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Abstract: The Kardar–Parisi–Zhang (KPZ) equation describes a wide range of growth-like phenom-
ena, with applications in physics, chemistry and biology. There are three central questions in the study
of KPZ growth: the determination of height probability distributions; the search for ever more precise
universal growth exponents; and the apparent absence of a fluctuation–dissipation theorem (FDT) for
spatial dimension d > 1. Notably, these questions were answered exactly only for 1 + 1 dimensions.
In this work, we propose a new FDT valid for the KPZ problem in d + 1 dimensions. This is achieved
by rearranging terms and identifying a new correlated noise which we argue to be characterized by
a fractal dimension dn. We present relations between the KPZ exponents and two emergent fractal
dimensions, namely d f , of the rough interface, and dn. Also, we simulate KPZ growth to obtain values
for transient versions of the roughness exponent α, the surface fractal dimension d f and, through our
relations, the noise fractal dimension dn. Our results indicate that KPZ may have at least two fractal
dimensions and that, within this proposal, an FDT is restored. Finally, we provide new insights into
the old question about the upper critical dimension of the KPZ universality class.

Keywords: KPZ equation; growth phenomena; fluctuation–dissipation theorem; universality;
fractal dimensions

1. Introduction

Many major advances in physics have involved a clear understanding of the connec-
tions between physical laws and geometry. For instance, the classical mechanics revolution
led by Galileo and Newton became possible with the development of calculus applied to
Euclidean geometry. Similarly, in the realm of quantum mechanics, fundamental concepts
such as symmetry and groups are linked to geometric principles. In general relativity, the
connection between physics and geometry is so profound that one determines the other.

However, Mandelbrot’s fractal revolution in complex systems [1] is somewhat incom-
plete. This incompleteness is related to the intricate nature of complex systems, which can
span various spatial and temporal scales, often exhibiting diverse regimes of relaxation
processes. The issue is that, in general, we do not know how to deal with fractal geometries
exactly. In fact, exact fractal dimensions are known only for some deterministic objects with
previously defined scaling rules. Even approximate numerical methods should be used
carefully [2,3]. For stochastic variables, such scaling rules are typically unknown and valid
only statistically. Nevertheless, concepts of fractality continue to arise in physics [4]. In
particular, fractal dimensions often emerge in the fundamental phenomenon of diffusion [5].
Fractals also emerge in problems of growing surfaces, as discussed in this work.
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In many physical systems, growth processes can occur as particles or aggregates of
particles reach a surface through diffusion or some other form of deposition process, or
even an injection beam. To investigate this growth, one tracks the height h(x⃗, t) of the
growing surface, where t is time, and x⃗ is the position in a space of dimension d. Since h(x⃗, t)
typically exhibits scaling properties different from x⃗, we refer to (h(x⃗, t), x⃗) as forming a
d + 1 dimensional space. Field equations have been proposed for the dynamics of h(x⃗, t),
such as the Kardar–Parisi–Zhang (KPZ) equation [6]:

∂h(x⃗, t)
∂t

= ν∇2h(x⃗, t) +
λ

2
[∇⃗h(x⃗, t)]2 + η(x⃗, t). (1)

The coefficient ν is a surface tension parameter that controls a diffusive-like term associated
with the so-called Laplacian smoothening mechanism. The term with λ is nonlinear and
related to the tilt mechanism (lateral growth). The Gaussian white noise, η(x⃗, t), has zero
mean ⟨η(x⃗, t)⟩ = 0 and variance

⟨η(x⃗, t)η(x⃗′, t′)⟩ = 2Dδ(d)(x⃗ − x⃗′)δ(t − t′), (2)

where D controls the noise intensity [6,7] and ⟨· · · ⟩ denotes an ensemble average. For
λ = 0, the Edwards–Wilkinson (EW) equation is recovered [7]. The KPZ equation describes
and connects a broad spectrum of significant stochastic growth-like processes in physics,
chemistry, and biology, spanning from classical to quantum systems (see discussions and
references in [8,9]). From time to time, a new system is discovered to belong to the KPZ
universality class.

A large number of such growth-like phenomena [9–15] can be understood by defining
a few physical quantities such as the average height ⟨h⟩ and the roughness or surface width

w(L, t)2 = ⟨h2(t)⟩ − ⟨h(t)⟩2, (3)

where L is the linear sample size. We are interested in physical systems in which the
roughness grows with time and then saturates at a maximum value ws [9]:

w(L, t) ≈
{

ctβ, if t ≪ t×
ws, if t ≫ t×,

(4)

with ws ∼ Lα and t× ∼ Lz, where t× is a crossover time. The critical exponents z, α and β
satisfy the scaling relation [16,17]

z =
α

β
. (5)

Also, the one-loop renormalization group approach preserves Galilean invariance, which
results in [6]

α + z = 2, (6)

and therefore there is only one independent exponent.

