
Citation: Yang, Y.; Chang, R.; Feng,

X.; Li, P.; Chen, Y.; Zhang, H. An

n-Dimensional Chaotic Map with

Application in Reversible Data

Hiding for Medical Images. Entropy

2024, 26, 254. https://doi.org/

10.3390/e26030254

Academic Editor: Amelia Carolina

Sparavigna

Received: 9 February 2024

Revised: 7 March 2024

Accepted: 9 March 2024

Published: 13 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

An n-Dimensional Chaotic Map with Application in Reversible
Data Hiding for Medical Images
Yuli Yang 1, Ruiyun Chang 2, Xiufang Feng 2, Peizhen Li 2, Yongle Chen 1 and Hao Zhang 1,*

1 College of Computer Science and Technology, Taiyuan University of Technology, Jinzhong 030600, China;
yangyuliyyl@126.com (Y.Y.); chenyongle@tyut.edu.cn (Y.C.)

2 College of Software, Taiyuan University of Technology, Jinzhong 030600, China;
changruiyun0927@126.com (R.C.); feng_tyut@126.com (X.F.); 19135733503@163.com (P.L.)

* Correspondence: zhangh545@126.com

Abstract: The drawbacks of a one-dimensional chaotic map are its straightforward structure, abrupt
intervals, and ease of signal prediction. Richer performance and a more complicated structure are
required for multidimensional chaotic mapping. To address the shortcomings of current chaotic sys-
tems, an n-dimensional cosine-transform-based chaotic system (nD-CTBCS) with a chaotic coupling
model is suggested in this study. To create chaotic maps of any desired dimension, nD-CTBCS can
take advantage of already-existing 1D chaotic maps as seed chaotic maps. Three two-dimensional
chaotic maps are provided as examples to illustrate the impact. The findings of the evaluation and
experiments demonstrate that the newly created chaotic maps function better, have broader chaotic
intervals, and display hyperchaotic behavior. To further demonstrate the practicability of nD-CTBCS,
a reversible data hiding scheme is proposed for the secure communication of medical images. The
experimental results show that the proposed method has higher security than the existing methods.

Keywords: chaotic map; reversible data hiding; privacy protection; secure communication

1. Introduction

In recent years, nonlinear theory has received more and more attention. As a typical
branch of nonlinear theory, chaos theory has been widely used in mathematics, medicine,
physics, computer science, astronomy, ecology, and other scientific and engineering fields
since its emergence [1]. A nonlinear system exhibiting chaotic behavior should possess
high sensitivity, ergodicity, unpredictability, and initial value sensitivity, as per Devaney’s
definition [2]. These important properties make it popular in security applications such
as audio encryption [3,4], image encryption [5–7], image watermarking [8,9], and data
hiding [10–12]. For these chaotic-based applications, the security largely depends on the
performance of the underlying chaotic system.

1.1. Chaotic Systems-Related Work

Based on the number of state variables involved, chaotic systems can be loosely classi-
fied as one-dimensional chaotic maps or n-dimensional chaotic maps. Simple structure, low
computing cost, and convenient hardware are some of the benefits of 1D chaotic mapping.
Nevertheless, these benefits are sometimes accompanied by a lack of security. Many one-
dimensional chaotic maps exhibit discontinuous chaotic ranges [13], which can cause chaotic
behavior to degenerate into regular behavior. Motivated by the shortcomings of current
one-dimensional chaotic maps, scientists have started working to enhance one-dimensional
chaotic maps’ chaotic performance. Hua et al. [14] coupled two one-dimensional chaotic
maps by cosine transform and constructed a one-dimensional cosine chaotic map intensi-
fier. Li et al. [15] built a one-dimensional exponential chaotic map enhancer, increased the
input chaotic map’s randomness, and added exponential components to the chaotic system
structure. Hu et al. [16] designed a new chaos model UCS, which improved the statistical
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properties of existing maps and expanded the parameter range by concatenating two 1D
chaotic maps and performing modular operations. Mansouri et al. [17] proposed a novel
one-dimensional chaotic mapping amplifier (1-DCMA), which enhances the sensitivity of
the input one-dimensional chaotic mapping through cosine and logarithm operations.

1.2. Data Hiding-Related Work

Data hiding (DH), or data embedding, is a method that allows secret data to be cor-
rectly extracted from an original media while preventing any visible distortions. Based on
this, the reversible data hiding (RDH) technique is refined, which can both restore the origi-
nal coverage media losslessly and extract the embedded data without error. These qualities
make data concealment a crucial component of many multimedia systems. Prasad et al. [18]
designed a steganographic scheme for RGB color images based on a binary lower triangular
matrix, which reduces aberrations on steganographic images while maintaining signifi-
cant visual quality. A non-sensing medical data-hiding system based on multi-resolution
singular value decomposition, redundant discrete wavelet transform (RDWT), and non-
subsampled shear wave transform (NSST) was created by Anand et al. [19]. The security
of the concealment mechanism is guaranteed by the key-based encryption scheme. Based
on the Chinese residue theorem, Yu et al. [20] present a new method for hybrid encoding
and secret sharing. In particular, a revolutionary iterative encryption is aimed to precisely
preserve the spatial correlation of the original block in its encryption block, whereas a
hybrid encoding aims to achieve high embedding capacity. High embedding capacity
and security are the outcomes of this. Wu et al. [21] proposed a global sorting strategy
combining local and global image features for reversible data hiding. For each pixel, its
predicted value and local complexity are first calculated based on its local features. Then,
according to the predicted value of the image pixels, the image pixels are globally sorted
to generate a single sorted pixel sequence. Then, the sorting order of predictors based on
location pixel value sorting is split to obtain a more regular two-dimensional histogram.
Based on the generated regular histogram, they developed a more effective 2D mapping
for data hiding. The experimental results show that the average PSNR after embedding
10,000 bits reaches 63.55 dB, which proves the superiority of the scheme.

1.3. Contribution of This Work

Driven by the above work and discussion, this paper proposes a nD-CTBCS, which can
generate chaotic maps of arbitrary dimensions by using one-dimensional chaotic maps as
seed chaotic maps. The performance of nD-CTBCS is discussed. To verify the validity of nD-
CTBCS, three two-dimensional chaotic maps are generated using multiple one-dimensional
chaotic maps as seed chaotic maps. Performance analysis shows that the new chaotic
map has hyperchaotic behavior and a more uniformly distributed output. To illustrate the
practicability of nD-CTBCS, this paper proposes a reversible data hiding scheme based on
the newly generated chaotic mapping for the secure communication of medical images.
The experimental results show that the proposed method has higher embedding capacity
and higher security than the existing methods. The main contributions of this paper are
as follows.

1. A simple and practical n-dimensional cosine-transform-based chaotic system (nD-
CTBCS) chaotic coupling framework is proposed for generating arbitrary dimensional
chaotic maps.

