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Abstract: Entropy can signify different things. For instance, heat transfer in thermodynamics or a
measure of information in data analysis. Many entropies have been introduced, and it can be difficult
to ascertain their respective importance and merits. Here, we consider entropy in an abstract sense,
as a functional on a probability space, and we review how being able to handle the trivial case of
non-interacting systems, together with the subtle requirement of extensivity, allows for a systematic
classification of the functional form.
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1. Introduction

The term “entropy” is used extensively in the modern scientific literature. Originating
in the 19th-century theory of thermal dynamics [1], the concept is now, to a near bewildering
extent, used widely in one form or another across many sciences. For example, entropy is
at the foundation of information theory [2] and is of crucial use in computer science [3,4].
Also, neurosciences make use of entropy both as a tool to characterize and interpret data
from brain scans [5] and, more fundamentally, in theories of the dynamics of the brain and
mind [6]. Generally speaking, entropy is a fundamental notion in complexity science [7].
Here, we present a brief review of some recent mathematical developments in the theory
of entropy.

In mathematical terms, an entropy is a functional S[p] defined on a space of probability
distributions p = (p1, p2, . . . , pW) associated with a W-dimensional event space. Thus, we
use the word “entropy” with the same meaning it assumes, for instance, in the case of
Rényi’s entropy, without direct reference to thermodynamics. From this perspective, the
relevance of entropies is clear. They can be considered as analytic tools that can help in the
analysis of the inter-dependencies within the system behind a given event space. Similarly,
their use in information-theoretic analysis of time series is likewise natural. The connection
between entropies as mathematical functionals and the thermodynamic entropy of Clausius
defined in terms of heat transfer is much less immediate. Here, we will concentrate on the
mathematical aspects of entropies as functionals and only make a few comments on the
possible connection to thermodynamics.

The first question to tackle is which functional form of S[p] yields useful entropies.
i.e., how to limit the infinite number of choices for S[p]. It is well known that the Boltzmann–
Gibbs–Shannon form

SBGS[p] =
W

∑
i=1

pi log
1
pi

(1)

(we assume kB = 1) is the unique possibility if one assumes that the entropy must satisfy
the four Shannon–Kinchin (SK) axioms [8]:
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(SK1) (Continuity). The function S(p1, . . . , pW) is continuous with respect to all its argu-
ments.

(SK2) (Maximum principle). The function S(p1, . . . , pW) takes its maximum value over the
uniform distribution pi = 1/W, i = 1, . . . , W.

(SK3) (Expansibility). Adding an event of zero probability to a probability distribution
does not change its entropy: S(p1, . . . , pW , 0) = S(p1, . . . , pW).

(SK4) (Additivity). Given two subsystems A, B of a statistical system, S(A ∪ B) = S(A) +
S(B|A).

Therefore, to derive entropies of a functional form different from the one in Equation (1),
it is necessary to go beyond the four SK axioms. Various strategies in this respect have been
adopted in the literature.

Let us start by recalling Constantino Tsallis’s elegant observation [9] that the formula

Sq[p] = k
1 − ∑W

i=1 pq
i

q − 1
, p = (p1, p2, . . . , pW) ∈ [0, 1]W , k ∈ R+ (2)

provides a possible generalization of Boltzmann’s entropy. This is the case in the sense
that Sq is a functional on the space of probability distributions p : {1, 2, . . . , W} 7→ [0, 1]W ,
and in the limit q → 1, the entropy Sq[p] becomes equal to the Boltzmann–Gibbs–Shannon
entropy in Equation (1). Tsallis’s 1988 article [9] has inspired a tremendous effort to
generalize Boltzmann’s entropy in different scenarios, including what we will review in
this paper. Tsallis pointed out that the entropy Sq fulfills a specific procedure for combining
independent systems which can be seen as a generalization of the additivity property (SK4)
of the Boltzmann–Gibbs–Shannon entropy. In particular, Tsallis suggested that the free
parameter q should be determined by requiring that Sq for a given system is extensive (for
a recent reference to Tsallis’s argument, see [10]), i.e., that in the uniform case where the
probabilities are pi = 1/W for all i = 1, 2, . . . , W, the entropy Sq ∝ N for n → ∞, where
N denotes the number of components in the system under analysis. For clarity, we note
that when considering physical systems, the entropy may become volume-dependent; for
example, because the number of states available, W, depends on the volume. Volume
dependence can also enter through the probabilities p∗i determined by the maximum
entropy principle.

Although the Tsallis entropy does not fulfill axiom SK4 in its original form and hence
is non-additive, it does satisfy a composition relation different from addition.

