of information
propagation in multiple contexts.

Keywords: multi-information spreading; online social network; inhibiting factor; enhancement factor;
one-time retweet information

1. Introduction

The emergence of online social networks has revolutionized the spreading of infor-
mation. These platforms provide easy access to a wide range of information, including
news, entertainment, and academic research. This accessibility not only enhances people’s
understanding of the world, but also facilitates the sharing and spread of knowledge,
contributing to societal development and progress.

However, the rapid spread of information through online networks also brings about
various challenges. Privacy breaches, exposure to false information, and the propagation of
harmful rumors are among the negative impacts associated with this phenomenon [1–6].
Therefore, it is crucial to deeply explore different forms of information spreading. Under-
standing the mechanisms of information diffusion and implementing effective measures to
mitigate its negative effects are essential for public opinion monitoring and information
recommendation systems.

Drawing parallels between the spread of epidemics and information, researchers
have often employed epidemic models to study information spreading. Previous research
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primarily focused on single information spread within networks [7–14]. However, given
the vast array of information types and complex interactions within online social networks,
which significantly impact the dynamics of information diffusion, scholars have increas-
ingly turned their attention to multi-information spreading models. These models aimed to
simulate and comprehend the intricate mechanisms underlying information propagation
in online social networks [15–22].

The commonly used epidemic models, such as SIR and SIS, have been applied to
the research of single information spreading [23–26]. Zhu [27] introduced the concept of
information priority and focused on the competitive relationship between original false in-
formation and updated information. Shang [28] investigated the influence of overlap among
communities on epidemics. By constructing an SIS model, it was found that epidemics
spread faster in networks with a higher level of overlapping communities. Wang [29] stud-
ied the information spreading dynamics on complex networks with cliques and proved that
the phase transition was always continuous and independent of the cliques. Continuous
phase transition implies that the total number of infections during an epidemic varies with
the infectiousness, exhibiting more complex collective dynamics influenced by environmen-
tal factors, including discontinuous or explosive transitions [30]. Prakash [15] proposed an
information competition spreading model and discovered that strong information with a
high spreading probability completely supplanted weaker information. Beutel [31] investi-
gated the conditions for the coexistence of two competing viruses (or products or ideas)
in a network. Wei [32] examined the intertwined diffusion of two rival information in a
composite network based on the SIS model. They established a non-linear dynamic system
and conducted an eigenvalue analysis to identify the critical point of epidemic behavior.
Fátima [17] used the SIS model to explore the interaction between the spread of epidemics
and the spreading of disease knowledge information, showing that the knowledge of the
disease helped to reduce the disease prevalence and increase the epidemic threshold of the
disease. Zhang [18] proposed an information diffusion framework to analyze the overall
interactive behavior of users. Xiao [19] explored the impact factor and the interrelation
of network layers on the information diffusion process based on the SIS model. Fan [33]
studied the impact of a hybrid information propagation model on the epidemic and its
related information coupling dynamics in a multilayer network. In this multilayer network,
the upper layer was composed of randomly generated simple complexes, while the lower
layer consisted of either traditional scale-free or Erdős–Rényi (ER) random networks.

However, despite extensive research on multi-information spreading models, there
are still several unresolved issues that warrant attention.

1. When examining the relationships between different types of information, it is impor-
tant to acknowledge that cooperation and competition can coexist within a network.
While many researchers tend to focus on either cooperation or competition, under-
standing the interplay between these two dynamics is crucial. Even when two pieces
of information compete, the degree of competition can vary, ranging from complete
to partial. By considering the dynamics of spreading between different types of in-
formation, we can enhance our theoretical foundation for managing and controlling
information spreading in networks. This deeper understanding allows us to develop
strategies and measures that effectively address the negative impacts associated with
information spreading. By recognizing the intricate interactions and complex nature
of information propagation, we can establish more robust frameworks for managing
and mitigating the consequences of network information spread.

2. Certain types of information possess strong timeliness, users may choose to retweet a
piece of information upon first encountering it, but then cease to engage in any further
retweets of the same content. Integrating the SIR model with one-time retweet behavior
is crucial for accurately simulating and understanding the mechanisms of information
spreading in social networks. In terms of its impact on information spreading, this
‘one-time retweet’ behavior could inhibit further diffusion of information, affecting the
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speed and breadth of information propagation. Therefore, this user behavior should
be considered when constructing models of information propagation.