2. Apply multiple 1D chaotic maps to nD-CTBCS to generate three 2D chaotic maps. The
performance is evaluated in theory and experiment, and the proposed chaotic map is
compared with the most advanced chaotic map, showing excellent performance.

3. A reversible data hiding scheme is proposed for the secure communication of medical
images, and the security analysis shows the remarkable performance of the scheme.

The rest of this article is organized as follows. Section 2 presents the introduction of the
proposed nD-CTBCS, demonstrates several novel two-dimensional chaotic maps created
using the nD-CTBCS, and evaluates the performance metrics of these newly generated
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chaotic maps. Section 3 gives a comprehensive description of the reversible data-hiding
scheme of medical images based on the chaotic system. In Section 4, the performance of
the proposed method is verified by experimental results and safety analysis. The last part
is the summary of this paper.

2. n-Dimensional Chaotic Model

This section first presents the n-dimensional cosine-transform-based chaotic system
(nD-CTBCS), then generates some new 2D chaos maps through nD-CTBCS based on some
existing 1D chaos maps, and finally analyzes the performance of these new chaotic maps to
show the advantages of the model.

2.1. nD-CTBCS

nD-CTBCS was created to address issues with chaotic systems that are currently in
use. It takes n seed maps to generate n-dimensional chaotic systems, and the sum result
of any two seed maps is performed by cosine transform, taking it as the output of the
current dimension, iteratively replacing the seed maps of each dimension, and using the
output of the current dimension as the input of the next dimension; nD-CTBCS is generated
by combining the output of n dimensions. The mathematical structure of nD-CTBCS is
defined as 

x1,i+1 = cos(π(F1(a1, x2,i)) + F2(a2, x2,i) + α1)
x2,i+1 = cos(π(F2(a2, x1,i+1)) + F3(a3, x3,i) + α2)
x3,i+1 = cos(π(F3(a3, x2,i+1)) + F4(a4, x4,i) + α3)

...
xn−1,i+1 = cos(π(Fn−1(an−1, xn−2,i+1)) + Fn(an, xn,i) + αn−1)
xn,i+1 = cos(π(Fn(an, xn−1,i+1)) + F1(a1, x1,i) + αn)

, (1)

where F1(a1), F2(a2), · · · , Fn(an) are n seed chaotic maps that are all 1D chaotic maps, and
a1, a2, · · · an are the control parameter of the seed maps. x(i) = {x1,i, x2,i, · · · , xn,i}T is an
n-length vector that is the ith observation state of the chaotic model and α1, α2, · · · αn are
shifting constants.

For any given parameter configuration, the cosine transform is a limited operation with
complex nonlinearity that can produce chaotic occurrences. Consequently, the following
traits of the suggested nD-CTBCS are present.

1. An efficient and straightforward chaotic generation model is the suggested nD-CTBCS
model. By merging different seed chaotic maps, users can create chaotic maps in any
dimension with flexibility. By switching the positions of the seed chaotic systems,
several nD-CTBCS chaotic systems can be formed during the generation process.

2. The newly generated nD-CTBCS chaotic map can overcome the shortcomings of the
existing chaotic interval discontinuity and uneven signal distribution.

3. α1, α2, · · · αn are introduced as the control parameters of the nD-CTBCS chaotic system
to expand the parameter space, and the system can exhibit chaos in a large param-
eter range, while most existing chaotic systems only exhibit chaos in a very narrow
parameter range.

2.2. Examples of 2D Chaotic Map

To demonstrate the advantages of nD-CTBCS in generating chaotic maps, we use nD-
CTBCS to generate three 2D chaotic maps by using some chaotic maps as seed chaotic maps.

Firstly, four existing one-dimensional chaotic maps are introduced.
Logistic map (LM) is the most widely used nonlinear model of dynamic discrete

chaotic systems [22], which is mathematically defined as

xi+1 = µ xi(1− xi), (2)



Entropy 2024, 26, 254 4 of 23

where µ is the system parameter, µ ∈ [0, 4].
Sine map [23], fractal map [2], and iterative chaotic map with infinite collapse

(ICMIC) [24] are three common one-dimensional dynamic discrete chaotic mappings. The
mathematical definition of the sine map is Equation (3).

xi+1 = 4sin(πxi)/a, (3)

where a is a system parameter. When a ∈ [0, 1], the mapping is in a chaotic state. The
mathematical definition of a fractal map is Equation (4).

xi+1 = 1/x2
i + 0.1− bxi, (4)

where b is the system parameter. When b ∈ [−0.999, 0.999], the mapping is in a chaotic
state. ICMIC is defined as Equation (5).

xi+1 = sin(c/xi), (5)

where c is the system parameter. When c ∈ (0, +∞), the mapping is in a chaotic state.
A bifurcation diagram is a tool to visualize the randomness of chaotic systems, and

Lyapunov exponents (LE) are an important index to evaluate the chaotic identity of dynamic
systems [1]. In this paper, the bifurcation diagram and Lyapunov exponent diagram of the
above four one-dimensional chaotic maps are given.

The first column of Figure 1 is the bifurcation diagram corresponding to the above
four chaos diagrams. It can be seen that one-dimensional chaos mapping has defects such
as narrow chaos range and period window. This means that the control parameters will not
exhibit chaotic behavior beyond a certain interval. The second column of Figure 1 shows
the Lyapunov exponents (LE) diagram corresponding to the above four chaotic mappings.
It can be seen that the LEs of most one-dimensional chaotic systems are slightly greater
than zero, but LE is still less than zero, which indicates that there is no chaos phenomenon
under some parameters.

Therefore, this paper does not use the above four one-dimensional chaotic maps
directly but uses them as the input of the coupled chaotic system proposed in this paper to
construct an n-dimensional chaotic map with better chaotic properties.
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Figure 1. Bifurcation diagrams of (a) logistic; (c) sine; (e) fraction; (g) ICMIC maps; LEs of (b) logistic;
(d) sine; (f) fraction; (h) ICMIC maps.

2.2.1. 2D Logistic–Sine Map

When logistic mapping and sine mapping are selected as the two seed chaotic map-
pings F1(·) and F2(·) in Equation (1), a new two-dimensional logistics–sine mapping
(2D-LSM) is generated, whose mathematical equation is{

xi+1 = cos(π(4/bsin(πxi)) + ayi(1− yi) + α1)
yi+1 = cos(π(axi+1(1− xi+1)) + 4/bsin(πyi) + α2)

, (6)
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where a and b are the two control parameters of logistic mapping and sine mapping,
respectively, and α1 and α2 are the newly introduced control parameters. Because the cosine
transform is a bounded operation, the parameters a, b, α1, and α2 can have larger values.