2. The Fluctuation–Dissipation Theorem

Our starting point is to try to understand the fluctuation–dissipation theorem (FDT)
in KPZ growth systems. Since there is a long history of violation of the FDT in some
complex systems such as structural glasses [18–21], proteins [22], mesoscopic radioactive
heat transfer [23], and ballistic diffusion [24–28], it has been suggested that, for KPZ, the
FDT should always fail at dimension d > 1 [6,8,29–31] (for a review, see [32]).

More recently, we demonstrated the existence of an FDT for KPZ growth in
1 + 1 dimensions [30], leading us to find the corresponding KPZ exponents for
2 + 1 dimensions analytically [31]. We explored the idea that the fractal dimension of
the surface, denoted by d f , is connected to the KPZ exponents at the saturation of the
growth process. This connection allowed us to derive precise exponents compared to
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numerical and experimental results, particularly for 2 + 1 dimensions [8]. Here, we discuss
a new emergent fractal dimension directed associated to the noise of the process, denoted
by dn, which emerges from the dynamics, and how both fractal dimensions are related to
the critical exponents.

This apparent violation of the FDT at higher dimensions motivates us to look more
carefully into the KPZ equation. First, note that, since [∇⃗h(x⃗, t)]2 > 0, the nonlinear term
always carries the sign of λ, contrasting with the Laplacian and noise contributions, which
in turn fluctuate between positive and negative. Also note that the average growth velocity
vg is given by [9]

vg =
λ

2
⟨[∇⃗h(x⃗, t)]2⟩. (7)

Our time is measured in deposition layer units in such a way that vg is constant. Thus, we
rewrite Equation (1) as

∂h(x⃗, t)
∂t

= ν∇2h(x⃗, t) + vg + ϕ(x⃗, t), (8)

which results in an Edwards–Wilkinson equation [33] with constant velocity and effective noise

ϕ(x⃗, t) = η(x⃗, t) + ψ(x⃗, t) (9)

where
ψ(x⃗, t) =

λ

2
[∇⃗h(x⃗, t)]2 − vg. (10)

ψ(x⃗, t) is just the fluctuation of the nonlinear term. Observe that the original noise η(x⃗, t)
is uncorrelated in time and space, as presented in Equation (2), whereas ψ(x⃗, t) is a noise
strongly correlated in space with first neighbors, which can be concluded from its definition.
Note that, by construction, ⟨ϕ(x⃗, t)⟩ = 0.

We note that, since the growth process usually starts with a flat surface h(x⃗, t = 0) = 0,
the initial noise is just ϕ(x⃗, t = 0) = η(x⃗, t = 0) and the first state of the growth is just
a random walk. It is followed by a correlation such that w(t) ∝ tβ, where distinctions
between Edwards–Wilkinson and KPZ appear. The distribution of heights P(h), which has
been obtained exactly only for 1 + 1 dimensions and shows universal behavior [11,34–37],
will dynamically affect the noise ϕ(x⃗, t) and the roughness of the interface.

2.1. Fractals

While the KPZ dynamics is defined in an Euclidean space of dimension d + 1, the
growing surface shows fractal features observed in experiments on SiO2 films [13] or in
the rough interface generated by simulations of the 2 + 1 single-step (SS) model [38]. The
existence of an associated fractal dimension is widely known [9,39].

For these self-affine growth processes, the grown surface has a fractal dimension d f ,
which obeys [9]

d f =

{
2 − α, if d = 1, 2
d − α, if d ≥ 2.

(11)

Therefore, KPZ growth is a phenomenon intricately linked to fractality. Moreover, the
dynamics of complex systems like KPZ can exhibit various length scales and, consequently,
different fractal dimensions. With our current knowledge, we certainly cannot specify how
many. Nevertheless, our primary focus here is to highlight two specific fractal dimensions:
the previously mentioned d f and a new fractal dimension dn associated with the effective
noise ϕ.