To address the above issues, we draw on the concept of influence factors [19] and
propose a Susceptible–Infected–Completed (SIC) information-spreading dynamic model.
We use the microscopic Markov chain approach (MMCA) [34,35] to establish the dynamic
equation and discuss the information spreading mechanism under different relationships
in both artificial and real networks. The main research results of this paper are as follows:

1. Proposal of the SIC model: We introduce a novel SIC model where nodes transition to
a completed state after participating in information spreading. This model specifically
focuses on one-time retweet information.

2. Examination of the impact factor: We incorporate the concept of influence factors to
describe the interactions between different types of information. By considering free
spreading, cooperative spreading, partial competitive spreading, complete competitive
spreading, and the coexistence of competition and cooperation, we analyze how
multiple pieces of information propagate within the network.

3. Utilization of the MMCA: We employ the MMCA to establish the dynamic equation
of the SIC model. This mathematical framework allows us to dissect and understand
the intricate dynamics of information spreading within the network.

By leveraging influence factors and employing the MMCA approach, we present a
comprehensive analysis of information diffusion, shedding light on its mechanisms under
diverse relationship scenarios. The proposed model is applied to analyze the spread of
information in both simulated artificial networks and real-world network data.

The rest of this paper is organized as follows. In Section 2, we provide the problem
definition. In Section 3, we describe the proposed model in detail. In Section 4, we present
and analyze the experimental results of the model. Finally, in Section 5 we conclude
the paper.

2. Problem Definition

In order to study the spreading of multiple pieces of information in a network and their
interactions with each other, we first define a network G = {V, E}. V = {v1, v2, v3, . . . , vN}
represents the set of nodes in the network, vi is specific nodes, and E = eij =

{
<vi, vj>|i, j ∈ V

}
represents the edges in the network, with eij indicating the edges between node i and node
j. Information can spread along these edges. In f = {In f1, In f2, . . . , In fM} is employed to
denote the collection of M distinct pieces of information.

In this paper, the focus is on analyzing the spreading of information in a network
that has a lasting impact once it is disseminated. To address this, the proposed model is
called the SIC model. The node status is divided into three categories: S (Susceptible), I
(Infected), and C (Completed). Nodes in the Si state refer to those who have not yet been
exposed to In fi and are susceptible to its influence. Nodes in the Ii state indicate those who
receive In fi from their neighbors and are interested in it. They are willing to spread In fi to
their friends. Nodes in the Ci state indicate that the node has already spread a certain In fi
and maintains a memory of it, but the In fi will no longer be spread by them. This state is
similar to the “recovered” state in the SIR model. However, nodes in the Ci state only mean
that the node will no longer spread In fi, but there is still a possibility of spreading other
information on the network. Moreover, because nodes in the Ci state maintain a memory of
In fi, this affects the probability of the node spreading other information in the future.

Table 1 displays the symbols used in our paper. The cooperative and competitive
relationships between information are controlled by parameters a1 and a2. a1 represents
the influence factor between information in a competitive relationship, with 0 ≤ a1 ≤ 1.
The larger the value of a1, the greater the inhibit strength. When a1 = 1, it means that
the information completely repels other information, and the node only accepts certain
information that repels others. When a1 = 0, the information does not compete with
other information. a2 represents the influence factor between information in a cooperative



Entropy 2024, 26, 152 4 of 14

relationship, and the larger the value of a2, the stronger the cooperative strength. We use
β = {β1, β2, . . . , βM} to represent the infection rate, where βi denotes the infection rate of
In fi. The infection rate is defined as the probability that a node in the susceptible state (S
state) will be influenced by a neighboring node in the infected state (I state)

Table 1. Symbols and definitions.

Symbols Definitions

In f Information
βi Infection rate of in fi
γi Completed rate of in fi
a1 The influence parameter of the competitive information, and satisfies a1 ∈ [0, 1]
a2 The influence parameter of the cooperative information, and satisfies a2 ∈ [0, ∞)
V The set of nodes
E The set of edges
N The number of nodes
M The number of information
A The adjacency matrix of the network
λ The largest eigenvalue of matrix A
Si Susceptible state for information i
Ii Infected state for information i
Ci Completed state for information i

3. Proposed Model

In this paper, the focus is on discussing five different types of information spreading
within networks. These categories include free spreading, mutual enhancement, partial
competition, complete competition, and the coexistence of competition and enhancement.