2.2.2. 2D Sine–ICMIC Map

When sine mapping and ICMIC are selected as the two seed chaotic mappings F1(·)
and F2(·) in Equation (1), a new two-dimensional sine–ICMIC mapping (2D-SIM) is gener-
ated, whose mathematical equation is{

xi+1 = cos(π(4/asin(πxi)) + sin(b/yi) + α1)
yi+1 = cos(π(sin(b/xi+1)) + 4/asin(πyi) + α2)

, (7)

where a and b are the two control parameters of sine mapping and ICMIC, respectively,
and α1 and α2 are the newly introduced control parameters. Because the cosine transform
is a bounded operation, the parameters a, b, α1, and α2 can have larger values.

2.2.3. 2D Sine–Fraction Map

When sine mapping and fraction mapping are selected as the two seed chaotic map-
pings F1(·) and F2(·) in Equation (1), a new two-dimensional sine–fraction mapping (2D-
SFM) is generated, whose mathematical equation is{

xi+1 = cos
(

π(4/asin(πxi)) + (1 /y2
i + 0.1− byi

)
+ α1

)
yi+1 = cos

(
π
(
1/x2

i+1 + 0.1− bxi+1
)
+ 4/asin(πyi) + α2

) , (8)

where a and b are the two control parameters of sine mapping and fraction mapping,
respectively, and α1 and α2 are the newly introduced control parameters. Because the cosine
transform is a bounded operation, the parameters a, b, α1, and α2 can have larger values.

2.3. Performance Evaluations

To prove the advantages of 2D-LSM, 2D-SIM, and 2D-SFM, this paper uses a phase
diagram, bifurcation diagram, Lyapunov exponents (LE), Permutation entropy (PE), and
NIST SP800-22 test for verification.

2.3.1. Phase Diagram

Plotting the approach and access points of a two-dimensional dynamic system with
fixed parameter settings is performed using the phase space trajectory of a dynamic sys-
tem [2]. This paper set up the initial parameters of 2D-LSM, 2D-SIM, and 2D-SFM as
x0 = 0.1, y0 = 0.1, a = 0.03, b = 0.04, α1 = 0.05, α2 = 0.06; the two-dimensional phase space
track as shown in Figure 2a–c.
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Figure 2. 2D trajectories for different 2D chaotic maps: (a) 2D-LSM; (b) 2D-SIM; (c) 2D-SFM; (d) 2D-
LSCM; (e) 2D-LSMCL; (f) 2D-LACM.

Figure 2d–f are the 2D phase space trajectory diagrams of 2D-LSCM [25], 2D-LSMCL [26],
and 2D-LACM [27], respectively. As can be seen from the figure, the distribution range of
2D-LSM, 2D-SIM, and 2D-SFM is significantly higher than that of 2D-LSCM and 2D-LSMCL.
In addition, the distribution uniformity is better than that of 2D-LSCM, 2D-LSMCL, and
2D-LACM. This shows that the new system has superior ergodicity and randomness.

2.3.2. Bifurcation Diagram

A bifurcation diagram is a tool for visualizing the randomness of chaotic systems [28].
This paper set up the initial parameters of 2D-LSM, 2D-SIM, and 2D-SFM as x0 = 0.1, y0 = 0.1,
a = 0.03, b = 0.04, α1 = 0.05, α2 = 0.06; their bifurcation distribution is shown in Figure 3.
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As shown in Figure 3, the bifurcation distribution of 2D-LSM, 2D-SIM, and 2D-SFM
does not have defects such as narrow range and period window. This means that chaotic
behavior exists in all control parameter ranges.

2.3.3. Lyapunov Exponents

The chaotic identity of dynamical systems can be assessed using Lyapunov exponents
(LE) and maximum Lyapunov exponents (MLE), two crucial indices. The separation
rate of very close trajectories is how LE defines chaos [2]. Mathematically, the following
Equation (9) determines the LE of a dynamic system D(x).

LE = lim
n→∞

{
1
n

ln

∣∣∣∣∣D(n)(x0 + δ)− D(n)(x0)

δ

∣∣∣∣∣
}

, (9)

where δ represents a small positive value. For a dynamic system, its LE is equal to the
dimension of its phase plane; a one-dimensional system has one LE, while a multidimen-
sional system has several LEs. Positive Lyapunov exponents indicate a deviation from
one-dimensional trajectories, suggesting that the dynamic system may exhibit chaotic
behavior. The presence of two or more positive Lyapunov exponents indicates multi-
dimensional divergence, potentially leading to hyperchaotic dynamics within the system.
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Furthermore, a larger positive LE denotes greater sensitivity to initial conditions, since LE
characterizes the separation rate of extremely near orbits in chaotic systems [29].

In this paper, the initial parameters of 2D-LSM, 2D-SIM, and 2D-SFM are set as
x0 = 0.1, y0 = 0.1, a = 0.3, b = 0.4, α1 = 0.5, α2 = 0.6, and their two Lyapunov exponent
distributions are shown in Figure 4. It can be seen that all three systems have two positive
LEs, which can exhibit hyperchaotic behavior.
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In addition, the MLE distribution of 2D-LSM, 2D-SIM, 2D-SFM, 2D-LSCM, 2D-LSMCL,
and 2D-LACM chaotic systems are shown in Figure 5. It is clear that the MLE values
of 2D-LSM, 2D-SIM, and 2D-SFM have no significant window period and are higher
than other chaos graphs. This means that the proposed mappings have more complex
dynamic properties.
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2.3.4. Permutation Entropy

A technique for identifying dynamic mutation and randomness in time series is
called permutation entropy (PE), which can be used to quantify random noise in signal
sequences [30]. PE first creates a K-row matrix by reconstructing the time series. Next, a
column index representing each element’s position is created by placing each reconstructed
component in ascending order. This column index then creates a set of symbol sequences.
Lastly, Equation (10) yields the PE of the time series.

PE(m) = −∑K
i=1 PilnPi

lnm!
, (10)

where Pi represents the probability of obtaining the reconstructed component according to
the symbol sequence, and m represents the embedding dimension.

PEs of different chaotic maps are shown in Figure 6. It can be seen that PEs of 2D-LSM,
2D-SIM, and 2D-SFM are comparable to those of 2D-LACM. Compared with other chaotic
maps, PEs of 2D-LSM, 2D-SIM, and 2D-SFM are all larger and more stable. This shows
that 2D-LSM, 2D-SIM, and 2D-SFM have better chaotic performance, and the generated
sequences are more random and unpredictable.
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2.3.5. NIST SP800-22 Tests

The NIST SP800-22 tests contain 15 different tests and recommend 103 to 107 length
sequences for testing [30]. This article uses 106 length sequences. When the test value
exceeds 0.01, the test sequence is random.

Table 1 shows results over 0.01, indicating that the six sequences produced by 2D-LSM,
2D-SIM, and 2D-SFM all pass the test and are random.
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Table 1. NIST SP800-22 test results for random number sequences.