Another set of non-Boltzmann–Gibbs–Shannon entropies was derived by Hanel and
Thurner [11] by simply discarding axiom SK4 and then determining the functional form
from the asymptotic behavior of the number of events, or states, W, as a function of the
number of components in the system. However, in this approach, there is no systematic rule
for handling the computation of the entropy of a system consisting of independent parts.

It is well known that in physics, the investigation of required symmetries has often
been helpful. Think of Einstein’s use of the symmetry between different reference frames
to derive special and general relativity theory. Consider also the eightfold way and the
derivation of QCD. Additionally, consider the application of symmetry and group theory to
atomic spectra. Therefore, it seems natural to, rather than discarding the fourth SK axiom,
replace it in a way informed by the symmetry properties (and related group-theoretic
restrictions) that an entropy must necessarily satisfy. Consequently, the question is, which
symmetry cannot be ignored when dealing with entropies?

The fourth SK axiom addresses how the entropy of a system AB, consisting of two
independent parts A and B, can be expressed as a sum of the entropy of A and the entropy
of B. Tsallis entropy also allows the entropy of AB to be expressed in terms of the entropy
of the two parts, not as a sum but as a generalized combination of the entropies of the parts.

The notion of group entropy, introduced in [12,13], goes one step further and exploits
the idea that the process of combining two independent systems can be seen as a group
operation. The group entropies satisfy the three first SK axioms, as well as a fourth
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one, which consists of a generalized composition procedure making use of formal group
theory [14,15].

This approach leads to axiomatically defined entropies, whose composition rule is
defined in terms of the generator G(t) of a suitable formal group law, namely

S[p] =
G
(

ln ∑W
i=1 pα

i
)

1 − α
with α > 0 and α ̸= 1. (3)

Although this restricts the allowed functional forms available for an entropy, it does
not uniquely determine the entropy as the four SK axioms do. Below, we will discuss how
the analysis of combining independent systems using formal group theory, together with
requiring extensivity, allows for a systematic classification of entropies in “universality
classes”. These classes are defined by taking into account how fast the number of available
states W grows with the number of components N. We accomplish this by starting with
a more general functional non-trace form than the one given in Equation (2). For details,
see [12].

By generalizing the Tsallis functional form and requiring composability together with
extensivity, we are able to regard Tsallis entropy as the composable entropy associated with
systems where interdependence between their components forces W to grow slowly, namely
as a power of N. Below, we will discuss why composability on the entire probability space
is an indispensable property of an entropy. We will also address the need for extensivity in
a general sense. We will point out that extensivity can be very relevant even beyond the
thermodynamic need for a well-defined limit as the number of components approaches
infinity. For example, extensivity is essential for using an entropy as a measure of the
complexity of a time series or for handling power-law probability distributions.

2. Why Composability

The need for composability does not arise because real systems can always be re-
garded as a simple combination of subsystems. The requirement is, in a sense, a logical
necessity [16]. When we consider two independent systems with state spaces A and B, we
should obtain the same result if we compute the entropy of the Cartesian combined system
A × B as if we first compute the entropy of A and B separately and then afterward decide
to consider them as one combined system. By Cartesian combination, we mean that the
system A × B is given by the set of states {(a, b)|a ∈ A, b ∈ B}, with the probabilities for
the individual states given by p(a, b) = p(a)p(b). This Cartesian combination immediately
suggests familiar properties from group theory. The composition is as follows:

Commutative: Since we have state spaces in mind, we consider A × B = B × A. The
ordering is immaterial.
Associative: A × (B × C) = (A × B)× C.
“Neutral” element: A × B ∼ A if B = {b}. In other words, A × B is essentially the
same set as A if B consists of one element only. In terms of state spaces, all sets with
one state only are considered to be identical, that is, indistinguishable. In this sense, a
unique “neutral” element exists in our composition process. Accordingly, we want
the entropy of a probability distribution on a set containing a single element to be
zero: indeed, it would correspond to a certainty configuration. Moreover, we want
the entropy of A × B to be equal to the entropy of A if the entropy of B is zero.

The group structure of the Cartesian combination of the event spaces for systems
must also be satisfied by the entropy functional operating on the corresponding probability
spaces. This can be ensured by employing formal group theory [16]. Define the entropy
using the expression in Equation (3), where the function G(t) = t + ∑∞

k=2 βktk is the “group
generator”. Here, the formal power series G(t) is said to be the group exponential in the
formal group literature [15]. The combination of independent systems is now expressed as

S(A × B) = ϕ(S(A), S(B)), (4)
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where the function ϕ(x, y) is given by ϕ(x, y) = G(G−1(x) + G−1(y)). Given a formal
group law, namely when ϕ(x, y) is a formal power series in two variables, it is possible to
prove that there exists a one-variable formal power series ψ(x) such that ϕ(x, ψ(x)) = 0.
This series represents the formal inverse and completes the group structure.