To motivate the need for a description in terms of a new fractal dimension, let us first
recall that the system is defined in a space with dimension d + 1, where “1” is associated
with the height coordinate h. However, notice that the dynamical evolution of the KPZ
equation leads to structures with an effective dimension lower than d + 1 — this becomes
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apparent in the long-time behavior associated with w, which scales as Lα, with α < 1.
Since this consideration only involves coordinate h, it is reasonable to consider an effective
description in which the dynamics is embedded in a space with a putative lower dimension
dn + 1, so that d ≤ dn + 1 ≤ d + 1, i.e., d − 1 ≤ dn ≤ d.

The argument above suggests the existence of a new fractal dimension, but it does
not provide a workable definition for measuring or calculating dn. One possibility to
incorporate dn is partly motivated by recent results (see, e.g., [40]), and consists of replacing
d-dimensional Dirac delta functions by dn-dimensional fractional delta functions [41,42],
which naturally incorporate non-locallity and correlations in space. Recall that our new
noise variable ϕ must be correlated, so we make the simple conjecture that the two-point
correlation function ⟨ϕ(x⃗, t)ϕ(x⃗′, t′)⟩ can be written as

⟨ϕ(x⃗, t)ϕ(x⃗′, t′)⟩ = 2Deff(t)δ(dn(t))(x⃗ − x⃗′)δ(t − t′), (12)

where both dn(t) and Deff(t) are functions of time, reflecting the fact that surface roughness
evolves over time. If we start with a flat interface, implying initial roughness w(t = 0) = 0,
it will evolve until saturation at t ≫ t×. Therefore, one has that w(t) → ws, Deff(t) →
Ds

eff and dn(t) → ds
n, where “s” indicates saturation values. In Section 2.2, we will use

simple ideas based on dimensional analysis to connect the fractal dimension dn with the
exponent α.

Through this new perspective, there is actually no violation of the FDT: Equation (12) is
understood as a real representation of fluctuations in the system. At saturation, the balance
represented by the new FDT is an equilibrium between the dissipation of roughness ∇2h
and the fluctuation ϕ. In Equation (8), vg is a constant that does not contribute to this
balance. We can now seek to associate α with dn for d + 1 dimensions.

2.2. Dimensional Analysis

A powerful tool in physics is dimensional analysis, which we apply now to ob-
tain important information about the interface geometry. Although ws ∼ Lα, as seen
in Equation (4), it has the same physical dimension as the height h, that is, [ws] = [h] = [L].
In other words, in experiments, they are both measured in units of length, as it must be
from definition (3). The physical dimensions involved in the parameters that control ws
are [ν] = [L2][T−1], [Ds

eff] = [Ldn+2][T−1], where [T] is the time dimension. Since time is
not present in the dimensions of ws, it needs to be eliminated. Therefore, both Ds

eff and ν
must appear under the same exponent in the form Ds

eff/ν. Thus, the FDT balance gives
ws ∝ (Ds

effL/ν)α, whose dimensional analysis yields

α =
1

dn + 1
, (13)

with d − 1 ≤ dn ≤ d as previously discussed. For d = 1, we have dn = d = 1. This is
because, if dn < 1, there would be no continuous border. Thus, for 1 + 1 dimensions, our
analysis yields the exact exponent α = 1/2.

3. Determination of Exponents and Fractal Dimensions

Originally, there were three exponents and two equations, namely Equations (5) and (6).
We have now introduced Equations (11) and (13). However, they involve two extra un-
knowns, d f and dn, both associated with fractal dimensions. Although introducing these
variables might seem pointless, it has the advantage of shifting our attention to the fractal
geometry of the problem.

In the absence of a formal theory to determine at least one of the fractal dimensions, we
will use computer simulations to obtain some information regarding the critical exponents.
Knowing α, we can then obtain the fractal dimensions dn and d f using the above relations.
The surface roughness measured by the exponent α has important information on the
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properties of the surface and of the growth process. Its evolution can be obtained from the
correlation function:

C(r) =
〈
[h(x⃗ + r⃗, t)− h(x⃗, t)]2

〉
∝ r2α, (14)

where r is the modulus of the vector r⃗ with r < ξ, where ξ is the correlation length [39].
Note that this can be viewed as a time-independent correlation function for each time t.

Simulations using lattice models in the KPZ universality class can be used to determine
the time evolution of α(t), which in turn can be found by fitting the correlation function [2,8].
From that, we can obtain dn from Equation (13) and d f from Equation (11) as functions of
time. To achieve this, we simulate the well-known SS model as described below.