NIST Test Items 2D-LSM 2D-SIM 2D-SFM

Monobit frequency test 0.3859 0.1063 0.1181 0.3708 0.4231 0.5399
Frequency within block test 0.0865 0.7964 0.8398 0.8273 0.8312 0.9453

Runs test 0.5463 0.5732 0.9318 0.0129 0.1297 0.3399
Longest-run-ones in a block test 0.1988 0.1868 0.9880 0.1327 0.1808 0.9067

Binary matrix rank test 0.0371 0.2693 0.1616 0.0271 0.0352 0.0408
Discrete Fourier transform test 0.0422 0.1313 0.7496 0.7277 0.1240 0.5617

Non-overlapping template matching test 0.7323 0.6000 0.0562 0.2462 0.9697 0.3925
Overlapping template matching 0.9628 0.7664 0.0140 0.5182 0.0748 0.6554
Maurer’s universal statistical test 0.0536 0.4385 0.6654 0.8898 0.1186 0.3053

Linear complexity test 0.7108 0.1199 0.7434 0.3913 0.1876 0.5400
Serial test 0.1211 0.0544 0.4558 0.1086 0.0956 0.5779

Approximate entropy test 0.4136 0.0268 0.7791 0.6569 0.6032 0.3886
Cumulative sums test 0.0977 0.9716 0.9838 0.4371 0.9074 0.2756
Random excursion test 0.6382 0.6945 0.5854 0.6647 0.6414 0.6415

Random excursion variant test 0.4871 0.4065 0.5606 0.6500 0.3938 0.5142

3. Reversible Data Hiding

Information security systems have made extensive use of chaotic systems due to
their starting value sensitivity, unpredictability, ergodicity, and numerous other features.
Shannon outlined the three fundamental information security systems—encryption, privacy,
and hidden systems—in the Monograph on Information Security. This section describes
the creation of a reversible data-hiding strategy for the secure transmission of stereoscopic
medical images, based on 2D-LSM.

As shown in Figure 7, the whole structure of the reversible data-hiding scheme based
on 2D-LSM mainly consists of five stages: stereo image segmentation, key and chaotic se-
quence generation, image authentication, EMR authentication, and data hiding. Assuming
the grayscale spiral CT image P is used as the object, these stages can be simply described
as follows.
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3.1. Stereo Image Segmentation

As shown in Figure 8, this section introduces the generation process of a stereoscopic
image segmentation mask.

Step 1: Stereoscopic medical images are evenly divided into three parts: top, middle,
and lower.
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Step 2: The first image of these three parts was selected and denoted as Ptop, Pmid, and
Plow, respectively. The Otsu threshold segmentation method [7] was applied to segment
Ptop, Pmid, and Plow to generate three segmentation masks, denoted as M1, M2, M3.

Step 3: The three segmentation masks are added to obtain M, and the final segmenta-
tion mask M is generated according to Equation (11).

M =

{
1, (M1 + M2 + M3) > 0
0, (M1 + M2 + M3) ≤ 0

. (11)

Step 4: The segmentation mask M was applied to the whole stereoscopic image and
divided into a region of interest (ROI) and background region. The ROI was denoted as
PROI , and pixels belonging to the background region were discarded.
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3.2. Key and Chaotic Sequence Generation

The initial value and sequence generation steps of chaotic systems are as follows:
Step 1: The plaintext information Ptop, Pmid, Plow are taken as the input of the SHA-

256 algorithm to obtain the hash values K1, K2, K3, which are usually represented by a
hexadecimal number of length 64.

K1(k1, k2, k3 . . . k64) = SHA256
(

Ptop
)

K2(k1, k2, k3 . . . k64) = SHA256(Pmid)
K3(k1, k2, k3 . . . k64) = SHA256(Plow)

. (12)

Step 2: Convert K1, K2, K3 to 4-bit binary numbers, and then convert each group of
eight to decimal numbers, and calculate the XOR according to the Equation (13) to generate
a decimal array of length 32.{

key1(ka1, ka2, ka3 . . . ka32) = K1 ⊕ K2
key2(kb1, kb2, kb3 . . . kbb32) = K2 ⊕ K3

. (13)

Step 3: The initial parameters of the chaotic system are calculated according to Equation (14).
x0 = (ka1 ⊕ ka2 ⊕ · · · ⊕ ka16)/256

y0 = (ka17 ⊕ ka18 ⊕ · · · ⊕ ka32)/256
a = (kb1 ⊕ kb2 ⊕ · · · ⊕ kb16)/256

b = (kb17 ⊕ kb18 ⊕ · · · ⊕ kb32)/256

. (14)
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Step 4: Set the parameter c to 0.5 and the parameter d to 0.6, and substitute the
calculated x0, y0, a, b into the 2D-LSM hyperchaotic system; iteratively generate two random
sequences, denoted x, y.

3.3. Image Authentication

Double random phase coding (DRPE) is an optical coding technique that is frequently
used for picture authentication and encryption. It was first presented by Refregier et al. [31].
Equations (15) and (16) illustrate the double random phase encoding and decoding procedure.

g(x, y) = FT−1{FT{ f (x, y)exp[i2π θ(x, y)]}exp[i2π ϕ(u, v)]}, (15)

f (x, y) =
{

FT−1[FT(g(x, y))]exp(−i2πϕ(u, v))
}

exp(−i2πθ(x, y)), (16)

where f (x, y) is the original image, and g(x, y) is the encoded image. FT and FT−1 represent
the Fourier transform and the inverse Fourier transform, respectively. x and y are spatial
coordinates, and u and v are frequency domain coordinates. θ(x, y) and ϕ(u, v) are two
sets of two-dimensional normally distributed random numbers in the spatial domain and
the frequency domain, whose values are randomly distributed between [0, 1], and the
convolution and mean of the two arrays are zero; that is, they are two random white noises
that are independent of each other. Therefore, exp(−i2πθ(x, y)) and exp[j2πϕ(u, v)] are
phase masks capable of producing phases between [0, 2π]. The encoding result g(x, y) is a
complex amplitude with amplitude spectrum and phase spectrum. The phase spectrum of
the encoding result is extracted as authentication information, and the correlation between
the decoded image and the authenticated image can be verified by peak correlation energy.

Step 1: Calculate the size of the cover image Ptop according to Equation (17).

[m, n] = Size
(

Ptop
)
. (17)

Step 2: Two random phase plates were constructed, the first m× n bits of a random
sequence x and y were intercepted, reconstructed according to Equation (18).{

θ(x, y) = reshape(x(1 : m× n), m, n)
ϕ(u, v) = reshape(y(1 : m× n), m, n)

. (18)

Step 3: According to Equation (15), encoding results only retain the phase signal Pphase,
and discard all amplitude information.

Step 4: According to Equation (19), the phase signal Pphase is binarized.

Pphase = im2bw
(

Pphase

)
. (19)

Step 5: Pphase is converted into a one-dimensional sequence as the authentication
information Ap of the image.