(1) Free spreading: In this scenario, there is no mutual influence between different pieces
of information. Each piece of information spreads independently throughout the
network without any direct interaction or impact from other information items.

(2) Mutual enhancement: When information spreads through mutual enhancement, the
probability of a node spreading cooperative information increases after it disseminates
a piece of information. This means that the act of spreading one piece of information
enhances the likelihood of that node also spreading additional cooperative information.

(3) Partial competition: In the case of local competition between information, the proba-
bility of a node spreading competitive information is inhibited after it spreads a piece
of information. This implies that when multiple pieces of information compete, the
spreading of one piece of information inhibits the node’s tendency to spread other
competitive information.

(4) Complete competition: when there is complete competition between information, a
node will not spread competitive information after it spreads a piece of information.

(5) Coexistence of competition and enhancement: in the case of the coexistence of com-
petition and enhancement between different kinds of information, the probability
of a node spreading cooperative information increases, and at the same time, the
probability of spreading competitive information is inhibited after it spreads a piece
of information.

By exploring these different types of information spreading and their dynamics, we
aim to provide a comprehensive understanding of how information disseminates within
networks. This knowledge can contribute to the development of effective strategies for
managing and controlling the spread of network information.

The Markov chain approach is utilized in this paper to analyze the five types of
information spreading mentioned earlier. To facilitate discussion and explanation, let us
consider an example with three pieces of information. The principles can be extended to
include more than three pieces of information.
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In this model, the initial node can receive any of the M pieces of information present in
the network. For the sake of simplicity, we refer to the three pieces of information as In f1,
In f2, and In f3. For further analysis, the subsequent content assumes that In f1 and In f3
have a cooperative relationship, while In f2 has a competitive relationship with both In f1
and In f3. We will explore their relationships within the context of the SIC model. Here
are some examples of states within this model: when a node is in the state of S1S2S3, it
indicates that the node has not received any of the three pieces of information; when a
node is in the state of I1S2S3, it means that the node has only spread In f1; when a node is
in the state of C1 I2S3, it means that the node has already spread In f1, and now it spreads
In f2, which has a competitive relationship with In f1; and when a node is in the state of
C1S2 I3, it means that the node has already spread In f1, and now it spreads In f3, which has
a cooperative relationship with In f1. These states and their relationships are part of the SIC
model, which aims to analyze the spread of information in a network while considering
the effects of cooperation and competition among different pieces of information.

When the infection rate of In fi is βi, if the node is in S1S2S3 state at time t, it will
change to I1S2S3, S1 I2S3, S1S2 I3 with probabilities f (1)i , f (2)i , f (3)i [36], which are:

f (1)i (t) = 1 −
N

∏
j=1

(
1 − β1 Ajis1

j (t)
)

(1)

f (2)i (t) = 1 −
N

∏
j=1

(
1 − β2 Ajis2

j (t)
)

(2)

f (3)i (t) = 1 −
N

∏
j=1

(
1 − β3 Ajis3

j (t)
)

(3)

The variable N denotes the total number of nodes in the network. A is the adjacency
matrix of the network. Aji = 1 indicates that individual i has an edge directed towards
individual j, while Aji = 0 signifies that there is no directed edge between them. The
variables s1

j (t), s2
j (t), and s3

j (t), respectively, indicate whether individual j is in an infected
state with In f1, In f2, and In f3 at time t. If individual j is in an infected state, we have
s1

j (t) = 1, otherwise s1
j (t) = 0. Similarly, s2

j (t) and s3
j (t) are defined.

The spreading mechanism operates as follows: Every node in states I1S2S3 transmits
information in f1 to each of its adjacent nodes at time t. Each of these attempts has an
independent success rate, represented by the probability β1. Concurrently, nodes in states
S1 I2S3 and S1S2 I3 also aim to disseminate information In f2 and In f3 to each of their
neighboring nodes with probabilities β2 and β3, respectively. Therefore, f (1)i , f (2)i , and f (3)i
represent the probabilities that a given node i receives information In f1, In f2, and In f3
from its neighboring nodes.

We construct a state transition diagram for the nodes, with Figure 1 represents the
state transition diagram for prioritizing the reception of In f1,In f2, and In f3.