3. Why Extensivity

Let us first recall the definitions of extensivity and additivity. We say that an entropy is
extensive if the entropy per component is finite in the limit of infinitely many components, i.e.,

lim
N→∞

S(N)/N = constant < ∞ (5)

An entropy is additive if, for two statistically independent systems A and B, the entropy of
the two systems considered as a combined system is equal to the sum of the entropies, i.e.,

S(A + B) = S(A) + S(B). (6)

When considering the thermodynamics of macroscopic systems with the number of
constituents, N, of the order of Avogadro’s number, the usual procedure is to compute
quantities such as the thermodynamic free energy F for an arbitrary value of N. The limit
of large, essentially infinite systems is then handled by considering intensive quantities,
e.g., the free energy per constituent. Hence, for an entropy to be thermodynamically useful,
it needs to be extensive, given the fundamental thermodynamic relation F = E − TS. Since
the temperature T is an intensive quantity, the entropy must be extensive. Thus, we need
the limit limN→∞ S(N)/N to be well defined.

Outside thermodynamics, entropy finds a significant application within informa-
tion theory as a tool to characterize the complexity of a deterministic or random process
generating a time series. More precisely, we can associate with a time series an ordinal
representation formed by all ordinal patterns of length L ∈ N assigned [17]. Assuming
that all different patterns are allowed for a process, we have W(L) = L!, and each pattern
i will occur with a probability of pi = 1/L!. The Boltzmann–Gibbs–Shannon entropy in
Equation (1) is given by SShan[p] = ln L! ≃ L ln L − L. So, we obtain a diverging entropy
rate S[p]/L as the length of the time series increases. As we will see, this is a common situ-
ation since random processes exhibit super-exponential growth in the number of permitted
patterns. Again, extensivity enters into play. Thus, we would need an entropy that grows
proportionally to the number of allowed patterns in the considered time series.

The widespread occurrence of power-law probability distributions in nature, either
exact or approximate, has long been the focus of self-organized criticality (for an overview,
see [18,19]). It is now clear that power-law distributions with fat tails are common, and for
this reason, it seems natural to consider the extent to which the workhorse of information
theory, the Shannon entropy, can be used as a meaningful entropic measure for such
distributions.

Consider a probability distribution of the following form:

PS(s) =
A
sa for s = 1, 2, . . . , s(N)max. (7)

Here, A is a normalization factor and a is a positive exponent. The variable s denotes the
“size” of some process, e.g., an avalanche or a structure such as a spatial cluster. When
s(N)max grows with N, the usual Boltzmann–Gibbs–Shannon entropy will, in general, not
allow a well-defined limit S[PS](N)/N as N → ∞.

4. The Structure of the Group Entropies

Here, we explain why the expression in Equation (3) is a good starting point for
deriving generalized entropies. First, we address why we choose the argument of the
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generating function G(t) to be ln ∑i pα
i . We also comment on the so-called trace form of the

group entropies given by

S[p] =
W

∑
i=1

piG(ln
1
pi
). (8)

Finally, we briefly recapitulate how the functional form of G(t) is determined by
reference to formal group theory and the requirement that S[p] is extensive on the uniform
(also denoted as the microcanonical) ensemble, given by

pi =
1

W(N)
, for i = 1, 2 . . . , W(N). (9)

The structure of Equation (3) is used as the starting point because G(t) being a group
generator ensures composability for all distributions pi, not only the uniform distributions.
And, taking the argument to be ln ∑i pα

i enables this functional form to generate a range of
well-known entropies, including Boltzmann–Gibbs–Shannon, Rényi, and Tsallis [12]. More
specifically, if one chooses

G(t) =
eat − ebt

(a − b)(α − β)
(10)

one recovers the Boltzmann–Gibbs–Shannon entropy in the limit α → 1; Rényi’s entropy in
the double limit a → 0, b → 0; and Tsallis’s entropy in the double limit a → 1, b → 0.

4.1. Extensivity and the Group Law G(T)

Let us now briefly describe how the requirement of extensivity determines the group
law G(t) in Equation (3). Details can be found in [20,21]. For a given dependence of the
number of available states W(N), we want to ensure that the entropy given in Equation (3)
is extensive, i.e., that on the uniform ensemble pi = 1/W(N) for i = 1, . . . , W(N) we have
limN→∞ S[p]/N = constant.