3.4. EMR Authentication

Information security-related concerns will have an impact on the management of
medical images. Three primary concerns are image source verification, whether the image
matches the patient, and preventing the separation of the image from the associated
electronic medical record (EMR) [7]. To prevent illegal copying and falsification of EMR
data and to ensure that patient data and their corresponding medical images correspond, a
QR code has been chosen as the container of the patient electronic medical record report in
this paper. The QR code is embedded in stereoscopic medical image data.

Step 1: According to Equation (20), the QR code PQR is binarized.

PQR = im2bw
(

PQR
)
. (20)



Entropy 2024, 26, 254 13 of 23

Step 2: PQR is converted into a one-dimensional sequence as the authentication infor-
mation Ae for EMR data.

3.5. Data Hiding

M, Ap, and Ae as secret information are hidden in PROI
Step 1: According to Algorithm 1, PROI is divided into the embeddable region PROIe

and the unembeddable region PROIn.

Algorithm 1 Embedded region partitioning algorithm.

Input: Original one-dimensional sequence PROI .
Output: Embeddable matrices PROIe and non-embeddable sequences PROIn.
1: m, n← size(PROI) ;
2: long← m× n ;
3: squarelong← f loor(sqrt(long)) ;
4: length← squarelong× squarelong ;
5: PROIe ← PROI(1 : length) ;
6: PROIe ← reshape(PROIe, squarelong, squarelong) ;
7: PROIn ← PROI(length + 1 : end) .

Step 2: The median edge detector (MED) predictor [32] was used to calculate the
predicted value px(i, j) for each pixel x(i, j) of the embedded region PROIe.

Step 3: Convert the values of x(i, j) and px(i, j) into an 8-bit binary sequence denoted
as xk(i, j) and pxk(i, j), where k = 1, 2, · · · , 8.

Step 4: According to the method in Ref. [10], xk(i, j) and pxk(i, j) are compared
successively from the most significant bit to the least significant bit until a certain bit is
different, the label value of each pixel is recorded, and the theoretical embedding capacity
of the entire image is calculated by adding all the label values. For these label values,
Huffman coding is used for compression, reducing the amount of auxiliary information
and increasing the payload of the image.

Step 5: According to Equation (21), auxiliary information such as Huffman coding rules
and label mapping and secret information such as M, Ap, and Ae are embedded into PROIe.

P′ROIe =

{
PROIe(i, j)mod27−t + ∑t

s=0
(
bs × 27−s), 0 ≤ t ≤ 6

∑8
s=1
(
bs × 28−s) , 7 ≤ t ≤ 8

, (21)

where t is the label value of the current pixel, and bs is the secret information to be embedded.
Step 6: P′ROIe is converted into a one-dimensional sequence and joined with PROIn,

denoted as P′ROI .
Step 7: Equation (22) is used to process chaotic sequence x, and Equation (23) is used

to process chaotic sequence y.

X(i) = mod
(

floor
(

x× 1015
)

, s
)

(22)

Y(i) = mod
(

floor
(

y× 1015
)

, 256
)

(23)

where s represents the length of the sequence to be encrypted, i = 1, 2, · · · , s.
Step 8: Sort the sequence X(i), derive the index matrix V, all elements in V are

non-repeatable integers ranging from 1 to s, and encrypt P′ROI according to Equation (24).

CROI(i) = P′ROI(V(i)⊕Y(V(i))⊕ CROI(i− 1)), (24)

where CROI(0) = 0,i = 1, 2, · · · , s, ⊕ represents the bit-level XOR operation [5].
At this point, the data-hiding and encryption process is complete.
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4. Experiments for Simulation

In this section, a comprehensive evaluation of the proposed reversible data-hiding al-
gorithm is conducted. The assessment encompasses multiple dimensions: visual security
analysis, key space analysis, entropy analysis, histogram analysis, correlation analysis, embed-
ding capacity, and the ratio of encoded pixels. All experiments were executed using MATLAB
2016b, running on a machine equipped with an Intel i5 processor and 16 GB of RAM.

4.1. Visual Security Analysis

To validate the suggested reversible concealment technique, four sets of stereoscopic
medical images are chosen from the TCIA dataset and used in this work. The four sets
of images are named test1, test2, test3, and test4. The original stereo image of the four test
image groups is shown in Figure 9a–d, the segmentation mask for the four test image
groups is shown in Figure 9e–h, the QR code for the four test image groups is shown in
Figure 9i–l, and the data-hiding results are shown in Figure 9m–p.
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of test4.
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The key point of reversible data hiding is to recover the original image and secret
information without error. The qualitative analysis results of this algorithm are shown in
Figure 10. The decoded stereoscopic image, QR code, and authentication image can be
retrieved through reverse decoding.
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Figure 10. Decoding result: (a) test1 image; (b) test2 image; (c) test3 image; (d) test4 image; (e) QR of
test1; (f) QR of test2; (g) QR of test3; (h) QR of test4; (i) authentication image of test1; (j) authentication
image of test2; (k) authentication image of test3; (l) authentication image of test4; (m) PCE of test1;
(n) PCE of test2; (o) PCE of test3; (p) PCE of test4.

To assess the reconstructed image quality quantitatively, the following metrics are
introduced: the peak signal-to-noise ratio (PSNR) and the mean square error (MSE).

MSE =
1

M× N

M

∑
i=1

N

∑
j=1

(
X′(i, j)−Y′(i, j)

)2, (25)

where M and N represent the size of the picture X′(i, j) and Y′(i, j).

PSNR = 10log10
(2n − 1)2

MSE
, (26)
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where MSE stands for the mean square error as it appears in Equation (25). In order to
quantify the correlation between decoded and authenticated images, peak-to-correlation
energy (PCE) is introduced. The association between the decrypted image and the verified
image is stronger the higher the PCE value [31].

CO(x, y) = IFT
(
|P(µ, η)·A(ξ, ν)|k·eϕP(µ,η)−ϕA(ξ,ν)

)
, (27)

where P(µ, η) and A(ξ, ν) are the 2D Fourier transforms of the decoded image P and
authentication image A; ϕP(µ, η) and ϕA(ξ, ν) are their phase images. The parameter k is
usually set to 0.3.

As can be seen from Figure 10 and Table 2, the extracted secret information is the
same as the original secret information, and the original image can be completely restored
according to the extracted auxiliary information.

Table 2. Quantitative analysis of image quality.

Image MSE PSNR PCE

test1 0.0000 Inf 0.026538
test2 0.0000 Inf 0.026686
test3 0.0000 Inf 0.010429
test4 0.0000 Inf 0.030029

4.2. Key Space Analysis

To counter brute force attacks, the key space of the algorithm should be expanded as
much as possible. When the key space exceeds 2100, the system has sufficient ability to
resist violent attacks. The key for this work is generated by a hash algorithm, which is an
algorithm that maps data of any length to a fixed-length string. SHA-256 is a hash family that
generates a hash value of 256 bits in length, usually represented by 64 hexadecimal numbers.