The SS lattice model is defined in such a way that the height difference between two
neighboring heights, η = hi − hj, is always η = ±1. Let us consider a hypercube of side L
and volume V = Ld. We will select a site i and compare its height with that of its neighbors
j, applying the following rules [38,43,44]:

1. At time t, randomly choose a site i ∈ V;
2. If hi(t) is a local minimum, then hi(t + ∆t) = hi(t) + 2, with probability p;
3. If hi(t) is a local maximum, then hi(t + ∆t) = hi(t)− 2, with probability q.

For all simulations presented here, we chose p = 1 and q = 0 to reduce the computa-
tional time. Note that, if we implemented a simpler growth model based on rule (1), one
would have a white noise in d + 1 dimensions. However, due to rules (2) and (3), only a
fraction of that noise will be effectively realized.

We show in Figure 1 the time evolution of the roughness exponent α for the SS model
in 1 + 1 dimensions. The values are obtained from the correlation function (14) for a system
of size L = 4096. To do that, we average over the lattice [Equation (3)] and then over
1000 experiments. We observe that the value of α increases with time until it stabilizes,
fluctuating around the stationary theoretically exact value of 1/2.
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Figure 1. SS model in 1 + 1 dimensions: the roughness exponent α as a function of time t (in units
of t×) for a system of size L = 4096 obtained from the correlation function (14). The dashed line
represents the stationary theoretically exact value for α, i.e., 1/2.
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Having validated our simulations by comparison with the exact values, we now show
in Figure 2 the evolution of both fractal dimensions as functions of time for the SS model
in 1 + 1 dimensions, with d f obtained from Equation (11) and dn from Equation (13). The
simulation data are the same as those used in Figure 1.
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Figure 2. Fractal dimensions d f and dn as a function of time t for the SS model in 1 + 1 dimensions.
The dashed lines represent the stationary theoretical values for each fractal dimension (see text).

We highlight that, since α increases over time and then saturates, the fractal dimensions
d f and dn consequently decrease over time and then stabilize. The stabilization occurs
when the system reaches the saturation region where w ≈ ws. As t → ∞, the value of
α tends towards 1/2. Consequently, d f → 2 − α = 3/2 and dn → 1/α − 1 = 1. These
theoretical values are marked as dashed lines in Figure 2.

In Figure 3a, we show the evolution of the fractal dimension as a function of time t
for the SS model in 2 + 1 dimensions. The case of 2 + 1 dimensions is the most relevant
one. Besides corresponding to our real world, growth phenomena in these dimensions are
associated with surface science and the development of new technological devices, such as
those involving thin films. Moreover, for 2+ 1 dimensions, there are more simulation results
available and one can obtain more precise exponents than, say, for 3 + 1. Furthermore,
for 2 + 1 dimensions, there are experimental results. We use a squared lattice of lateral
size L = 2048 and average over 10 experiments. We also calculate the average over time
windows of 500 time steps. We determine α(t) and, from that, d f and dn. Surprisingly, after
the transient, the two values agree. Figure 3b shows their difference d f − dn. In the inset,
we see that, for a long time, the difference d f − dn fluctuates around zero. Indeed, its mean
value in the inset region is ∆d f = d f − dn = −0.0011(3). This yields |∆d f /d f | = 7 × 10−4.
Similar results, not presented here, hold for the etching model [45–47].
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Figure 3. SS model in 2 + 1 dimensions. (a): Fractal dimensions d f and dn against time t. The dashed

line represents the theoretical value for dn = d f =
1+

√
5

2 (golden ration). (b): The difference between
the fractal dimensions, d f − dn, as a function of time. The dashed line marks zero, whereas the
horizontal solid line represents the average value, −0.0011(3), obtained within the time interval from
3 × 104 to 5 × 104. In the insets, we zoom into the stationary regime data.

Motivated by numerical evidence, we assume that dn = d f for 2 + 1 dimensions,
which allows us to write down exact values for the exponents α, β, z, as well as the fractal
dimensions d f and dn. Combining Equations (11) and (13), we obtain

α =
3 −

√
5

2
; β =

√
5 − 2; z = d f =

1 +
√

5
2

, (15)

which corresponds to d f = 1.61803... (see inset of Figure 3, top), and α = 0.381966011..., in
agreement with the simulations (see compilations of simulation results in reference [30]).
Moreover, accurate experiments give z = 1.6(2) [12], z = 1.6(1) [13], z = 1.61(5) [48], and
z = 1.61 [49] in agreement with our value of z = d f = 1+

√
5

2 = 1.61803.... Since the final
fate of a theory is decided by experiments, these results strongly indicate that our proposal
is on the right track. For completeness, we mention that, recently, Luis et al. [2,3] have
used the Higuchi method (HM) [50,51] and the three-point sinuosity method [52] to obtain
d f = 1.6179(3) for the SS model and d f = 1.61813(5) for the etching model [2] and discuss
its theoretical and experimental accessibility during film growth [3].