We can express this as

S
(

pi =
1

W

)
= λN. (11)

Asymptotically, we have

S
(

1
W

)
=

G(ln(W1−α)

1 − α
≈ λN. (12)

Then, we invert the relation between S and G, which, by Equation (12), amounts to inverting
the relation between G and N. For G(t) to generate a group law, we must require G(0) =
0 [12,16], so we adjust the expression for G(t) accordingly and conclude that

G(t) = λ(1 − α){W−1[exp(
t

1 − α
)]− W−1(1)}. (13)

Hence, given the asymptotic behavior of W(N), we derive different corresponding en-
tropies. In the expressions below, λ ∈ R+, α > 0, and α ̸= 1 are free parameters.
Non-trace-form case:

(I) Algebraic, W(N) = Na

S[p] = λ

{
exp

[
ln(∑

W(N)
i=1 pα

i )

a(1 − α)

]
− 1

}
. (14)

(II) Exponential, W(N) = kN

S[p] =
λ

ln k
ln(∑

W(N)
i=1 pα

i )

1 − α
. (15)
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This is, of course, the Rényi entropy.
(III) Super-exponential, W(N) = NγN

S[p] = λ

{
exp

[
L
( ln ∑

W(N)
i=1 pα

i
γ(1 − α)

)]
− 1

}
. (16)

This entropy was recently studied in relation to a simple model in which the compo-
nents can form emergent paired states in addition to the combination of single-particle
states [22].

So far, we have only considered the so-called non-trace form of the group entropies
given in Equation (3). A set of entropies can be constructed in the same manner, starting
with the trace-form ansatz in Equation (8).

4.2. Trace-Form Group Entropies

It is interesting to observe that the ansatz in Equation (8) directly leads to either the
Boltzmann, the Tsallis, or an entirely new entropy, depending on the asymptotic behavior
of W(N). By applying the procedure described in Section 4.1, we obtain the following three
classes corresponding to the ones considered for the non-trace case.
Trace-form case:

(I) Algebraic, W(N) = Na

S[p] = λ ∑
W(N)
i=1 pi

[
( 1

pi
)

1
a − 1

]
(17)

= 1
q−1 (1 − ∑

W(N)
i=1 pq

i ). (18)

To emphasize the relation with the Tsallis q-entropy, we have introduced q = 1 − 1/a
and λ = 1/(1 − q). Note that the parameter q is determined by the exponent a, so it is
controlled entirely by W(N).

(II) Exponential, W(N) = kN , k > 0

S[p] =
λ

ln k

W(N)

∑
i=1

pi ln
1
pi

. (19)

This is the Boltzmann–Gibbs–Shannon entropy.
(III) Super-exponential, W(N) = NγN , γ > 0

S[p] = λ
W(N)

∑
i=1

pi

{
exp

[
L(− ln pi

γ
)

]
− 1
}

. (20)

4.3. Examples of Systems and Corresponding Group Entropies

To illustrate the classification of group entropies based on the asymptotic behavior of
W(N), we consider three Ising-type models:

(a) The Ising model on a random network [11].
(b) The usual Ising model, for example, with nearest-neighbor interaction on a hyper-

cubical lattice.
(c) The so-called pairing model in which Ising spins can form paired states [22].

Let E denote the total energy of the system. We are interested in the asymptotic behavior
of the number of possible states for the three models as a function of N for fixed energy
per component ϵ = E/N. First, consider (a). As explained in [11], W(N) ∼ Na when the
fraction of interaction links, the connectance, in the considered network, is kept constant
as the number of nodes N is increased. The exponent a is given by the ratio between the
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energy density and the connectance. The entropy corresponding to this functional form of
W(N) is, for all values of the exponent a, given by the Tsallis entropy [21].

The entropy corresponding to the standard Ising model (case (b)) with W(N) = 2N is
the Boltzmann–Gibbs–Shannon entropy. The pairing version of the Ising model (case (c))
admits a super-exponential growth in the number of states W(N) ∼ NγN , leading us to a
new functional form of the entropy [22]

Sγ,α[p] = exp

[
L

(
ln ∑W

i=1 pα
i

γ(1 − α)

)]
− 1. (21)

5. Group Entropies and the Ubiquity of the Q-Exponential Distribution

It is well known that the q-exponential form relating to the Tsallis q-entropy provides
a very good fit to an impressively broad range of data sets (see, e.g., [10]). This may, at
first, appear puzzling given that we saw in Section 4.1 that the Tsallis entropy corresponds
to one of the three classes considered here, namely systems with strong interdependence
between the components that W(N) ∼ Na. The reason that the q-exponential appears to be
much more pervasive than one would expect, given that the q-entropy is restricted to the
case W(N) ∼ Na, may be due to the following.