Three images in the stereoscopic image are recorded as Ptop, Pmid, and Plow, which are
taken as the input of SHA-256 algorithm, and three hash values of 256 bits in length are
generated as the key. Therefore, the key space of this work is 2256×3 = 2768, much larger
than 2100, and the key space is large enough to resist brute force attack.

4.3. Information Entropy Analysis

Shannon established the concept of information entropy, which may be used to reflect
the randomness of information sources and describe the degree of information confu-
sion [33]. When it comes to picture security, the better the secrecy and the worse the image
recognition effect, the bigger the information entropy. Equation (28) is the information
entropy formula.

H(c) = −
2L−1

∑
i=0

P(ci)× log2P(ci), (28)

where P(ci) is the statistical likelihood of having ci in a medical image, and ci is the ith gray
quantity in an image. L stands for the gray levels, and an optimal entropy value is eight.

Table 3 reveals that the entropy of the original image is below 7.1. However, the
entropy of the encoded image closely approximates the theoretical maximum of 8. As
a result, steganographic and encrypted images are very random, making it harder for
adversaries to extract useful information from them. The information entropy of this
approach is larger, as can be seen from the comparative findings in Table 3, suggesting that
this algorithm has more unpredictability and security.
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Table 3. Entropy analysis.

Image Original Encoded Decoded

test1 7.0260 7.9998 7.0260
test2 7.0551 7.9998 7.0551
test3 7.0912 7.9999 7.0912
test4 7.0134 7.9999 7.0134

Ref. [33] - 7.9993 -

4.4. Histogram Analysis

The frequency of each gray-level pixel in the image is described by the histogram [34].
After several images are encrypted, the histogram distribution of the encrypted image
should be relatively similar to prevent an attacker from deriving any crucial information
from the floating histogram of the encrypted image. The histogram cannot offer suggestions
for statistical analysis when the difference between the histograms is not significant.

The original image’s histogram, as seen in Figure 11, displays clear peaks and troughs that
indicate the image’s statistical analysis characteristics. The uniform distribution of pixel values
in the encoded image, on the other hand, significantly lowers the statistical correlation between
the pixels among the features and has the benefit of fending off the statistical analysis’s assault.
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Figure 11. Histogram analysis: (a) histogram of test1; (b) histogram of encoded test1; (c) histogram
of test2; (d) histogram of encoded test2; (e) histogram of test3; (f) histogram of encoded test3;
(g) histogram of test4; (h) histogram of encoded test4.

The homogeneity of the histogram is statistically assessed in this research using the
chi-square test. The more uniform the distribution of the encoded image, the smaller its
chi-square test value. The method of measuring chi-squares is

χ2 = 256×
∑256

1

(
f p− M×N

256

)2

M× N
, (29)

where M and N represent the image size, and f p represents the number of gray values
counted by the histogram.

The original image and the encoded image’s Chi-square test results are displayed in
Table 4. The encoded image’s estimated result is significantly less than 1000, suggesting
that the pixel frequency distribution is nearly uniform.

Table 4. Histogram chi-square test.

Image Original Encoded Decoded

test1 3.5545 × 106 264.6750 3.5545 × 106

test2 3.4451 × 106 238.8966 3.4451 × 106

test3 3.3803 × 106 235.7004 3.3803 × 106

test4 3.6059 × 106 242.6068 3.6059 × 106

Ref. [34] 1.3506 × 107 262.5808 -

4.5. Correlation Analysis

The correlation coefficient between neighboring pair pixels can be formulated as

γxy =
cov(x, y)√

D(y)
√

D(x)
, (30)

where cov(x, y) = 1
K

K
∑

i=1
(xi − E(x))(yi − E(y)), D(x) = 1

K

K
∑

i=1
(xi − E(x))2, E(x) = 1

K

K
∑

i=1
xi.

K is the number of pixel pairs (xi, yi), xi and yi are the numerical values of two neighboring
pair pixels, E(x) and E(y) are the mean values of the two adjoining pair pixels.

Table 5 displays the correlation coefficients’ quantitative analysis results between the
original and encoded images. The encoded image’s correlation coefficients are close to
0 in all directions, while the original image’s correlation coefficients are almost 1 in all
directions. A total of 2000 randomly chosen pixels are used in this paper’s qualitative
correlation analysis.
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Table 5. Correlation analysis.

Image H V P S

test1-plain 0.9622 0.9724 0.9498 0.9365
test1-encoded 0.0483 −0.0020 0.0022 0.0112

test2-plain 0.9600 0.9792 0.9539 0.9573
test2- encoded 0.0060 −0.0013 −0.0088 −0.0076

test3-plain 0.9694 0.9761 0.9418 0.9507
test3- encoded −0.0048 −0.0038 −0.0128 −0.0063

test4-plain 0.9646 0.9832 0.9545 0.9531
test4- encoded 0.0107 0.0061 0.0093 0.0048

Ref. [33] 0.0066 −0.0049 0.0158 -

The four colors in Figure 12 correspond to the four directions: horizontal (H), vertical
(V), positive diagonal (P), and sub-diagonal diagonal (S). The correlation scatter plots in
these directions are displayed. The coded image’s pixels are almost uniformly dispersed,
whereas the plaintext image’s are grouped close to the diagonal. It suggests that the plan is
resilient to statistical assaults.
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Figure 12. Correlation analysis: (a) test1-HVPS; (b) encoded test1-HVPS; (c) test2-HVPS; (d) encoded
test2-HVPS; (e) test3-HVPS; (f) encoded test3-HVPS; (g) test4-HVPS; (h) encoded test4-HVPS.

4.6. Embedded Capacity Analysis

The image’s label map is computed using the MED predictor to provide an accurate
prediction value. Huffman coding is used to decrease the auxiliary information, compress
the label map, and increase the image’s payload to increase the payload. Conversely, em-
ploying the MED predictor can also efficiently decrease the number of reference pixels and
raise the number of embedded pixels, thereby enhancing embedded rates (ER). Calculating
the image’s total embedded capacity (EC) is possible once the label mapping has been
established. Similarly, the length of auxiliary information (AL) can also be computed to
determine the size of the net payload using label mapping and Huffman coding principles.

Table 6 shows the payloads of the four sets of test images. Among them, ER1 represents
the theoretical embedding capacity, and ER2 represents the embedding capacity after
embedding auxiliary information. It can be seen that the amount of auxiliary information
is still relatively large, resulting in the actual embedding capacity as not very ideal.

Table 6. Embedded capacity analysis.

Image Total EC (bits) AL (bits) Net Payload (bits) ER1 (bpp) ER2 (bpp)

test1 3985339 3209151 773743 3.9933 0.77774
test2 4119227 3387921 731306 3.9055 0.69336
test3 4395109 3665554 729555 3.8389 0.63722
test4 3925913 3151256 774657 4.0056 0.79039
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4.7. Encoded Pixel Ratio Analysis

This work proposes a selective data concealing and encryption technique that eschews
a significant amount of superfluous pixels. Less than 35% of the pixels in this research
are encoded, as Figure 13 illustrates. This significantly lowers the computational load and
boosts algorithm efficiency.
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Figure 13. Encoded pixel ratio.