For 3 + 1 dimensions, the distinction between dn and d f becomes clear again. In
Figure 4, we use a cube of side L = 512 and we average over three experiments and time
windows of 50 time steps. The figure exhibits the evolution of both fractal dimensions.
There is no doubt that they correspond to different fractal dimensions.



Entropy 2024, 26, 260 8 of 11

 1.5

 2

 2.5

 3

 3.5

 4

 0  2000  4000  6000  8000  10000  12000  14000

fr
a

c
ta

l 
d

im
e

n
s
io

n

t

df

dn

Figure 4. SS model in 3 + 1 dimensions: Fractal dimensions d f and dn as a function of time t.

4. Additional Discussion
4.1. Upper Critical Dimension

For d ≥ 2, no exact results for the KPZ exponents have been widely accepted.
Equation (13) may shed some light on the issue. From d − 1 ≤ dn ≤ d, we obtain:

1
d
≥ α ≥ 1

d + 1
. (16)

Therefore, α will keep changing with the dimension d. As a consequence, within our
framework, there is no upper critical dimension. Note that, if we choose the bounds
allowed by the Hausdorff fractal dimensions [9], not the above restriction, we have d − 1 ≤
dn ≤ d + 1, and therefore Equation (13) implies

1
d
≥ α ≥ 1

d + 2
. (17)

Both sets of inequalities suggest the nonexistence of a UCD. However, α = (d + 1)−1, is the
well-known Wolf–Kertesz relation [53], which is broadly recognized as a lower bound for α.
Furthermore, the upper bound of d − 1 ≤ dn ≤ d gives the exact result α = 1/2 for d = 1
as already mentioned. Thus, Equation (16) establishes the appropriate bounds and we do
not need relation (17).

4.2. Renormalization

Equation (13) also sheds light on a crucial aspect of the one-loop renormalization
approach [6]. For d = 1, where the noise dimension dn = 1 aligns with the Euclidean
dimension, this renormalization approach is correct. However, for d ≥ 2, where dn differs
significantly from d, it does not work. This mismatch between the two dimensions suggests
an explanation as to why the one-loop renormalization approach is incorrect.

The main relationships between exponents are the result of scaling, Equation (5), and
renormalization approaches, Equation (6). Recent results [17] generalizing the Family–
Vicsek relation to all d dimensions would be a hopeful starting point for a generalization of
a renormalization group (RG) approach to KPZ. Thus, a new approach involving a suitable
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renormalization with a fractal dimension for the noise would be desired. However, that is
not an easy task.

4.3. A Possible Connection between Growth and Phase Transitions

We discuss above the violation and necessary modification of the FDT in growth. The
first clear indication of FDT violation appeared in phase transition studies. For example,
let us define the fluctuation of the order parameter m(⃗r, t) as δm(⃗r, t) = m(⃗r, t)− ⟨m(⃗r, t)⟩.
We also define the correlation function, G(r) = ⟨δm(⃗r + i⃗, t)δm(⃗i, t)⟩, which for small
fluctuations in the continuous limit, yields [54]

G(r) ∝

{
r2−d exp(−r/ρ), if r > ρ,
r2−d−η , if r ≪ ρ,

(18)

where ρ is the correlation length. At this point the Fisher exponent η is introduced em-
pirically, arguing that the FDT does not work. Part of this is empirical, motivated by
experiments and simulations. But η is also exactly calculated in a few exactly solvable
models (e.g., η = 1/4 for Ising in 2D). A recent fractal analysis [40] close to the phase
transition shows that G(r) is the appropriate response function with

η = d − d f . (19)

Thus, the Fisher exponent in the correlation function, G(r) represents the deviation from
the integer dimension. Note the similarity with Equation (11). Such a similarity is re-
markable since we are comparing non-equilibrium growth phenomena with equilibrium
phase transitions.