According to state transmission, we use the MMCA to describe the collaborative
evolution process of all information sources. MMCA pivots on the fundamental principles
of Markov chains, where the future state of a system is dependent solely on its current
state. At the heart of this approach is the consideration of each individual in the population
as a distinct entity, with a set of possible states. The transitions between these states are
governed by probabilities:
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where PI1S2S3
i (t + 1) represents the probability of node i in the I1S2S3 state at time t + 1.

A node is set in one of all different states, so PS1S2S3
i (t + 1) = 1 − Above.The epidemic
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threshold is the critical point for information explosion. To determine the threshold, we
first simplify Equation (4) to a general expression P⃗(t + 1) = g(P⃗(t)), where

P⃗(t) = (P⃗I1S2S3(t), P⃗S1 I2S3(t), P⃗S1S2 I3(t), P⃗S1 I2 I3(t), P⃗I1S2 I3(t), P⃗I1 I2S3(t), P⃗I1S2C3(t)

P⃗I1C2S3(t), P⃗S1 I2C3(t), P⃗C1 I2S3(t), P⃗C1S2 I3(t), P⃗S1C2 I3(t), P⃗I1 I2C3(t),

P⃗I1C2 I3(t), P⃗C1 I2 I3(t), P⃗I1C2C3(t), P⃗C1 I2C3(t), P⃗C1C2 I3(t), P⃗I1 I2 I3(t))

(5)

P⃗I1S2S3(t) =
(

PI1S2S3
1 (t), PI1S2S3

2 (t), . . . , PI1S2S3
N (t)

)
and others are similarly.
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Figure 1. The state transition diagram for prioritizing the spreading of In f1, In f2 and In f3.

Theorem 1. The system is asymptotically stable at P⃗(t) = 0⃗ when the eigenvalues of ∇g(⃗0) are
less than 1 in absolute value, where Jacobian matrix is calculated as follows:

J = [∇g(⃗0)]m,n =
∂gm,t+1

∂Pn,t

∣∣∣∣
P⃗n=⃗0

. (6)

In order to compute the epidemic threshold, it is necessary to solve the Jacobian matrix
of the system. Based on P⃗ = 0⃗, the eigenvalues of its Jacobian matrix are as follows:
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(1 − γ1)E + β1 A
(1 − γ2)E + β2 A
(1 − γ3)E + β3 A
(1 − γ1)(1 − γ2)E
(1 − γ1)(1 − γ3)E
(1 − γ2)(1 − γ3)E
(1 − γ1)E
(1 − γ2)E
(1 − γ3)E

(7)

According to Theorem 1, there are

Max((|(1 − γ1) + β1λ|, |(1 − γ2) + β2λ|, |(1 − γ3) + β3λ|, |(1 − γ1)(1 − γ2)|,
|(1 − γ1)(1 − γ3)|, |(1 − γ2)(1 − γ3)|, |(1 − γ1)|, |(1 − γ2)|, |(1 − γ3)|) < 1)

(8)

where λ represents the maximum eigenvalue of the adjacency matrix. When the system
attains stability, no information can spread through the network.

γ1, γ2, γ3, β1, β2, β3 all range from 0 to 1. In the context of undirected networks, the
adjacency matrix possesses the properties of irreducibility, non-negativity, and symmetry.
In accordance with the Perron–Frobenius Theorem, its largest eigenvalue is a positive real
number, therefore (1 − γ1) + β1λ > 0, (1 − γ2) + β2λ > 0 and (1 − γ3) + β3λ > 0 and
condition (8) can be rewritten as follows:

(1 − γ1) + β1λ < 1
(1 − γ2) + β2λ < 1
(1 − γ3) + β3λ < 1

⇒


β1/γ1 < 1/λ
β2/γ2 < 1/λ
β3/γ3 < 1/λ

(9)

When βi/γi < 1/λ , the spreading of information within the network has completed.
It is evident from the derived results that the epidemic threshold remains independent of
the interaction factors.

4. Results and Analysis

In this section, we verify the influence of the relationships between different pieces
of information on multiple information propagation processes separately on real-world
networks and synthetic networks.

4.1. Experimental Datasets

We conduct simulations of the proposed model based on both real and synthetic
networks. The dataset for the real network is extracted from the Twitter dataset. The details
are as follows:

1. Twitter: Twitter serves as a platform for real-time global event tracking and discussions
on trending topics. Users can engage in open, real-time conversations and interact
with other users. The dataset is collected from 5000 users and their social circles,
where users and their social relationships are represented as nodes and connections,
respectively. The statistical characteristics of the Twitter network are shown in Table 2.