Compared with Ref. [7], the pixel encryption ratio in this paper is lower, and the
amount of auxiliary information is reduced using fusion and segmentation mask, and the
auxiliary information is embedded in the original image, and a complete steganographic
encryption algorithm is constructed, which does not require additional space to store
auxiliary information.

5. Conclusions

This research proposes an n-dimensional CTBCS (nD-CTBCS) chaotic coupling frame-
work that is straightforward and useful for creating chaotic maps of any dimensionality.
Three 2D chaotic maps are produced by applying many 1D chaotic maps to nD-CTBCS to il-
lustrate its impact. We compare the proposed chaotic maps with the state-of-the-art chaotic
maps. Based on the results, it can be concluded that all of the recently created chaotic
maps perform better and display hyperchaotic behavior with broader chaotic intervals. To
demonstrate the feasibility of nD-CTBCS, a reversible data hiding strategy is proposed to
facilitate secure medical image communication. The stereoscopic image is divided into
regions of interest and regions of disinterest, and the algorithm strategy is performed
only on regions of interest, which reduces the number of encrypted pixels and does not
require additional space to store auxiliary information. The results show that this method
can be safely applied in the field of information transmission. Future work will focus on
improving the practical embedding capabilities of reversible data hiding algorithms.
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Abbreviations

nD-CTBCS n-dimensional cosine-transform-based chaotic system
1-DCMA One-dimensional chaotic mapping amplifier
DH Data hiding
RDH Reversible data hiding
RDWT Redundant discrete wavelet transform
NSST Non-subsampled shear wave transform
LM Logistic map
ICMIC Iterative chaotic map with infinite collapse
LE Lyapunov exponents
MLE Maximum Lyapunov exponent
PE Permutation entropy
2D-LSM Two-dimensional Logistics–sine mapping
2D-SFM Two-dimensional Sine–fraction mapping
2D-SIM Two-dimensional Sine–ICMIC mapping
2D-LSCM Two-dimensional Logistic–Sine–Cosine map
2D-LSMCL Two-dimensional Logistic-modulated–Sine-coupling–Logistic chaotic map
2D-LACM Two-dimensional Logistic-Adjusted-Chebyshev map
ROI Region of interest
DRPE Double random phase coding
EMR Electronic medical record
MED Median edge detector
PSNR Peak signal-to-noise ratio
MSE Mean square error
PCE Peak-to-correlation energy
ER Embedded rates
EC Embedded capacity
AL Auxiliary information

References
1. Ding, D.; Wang, W.; Yang, Z.; Hu, Y.; Wang, J.; Wang, M.; Niu, Y.; Zhu, H. An n-dimensional modulo chaotic system with expected

Lyapunov exponents and its application in image encryption. Chaos Solitons Fractals 2023, 174, 113841. [CrossRef]
2. Cao, W.; Cai, H.; Hua, Z. n-Dimensional Chaotic Map with application in secure communication. Chaos Solitons Fractals 2022,

163, 112519. [CrossRef]
3. Wu, R.; Gao, S.; Wang, X.; Liu, S.; Li, Q.; Erkan, U.; Tang, X. AEA-NCS: An audio encryption algorithm based on a nested chaotic

system. Chaos Solitons Fractals 2022, 165, 112770. [CrossRef]
4. Kumar, A.; Dua, M. Audio encryption using two chaotic map based dynamic diffusion and double DNA encoding. Appl. Acoust.

2023, 203, 109196. [CrossRef]
5. Teng, L.; Wang, X.; Xian, Y. Image encryption algorithm based on a 2D-CLSS hyperchaotic map using simultaneous permutation

and diffusion. Inf. Sci. 2022, 605, 71–85. [CrossRef]
6. Feng, J.; Wang, J.; Zhu, Y.; Han, K. A Hybrid Chaotic Encryption ASIC with Dynamic Precision for Internet of Things. IEEE

Internet Things J. 2024, 11, 1148–1163. [CrossRef]
7. Zhang, Y.; Xie, H.; Sun, J.; Zhang, H. An efficient multi-level encryption scheme for stereoscopic medical images based on coupled

chaotic system and Otsu threshold segmentation. Comput. Biol. Med. 2022, 146, 105542. [CrossRef]
8. Tan, T.; Zhang, L.; Zhang, M.; Wang, S.; Wang, L.; Zhang, Z.; Liu, S.; Wang, P. Commutative encryption and watermarking

algorithm based on compound chaotic systems and zero-watermarking for vector map. Comput. Geosci. 2024, 184, 105530.
[CrossRef]

9. Khallaf, F.; El-Shafai, W.; El-Rabaie, E.S.M.; Soliman, N.F.; El-Samie, F.E.A. A novel hybrid cryptosystem based on DQFrFT
watermarking and 3D-CLM encryption for healthcare services. Front. Inf. Technol. Electron. Eng. 2023, 24, 1045–1061. [CrossRef]

http://sipi.usc.edu/database/
http://sipi.usc.edu/database/
https://www.cancerimagingarchive.net/
https://doi.org/10.1016/j.chaos.2023.113841
https://doi.org/10.1016/j.chaos.2022.112519
https://doi.org/10.1016/j.chaos.2022.112770
https://doi.org/10.1016/j.apacoust.2022.109196
https://doi.org/10.1016/j.ins.2022.05.032
https://doi.org/10.1109/JIOT.2023.3288560
https://doi.org/10.1016/j.compbiomed.2022.105542
https://doi.org/10.1016/j.cageo.2024.105530
https://doi.org/10.1631/FITEE.2200372


Entropy 2024, 26, 254 23 of 23

10. Yin, Z.; Xiang, Y.; Zhang, X. Reversible data hiding in encrypted images based on multi-MSB prediction and Huffman coding.
IEEE Trans. Multimed. 2019, 22, 874–884. [CrossRef]

11. Yu, C.; Zhang, X.; Li, G.; Zhan, S.; Tang, Z. Reversible data hiding with adaptive difference recovery for encrypted images. Inf. Sci.
2022, 584, 89–110. [CrossRef]

12. Yu, C.; Zhang, X.; Zhang, X.; Li, G.; Tang, Z. Reversible data hiding with hierarchical embedding for encrypted images. IEEE
Trans. Circuits Syst. Video Technol. 2021, 32, 451–466. [CrossRef]

13. Hua, Z.; Chen, Y.; Bao, H.; Zhou, Y. Two-dimensional parametric polynomial chaotic system. IEEE Trans. Syst. Man Cybern. Syst.
2021, 52, 4402–4414. [CrossRef]

14. Hua, Z.; Zhou, Y.; Huang, H. Cosine-transform-based chaotic system for image encryption. Inf. Sci. 2019, 480, 403–419. [CrossRef]
15. Li, D.; Li, J.; Di, X. A novel exponential one-dimensional chaotic map enhancer and its application in an image encryption scheme

using modified ZigZag transform. J. Inf. Secur. Appl. 2022, 69, 103304. [CrossRef]
16. Hu, G.; Li, B. A uniform chaotic system with extended parameter range for image encryption. Nonlinear Dyn. 2021, 103, 2819–2840.