5. Conclusions

In this work, our objective was to give a new insight into the fluctuation dissipation
theorem for the KPZ equation. To do this, we consider the fluctuation of a combination of
the nonlinear term with the white noise. Our theory suggests a new emergent noise which
obeys a new FDT with fractal dimension dn. The balance at saturation w ≈ ws gives a
new equation relating dn to the exponent α. This new relation indicates when one-loop RG
should work or not. For 2 + 1 dimensions, the noise dimension and the fractal dimensions
are the same within a great precision, dn ≈ d f , which allows us to obtain accurate values of
the growth exponents in 2 + 1 dimensions for the KPZ equation.

Finally, the discussions presented here open a new scenario for further investigation
into different forms of growth—both theoretical and numerical. For example, the RG
approach applied to the fractal interface will probably lead to new important results. As
mentioned above, one-loop expansion preserves the Galilean invariance (6). However, it
deserves further developments. The attempt to obtain exact height fluctuations for the
stationary KPZ equations, as well as for most of KPZ growth physics in 2+ 1 dimensions, is
still in its beginning. These theoretical methods will benefit from the fixed points obtained
by precise KPZ exponents, and from the idea of a fractal geometry that must be associated
with them [31]. We also expect that new methods would confirm our results. Therefore,
our work suggests new horizons for KPZ research.

Author Contributions: Conceptualization, M.S.G.-F. and F.A.O.; Methodology, M.S.G.-F.; Software,
M.S.G.-F.; Validation, M.S.G.-F., P.d.C. and D.B.L.; Formal analysis, M.S.G.-F., P.d.C. and D.B.L.;
Investigation, M.S.G.-F., P.d.C., D.B.L. and F.A.O.; Data curation, M.S.G.-F.; Writing—original draft,
M.S.G.-F.; Writing—review & editing, M.S.G.-F., P.d.C., D.B.L. and F.A.O.; Supervision, F.A.O. All
authors have read and agreed to the published version of the manuscript.



Entropy 2024, 26, 260 10 of 11

Funding: This work was supported by the Fundação de Apoio a Pesquisa do Rio de Janeiro (FAPERJ),
Grant No. E-26/203953/2022 (F.A.O.). M.S.G.F acknowledges financial support from grant number #
2023/03658-9, São Paulo Research Foundation (FAPESP) and acknowledge the National Laboratory
for Scientific Computing (LNCC/MCTI, Brazil) for providing computational resources trough the
SDumont supercomputer. D.B.L. thanks financial support through FAPESP grants # 2021/14285-3
and # 2022/09615-7. P.d.C. was supported by Scholarships # 2021/10139-2 and # 2022/13872-5 and
ICTP-SAIFR Grant # 2021/14335-0, all granted by São Paulo Research Foundation (FAPESP), Brazil.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mandelbrot, B.B. The Fractal Geometry of Nature; WH Freeman: New York, NY, USA, 1982; Volume 1.
2. Luis, E.E.M.; de Assis, T.A.; Oliveira, F.A. Unveiling the connection between the global roughness exponent and interface fractal

dimension in EW and KPZ lattice models. J. Stat. Mech. Theory Exp. 2022, 2022, 083202. [CrossRef]
3. Mozo Luis, E.E.; Oliveira, F.A.; de Assis, T.A. Accessibility of the surface fractal dimension during film growth. Phys. Rev. E 2023,

107, 034802. [CrossRef]
4. Zaslavsky, G.M.; Zaslavskij, G.M. Hamiltonian Chaos and Fractional Dynamics; Oxford University Press on Demand: New York, NY,

USA, 2005.
5. Oliveira, F.A.; Ferreira, R.; Lapas, L.C.; Vainstein, M.H. Anomalous diffusion: A basic mechanism for the evolution of inhomoge-

neous systems. Front. Phys. 2019, 7, 18. [CrossRef]
6. Kardar, M.; Parisi, G.; Zhang, Y.C. Dynamic Scaling of Growing Interfaces. Phys. Rev. Lett. 1986, 56, 889–892. [CrossRef] [PubMed]
7. Edwards, S.F.; Wilkinson, D. The surface statistics of a granular aggregate. Proc. R. Soc. London. Math. Phys. Sci. 1982, 381, 17–31.
8. Gomes-Filho, M.S.; Penna, A.L.; Oliveira, F.A. The Kardar-Parisi-Zhang exponents for the 2+1 dimensions. Results Phys. 2021,

26, 104435. [CrossRef]
9. Barabási, A.L.; Stanley, H.E. Fractal Concepts in Surface Growth; Cambridge University Press: Cambridge, UK, 1995.
10. Merikoski, J.; Maunuksela, J.; Myllys, M.; Timonen, J.; Alava, M.J. Temporal and spatial persistence of combustion fronts in paper.