2. Synthetic network: The synthetic network is generated using the Barabási–Albert
(BA) network [37] and consists of 1000 nodes. The parameter m is set to 3, indicating
the number of connected edges when a new node is added.

Table 2. Features of the Twitter network.

Number of Nodes Number of Edges Average Path Length Clustering Coefficient

5000 185,433 3.2597 0.1178
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4.2. Multiple Information Analysis

In this section, we explore the influence of interaction factors on propagation. Given
that the emphasis of this section is on the interaction between pieces of information, we
primarily observe the impact of changes in the values of α1 and α2 on the spreading, where
a1 ∈ [0, 1], a2 ∈ [0, ∞). This ensures the generality of the experiments as we randomly
select five initial nodes for information propagation experiments with each experiment
repeated 100 times, and the results averaged.

In Figure 2a, we depict the relationship between the number of individuals involved
in the spreading of information and the enhancement factor a2 in the synthetic network,
considering the parameters β1 = 0.1, β3 = 0.1. The information in the network mutu-
ally enhances each other. With an increase in a2, the number of individuals involved in
the spreading of information grows. The positive correlation between the enhancement
factor and the number of individuals engaged in spreading information implies that as
the strength of mutual enhancement increases, a larger segment of the network actively
participates in the propagation of information.
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Figure 2. (a) The relationship in the synthetic network between the proportion of individuals spread-
ing information and the enhancement factor a2 with β1 = 0.1 and β3 = 0.1. (b) The relationship in the
synthetic network between the proportion of individuals spreading information and enhancement
factor a2 with β1 = 0.1, β3 = 0.3.

Figure 2b illustrates the impact of facilitation factors on information propagation
under different spreading probabilities. With β1 = 0.1, β3 = 0.3, we initially observed that
the propagation range of both pieces of information increases with the strengthening of
the facilitation factor. Additionally, the enhancement amplitude for In f1 is greater, while
the enhancement amplitude for In f3 is smaller. In scenarios of mutual enhancement, the
information with a higher inherent tendency to spread can act as a catalyst, facilitating the
dissemination of less infectious information.

Figure 3 illustrates the variation in individuals participating in information propa-
gation in the Twitter network under different enhancement factors. Given the structural
disparities between the Twitter network and a synthetic network, we set the infection rate
β1 = 0.08, β3 = 0.08. It can be observed that with an increase in the enhancement factor, the
propagation range of In f1 and In f3 becomes larger. These findings align with the results
observed in studies of synthetic networks.

To investigate the impact of the inhibition factor, we disregard the enhancement
relationship between In f1 and In f3 by setting a2 = 0. Figure 4a illustrates the influence
of the inhibition factor on information propagation in a synthetic network. We set the
infection rates as β1 = 0.15, β3 = 0.15, β2 = 0.3. When the inhibition factor a1 = 0, there
is no competition among the three pieces of information. Therefore, all three pieces of
information can be spread freely. As the inhibition factor increases, the propagation of all
three pieces of information becomes constrained.
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Figure 3. The relationship in the Twitter network between the proportion of individuals spreading
information and the enhancement factor a2 with β1 = 0.08, β3 = 0.08.
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Figure 4. (a) The relationship in the synthetic network between the proportion of individuals
spreading information and the inhibiting factor a1 with β1 = 0.15, β3 = 0.15, β2 = 0.3. (b) The
relationship in the Twitter network between the proportion of individuals spreading information
with the inhibiting factor a1, β1 = 0.08, β3 = 0.08 and β2 = 0.3.

Figure 4b illustrates the impact of the inhibition factor a1 on information propagation
in the Twitter network. We set the infection rates as β1 = 0.08, β3 = 0.08 and β2 = 0.3.
When a1 = 0, the influence range of all three pieces of information, which propagate
freely, is significantly large. However, as a1 increases, the propagation range of information
with lower infection rates notably decreases, while the impact on information with higher
infection rates is comparatively lower.