[CrossRef]
17. Mansouri, A.; Wang, X. A novel one-dimensional chaotic map generator and its application in a new index representation-based

image encryption scheme. Inf. Sci. 2021, 563, 91–110. [CrossRef]
18. Prasad, S.; Pal, A.K.; Mukherjee, S. An RGB Color Image Steganography Scheme by Binary Lower Triangular Matrix. IEEE Trans.

Intell. Transp. Syst. 2023, 24, 6865–6873. [CrossRef]
19. Anand, A.; Singh, A.K.; Zhou, H. ViMDH: Visible-imperceptible medical data hiding for internet of medical things. IEEE Trans.

Ind. Inform. 2022, 19, 849–856. [CrossRef]
20. Yu, C.; Zhang, X.; Qin, C.; Tang, Z. Reversible data hiding in encrypted images with secret sharing and hybrid coding. IEEE Trans.

Circuits Syst. Video Technol. 2023, 33, 6443–6458. [CrossRef]
21. Wu, Y.; Hu, R.; Xiang, S. PVO-Based Reversible Data Hiding Using Global Sorting and Fixed 2D Mapping Modification. IEEE

Trans. Circuits Syst. Video Technol. 2024, 34, 618–631. [CrossRef]
22. He, D.; Parthasarathy, R.; Li, H.; Geng, Z. A Fast Image Encryption Algorithm based on Logistic Mapping and Hyperchaotic

Lorenz System for Clear Text Correlation. IEEE Access 2023, 11, 91441–91453. [CrossRef]
23. Peng, Y.; Lan, Z.; Sun, K.; Xu, W. A simple color image encryption algorithm based on a discrete memristive hyperchaotic map

and time-controllable operation. Opt. Laser Technol. 2023, 165, 109543. [CrossRef]
24. Wang, Q.; Zhang, X.; Zhao, X. Image encryption algorithm based on improved iterative chaotic map with infinite collapses and

Gray code. Phys. Scr. 2024, 99, 025232. [CrossRef]
25. Huang, H. Novel scheme for image encryption combining 2d logistic-sine-cosine map and double random-phase encoding. IEEE

Access 2019, 7, 177988–177996. [CrossRef]
26. Zhu, H.; Zhao, Y.; Song, Y. 2D logistic-modulated-sine-coupling-logistic chaotic map for image encryption. IEEE Access 2019,

7, 14081–14098. [CrossRef]
27. Liu, L.; Jiang, D.; Wang, X.; Rong, X.; Zhang, R. 2d logistic-adjusted-chebyshev map for visual color image encryption. J. Inf.

Secur. Appl. 2021, 60, 102854. [CrossRef]
28. Erkan, U.; Toktas, A.; Toktas, F.; Alenezi, F. 2D eπ-map for image encryption. Inf. Sci. 2022, 589, 770–789. [CrossRef]
29. Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom.

1985, 16, 285–317. [CrossRef]
30. Nan, S.X.; Feng, X.F.; Wu, Y.F.; Zhang, H. Remote sensing image compression and encryption based on block compressive sensing

and 2D-LCCCM. Nonlinear Dyn. 2022, 108, 2705–2729. [CrossRef]
31. Zhou, K.; Fan, J.; Fan, H.; Li, M. Secure image encryption scheme using double random-phase encoding and compressed sensing.

Opt. Laser Technol. 2020, 121, 105769. [CrossRef]
32. Weinberger, M.J.; Seroussi, G.; Sapiro, G. The LOCO-I lossless image compression algorithm: Principles and standardization into

JPEG-LS. IEEE Trans. Image Process. 2000, 9, 1309–1324. [CrossRef] [PubMed]
33. Wang, X.; Wang, Y. Multiple medical image encryption algorithm based on scrambling of region of interest and diffusion of

odd-even interleaved points. Expert Syst. Appl. 2023, 213, 118924. [CrossRef]
34. Gao, X.; Mou, J.; Banerjee, S.; Cao, Y.; Xiong, L.; Chen, X. An effective multiple-image encryption algorithm based on 3D cube and

hyperchaotic map. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 1535–1551. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TMM.2019.2936314
https://doi.org/10.1016/j.ins.2021.10.050
https://doi.org/10.1109/TCSVT.2021.3062947
https://doi.org/10.1109/TSMC.2021.3096967
https://doi.org/10.1016/j.ins.2018.12.048
https://doi.org/10.1016/j.jisa.2022.103304
https://doi.org/10.1007/s11071-021-06228-2
https://doi.org/10.1016/j.ins.2021.02.022
https://doi.org/10.1109/TITS.2023.3264467
https://doi.org/10.1109/TII.2022.3172622
https://doi.org/10.1109/TCSVT.2023.3270882
https://doi.org/10.1109/TCSVT.2023.3282649
https://doi.org/10.1109/ACCESS.2023.3305637
https://doi.org/10.1016/j.optlastec.2023.109543
https://doi.org/10.1088/1402-4896/ad1ae1
https://doi.org/10.1109/ACCESS.2019.2958319
https://doi.org/10.1109/ACCESS.2019.2893538
https://doi.org/10.1016/j.jisa.2021.102854
https://doi.org/10.1016/j.ins.2021.12.126
https://doi.org/10.1016/0167-2789(85)90011-9
https://doi.org/10.1007/s11071-022-07335-4
https://doi.org/10.1016/j.optlastec.2019.105769
https://doi.org/10.1109/83.855427
https://www.ncbi.nlm.nih.gov/pubmed/18262969
https://doi.org/10.1016/j.eswa.2022.118924
https://doi.org/10.1016/j.jksuci.2022.01.017

	Introduction 
	Chaotic Systems-Related Work 
	Data Hiding-Related Work 
	Contribution of This Work 

	n-Dimensional Chaotic Model 
	nD-CTBCS 
	Examples of 2D Chaotic Map 
	2D Logistic–Sine Map 
	2D Sine–ICMIC Map 
	2D Sine–Fraction Map 

	Performance Evaluations 
	Phase Diagram 
	Bifurcation Diagram 
	Lyapunov Exponents 
	Permutation Entropy 
	NIST SP800-22 Tests 


	Reversible Data Hiding 
	Stereo Image Segmentation 
	Key and Chaotic Sequence Generation 
	Image Authentication 
	EMR Authentication 
	Data Hiding 

	Experiments for Simulation 
	Visual Security Analysis 
	Key Space Analysis 
	Information Entropy Analysis 
	Histogram Analysis 
	Correlation Analysis 
	Embedded Capacity Analysis 
	Encoded Pixel Ratio Analysis 

	Conclusions 
	References