Phys. Rev. Lett. 2003, 90, 024501. [CrossRef] [PubMed]
11. Le Doussal, P.; Majumdar, S.N.; Rosso, A.; Schehr, G. Exact short-time height distribution in the one-dimensional Kardar-Parisi-

Zhang equation and edge fermions at high temperature. Phys. Rev. Lett. 2016, 117, 070403. [CrossRef] [PubMed]
12. Orrillo, P.A.; Santalla, S.N.; Cuerno, R.; Vázquez, L.; Ribotta, S.B.; Gassa, L.M.; Mompean, F.; Salvarezza, R.C.; Vela, M.E.

Morphological stabilization and KPZ scaling by electrochemically induced co-deposition of nanostructured NiW alloy films. Sci.
Rep. 2017, 7, 17997 . [CrossRef]

13. Ojeda, F.; Cuerno, R.; Salvarezza, R.; Vázquez, L. Dynamics of Rough Interfaces in Chemical Vapor Deposition: Experiments and
a Model for Silica Films. Phys. Rev. Lett. 2000, 84, 3125–3128. [CrossRef]

14. Chen, L.; Lee, C.F.; Toner, J. Mapping two-dimensional polar active fluids to two-dimensional soap and one-dimensional
sandblasting. Nat. Commun. 2016, 7, 12215. [CrossRef]

15. Rojas-Vega, M.; de Castro, P.; Soto, R. Wetting dynamics by mixtures of fast and slow self-propelled particles. Phys. Rev. E 2023,
107, 014608. [CrossRef]

16. Family, F.; Vicsek, T. Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model.
J. Phys. A Math. Gen. 1985, 18, L75. [CrossRef]

17. Rodrigues, E.A.; Luis, E.E.M.; de Assis, T.A.; Oliveira, F.A. Universal scaling relations for growth phenomena. J. Stat. Mech.
Theory Exp. 2024, 2024, 013209. [CrossRef]

18. Grigera, T.S.; Israeloff, N.E. Observation of Fluctuation-Dissipation-Theorem Violations in a Structural Glass. Phys. Rev. Lett.
1999, 83, 5038. [CrossRef]

19. Ricci-Tersenghi, F.; Stariolo, D.A.; Arenzon, J.J. Two time scales and violation of the fluctuation-dissipation theorem in a finite
dimensional model for structural glasses. Phys. Rev. Lett. 2000, 84, 4473. [CrossRef] [PubMed]

20. Barrat, A. Monte Carlo simulations of the violation of the fluctuation-dissipation theorem in domain growth processes. Phys. Rev.
E 1998, 57, 3629. [CrossRef]

21. Bellon, L.; Ciliberto, S. Experimental study of the fluctuation dissipation relation during an aging process. Phys. D Nonlinear
Phenom. 2002, 168, 325–335. [CrossRef]

22. Hayashi, K.; Takano, M. Violation of the fluctuation-dissipation theorem in a protein system. Biophys. J. 2007, 93 , 895–901.
[CrossRef]

23. Perez-Madrid, A.; Lapas, L.C.; Rubi, J.M. Heat exchange between two interacting nanoparticles beyond the fluctuation-dissipation
regime. Phys. Rev. Lett. 2009, 103, 048301. [CrossRef]

24. Costa, I.V.L.; Morgado, R.; Lima, M.V.B.T.; Oliveira, F.A. The Fluctuation-Dissipation Theorem fails for fast superdiffusion.
Europhys. Lett. 2003, 63, 173. [CrossRef]

25. Costa, I.V.; Vainstein, M.H.; Lapas, L.C.; Batista, A.A.; Oliveira, F.A. Mixing, ergodicity and slow relaxation phenomena. Phys. A
Stat. Mech. Appl. 2006, 371, 130–134. [CrossRef]