Figure 5a illustrates the variation in information propagation with changes in a2 when
both inhibition and enhancement factors coexist in a synthetic network. It can be observed
that when the infection rates β1 = 0.15, β3 = 0.15 and β2 = 0.3, and the inhibition factor is
a1 = 1, the propagation range of In f2 decreases with an increase in the enhancement factor.
In contrast, the propagation ranges of In f1 and In f3 increase with the enhancement factor.

Figure 5b illustrates the variation in information propagation with changes in a2 when
both inhibition and enhancement factors coexist in the Twitter network. The infection rate
is set as β1 = 0.08, β3 = 0.08 and β2 = 0.3. When a2 is small, the number of individuals
spreading In f1 and In f3 is lower than that of In f2. However, as a2 continues to increase, the
number of individuals spreading In f1 and In f3 gradually surpasses the number of individuals



Entropy 2024, 26, 152 11 of 14

spreading In f2. This dynamic signifies a critical turning point—when the enhancement factor
is small, information with a higher infection rate impedes the dissemination of information
with a lower infection rate. However, as the enhancement factor increases, a more complex
interplay emerges. Information with a higher infection rate becomes subject to joint inhibition
by multiple pieces of information characterized by lower influence probabilities.
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Figure 5. (a) The relationship in the synthetic network between the proportion of individuals
spreading information and enhancement factor a2 with β1 = 0.15, β3 = 0.15, β2 = 0.3, a1 = 1. (b) The
relationship in the Twitter network between the proportion of individuals spreading information and
the enhancement factor a2 with β1 = 0.08, β3 = 0.08, β2 = 0.3, a1 = 1.

Next, we explore the impact of enhancement and inhibiting factors on information
spreading in networks constructed with different BA model parameters m. Figure 6a
illustrates the changes in the propagation of In f1 in synthetic networks for different m
values. The infection rate is set as β1 = 0.1, β3 = 0.1. When m is small, the spreading
of information faces significant challenges. Sparse networks typically feature limited
connectivity among nodes, which hinders the efficient spread of information. In such
scenarios, even with an increase in the enhancement factor, the impact on information
propagation remains minimal. As m increases, the number of individuals involved in the
propagation of In f1 gradually increases. The amplifying effect of the enhancement factor a2
also becomes more pronounced, indicating that improving the connectivity of the network
has a positive impact on information propagation.
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Figure 6. (a) The relationship in the synthetic network between the proportion of individuals
spreading In f1 and the parameter m with β1 = 0.1, β3 = 0.1. (b) The relationship in the synthetic
network between the proportion of individuals spreading In f2 and the inhibiting factor a1 with
β1 = 0.15, β3 = 0.15, β2 = 0.3 and different m.
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Figure 6b illustrates the varying impact of the inhibition factor a1 on the propaga-
tion of In f2 in synthetic networks for different values of m. The infection rate is set as
β1 = 0.15, β3 = 0.15 and β2 = 0.3. When m is large, an increase in the inhibition factor
leads to a gradual reduction in the proportion of individuals involved in the diffusion of
In f2. Conversely, when m is small, the influence of an increased inhibition factor on the
diffusion of In f2 is small. These findings suggest that in networks with higher connectivity,
the inhibition factor has a more significant impact on the propagation of In f2, while in
networks with lower connectivity, the effect of the inhibition factor on In f2 propagation is
less pronounced.

5. Conclusions

In this paper, we propose a SIC multi-information spreading model that incorporates
enhancement and inhibiting factors to analyze their influence on the spread of multiple
pieces of information. Through our experiments, several significant findings have emerged:
(1) When multiple pieces of information mutually enhance each other, information with
a higher infection rate can amplify the spread of information with a lower infection rate.
This highlights the interplay between different pieces of information and how they can
synergistically contribute to the overall spread. (2) The presence of competition among
pieces of information hinders their spread. Moreover, the lower the infection rate of a piece
of information, the more it is inhibited by competing information. This emphasizes the
impact of competition on the spreading of individual pieces of information. (3) In cases
where there is cooperation and competition among pieces of information, the one with a
higher infection rate exerts a dominant influence on information spreading. This showcases
the power dynamics at play when multiple pieces of information interact within a network.
(4) In sparse networks with limited connectivity, the challenges in spreading information
are more pronounced. Additionally, the impact of enhancement and inhibiting factors on
information transmission becomes less significant in such networks. Overall, we provide
valuable insights into understanding and predicting the dynamics of multi-information
spreading in various contexts.
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