http://doi.org/10.1088/1742-5468/ac7e3f
http://dx.doi.org/10.1103/PhysRevE.107.034802
http://dx.doi.org/10.3389/fphy.2019.00018
http://dx.doi.org/10.1103/PhysRevLett.56.889
http://www.ncbi.nlm.nih.gov/pubmed/10033312
http://dx.doi.org/10.1016/j.rinp.2021.104435
http://dx.doi.org/10.1103/PhysRevLett.90.024501
http://www.ncbi.nlm.nih.gov/pubmed/12570549
http://dx.doi.org/10.1103/PhysRevLett.117.070403
http://www.ncbi.nlm.nih.gov/pubmed/27563940
http://dx.doi.org/10.1038/s41598-017-18155-7
http://dx.doi.org/10.1103/PhysRevLett.84.3125
http://dx.doi.org/10.1038/ncomms12215
http://dx.doi.org/10.1103/PhysRevE.107.014608
http://dx.doi.org/10.1088/0305-4470/18/2/005
http://dx.doi.org/10.1088/1742-5468/ad1d57
http://dx.doi.org/10.1103/PhysRevLett.83.5038
http://dx.doi.org/10.1103/PhysRevLett.84.4473
http://www.ncbi.nlm.nih.gov/pubmed/10990714
http://dx.doi.org/10.1103/PhysRevE.57.3629
http://dx.doi.org/10.1016/S0167-2789(02)00520-1
http://dx.doi.org/10.1529/biophysj.106.100487
http://dx.doi.org/10.1103/PhysRevLett.103.048301
http://dx.doi.org/10.1209/epl/i2003-00514-3
http://dx.doi.org/10.1016/j.physa.2006.04.096


Entropy 2024, 26, 260 11 of 11

26. Lapas, L.C.; Costa, I.V.L.; Vainstein, M.H.; Oliveira, F.A. Entropy, non-ergodicity and non-Gaussian behaviour in ballistic
transport. Europhys. Lett. 2007, 77, 37004. [CrossRef]

27. Lapas, L.C.; Morgado, R.; Vainstein, M.H.; Rubí, J.M.; Oliveira, F.A. Khinchin Theorem and Anomalous Diffusion. Phys. Rev. Lett.
2008, 101, 230602. [CrossRef] [PubMed]

28. Villa-Torrealba, A.; Chávez-Raby, C.; de Castro, P.; Soto, R. Run-and-tumble bacteria slowly approaching the diffusive regime.
Phys. Rev. E 2020, 101, 062607. [CrossRef] [PubMed]

29. Rodríguez, M.A.; Wio, H.S. Stochastic entropies and fluctuation theorems for a discrete one-dimensional Kardar-Parisi-Zhang
system. Phys. Rev. E 2019, 100, 032111. [CrossRef] [PubMed]

30. Gomes-Filho, M.S.; Oliveira, F.A. The hidden fluctuation-dissipation theorem for growth. EPL 2021, 133, 10001. [CrossRef]
31. dos Anjos, P.H.R.; Gomes-Filho, M.S.; Alves, W.S.; Azevedo, D.L.; Oliveira, F.A. The Fractal Geometry of Growth: Fluctua-

tion–Dissipation Theorem and Hidden Symmetry. Front. Phys. 2021, 9, 566. [CrossRef]
32. Gomes-Filho, M.S.; Lapas, L.; Gudowska-Nowak, E.; Oliveira, F.A. Fluctuation-Dissipation relations from a modern perspective.

arXiv 2023, arXiv:2312.10134.
33. Vvedensky, D.D. Edwards-Wilkinson equation from lattice transition rules. Phys. Rev. E 2003, 67, 025102. [CrossRef]
34. Calabrese, P.; Le Doussal, P.; Rosso, A. Free-energy distribution of the directed polymer at high temperature. Europhys. Lett. 2010,

90, 20002. [CrossRef]
35. Amir, G.; Corwin, I.; Quastel, J. Probability distribution of the free energy of the continuum directed random polymer in 1 + 1

dimensions. Commun. Pur. Appl. Math. 2011, 64, 466–537. [CrossRef]
36. Prähofer, M.; Spohn, H. Universal distributions for growth processes in 1+ 1 dimensions and random matrices. Phys. Rev. Lett.

2000, 84, 4882. [CrossRef] [PubMed]
37. Sasamoto, T.; Spohn, H. One-dimensional Kardar-Parisi-Zhang equation: An exact solution and its universality. Phys. Rev. Lett.

2010, 104, 230602. [CrossRef]
38. Daryaei, E. Universality and crossover behavior of single-step growth models in 1+ 1 and 2+ 1 dimensions. Phys. Rev. E 2020,

101, 062108. [CrossRef]
39. Kondev, J.; Henley, C.L.; Salinas, D.G. Nonlinear measures for characterizing rough surface morphologies. Phys. Rev. E 2000,

61, 104. [CrossRef]
40. Lima, H.A.; Luis, E.E.M.; Carrasco, I.S.S.; Hansen, A.; Oliveira, F.A. A geometrical interpretation of critical exponents. arXiv 2024,

arXiv:2402.10167.
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