Consider the maximum entropy principle. For all the classes of entropies considered
in Section 4, the probability distribution that maximizes the entropy is a q-exponential.
The probability distribution for the specific case of W(N) ∼ kN is the usual exponential
Boltzmann distribution. But since the Boltzmann distribution is the limiting case of the
q-exponential for q → 1, we can say that, independently of the asymptotic behavior of
W(N), the maximum entropy principle always leads to q-exponential distributions [21].

How can this be? The reason is the functional form of the argument

x ≡ ln
N

∑
i=1

pα
i

of the ansatz in Equation (3). When one applies Lagrange multipliers and extremizes the
entropy in Equation (3), the q-exponential functional form will arise from the derivative
∂x/∂pi. The remaining factors in the expression for the derivative of S[p] will depend on
the functional form of the group law G(t) but will formally just be a constant if evaluated
on the maximizing distribution p∗ and do not depend explicitly on pi.

6. An Entropic Measure of Complexity

Fully interacting complex systems possess a number of microstates W(N) that may be
different from the Cartesian exponential case W(N) = ΠN

i=1ki, where ki is the number of
states available to component number i in isolation. When interactions freeze out states,
W(N) can grow slower than exponentially with increasing N. In contrast, when interactions
allow for the creation of new states from the combination of components, W(N) can grow
faster than exponentially. As an example, think of hydrogen atoms that form hydrogen
molecules H + H → H2. The states of H2 are not just the Cartesian product of free single
hydrogen atomic states.

The possible difference between the cardinality of the state space of the fully interacting
system and the state space formed as a Cartesian product of the states available to the
individual components can be used to construct a new measure of the degree of emergent
interdependence among the components of a complex system. We can think of this as a
quantitative measure of the degree of complexity in a given system. We imagine the entire
system AB to be divided into two parts, A and B, and compare the entropy of the system
A × B, obtained by combining the micro-sates of the two parts as a Cartesian product, with
the system AB, obtained by allowing full interaction between the components of A and
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those of B. We denote by AB this fully interacting system. The complexity measure is given
by [20]

∆(AB) = S(A × B)− S(AB) = ϕ(S(A), S(B))− S(AB). (22)

From the dependence of ∆(AB) on the number of components in the separate systems
A and B, one can, in principle, determine the kind of emergence generated by the interac-
tions in a specific complex system. In [20], we conjectured that the number of available
states for the brain grows faster than exponentially in the number of brain regions involved.
It might, at first, appear impossible to check this conjecture. However, experiments like
those conducted on rat brain tissue, such as the famous avalanche experiment by Beggs
and Plentz [23], seem to open up the possibility for a study of ∆(AB) as a function of tissue
size. We imagine it would be possible to study a piece of tissue of size N and one of size 2N,
allowing, at least in principle, to determine how ∆(AB) behaves for such a neuronal system.
A different, although related, notion of complexity, the defect entropy, was proposed in [24].

7. Group Entropy Theory and Data Analysis

The theory of group entropies has recently proved to be relevant in data analysis. One
important reason for this relevance is extensivity. When the number of patterns that may
occur in a given time sequence depends, in a non-exponential way, on the length L of the
sequence, the Shannon-based entropy of the sequence S(L) will not permit a well-defined
entropy rate S(L)/L because the Shannon entropy will not be extensive in L. This may,
for example, pose a problem for the widely used Lempel–Ziv [25] complexity measure.
This is similar to the discussion above concerning how the Boltzmann-Gibbs-Shannon
entropy fails to be extensive on state spaces that grow non-exponential in the number of
constituents. We will see below that time series very often contain a number of patterns
that grow super-exponentially in the length of the sequence.

To discuss this fundamental application of group entropies, we start with a brief
review of the ordinal analysis of time-series data. We follow the discussion and notations
in [17,26,27]. Consider the time series

(xt)t≥0 = x0, x1, . . . , xt, . . .

where t represents a discrete time and xt ∈ R. Let L ≥ 2. We introduce the sequence of
length L (or L-sequence)

xL
t := xt, xt+1, . . . , xt+L−1

Let ρ0, ρ1, . . . , ρL−1 be the permutation of 0, 1, . . . , L − 1 such that

xt+ρ0 < xt+ρ1 < . . . < xt+ρL−1 . (23)

We denote the rank vector of the sequence xL
t as follows:

rt := (ρ0, ρ1, . . . , ρL−1), (24)

The rank vectors
rt are called ordinal patterns of length L (or L-ordinal patterns). The sequence xL

t is said
to be “of type” rt. In this way, given the original time series (xt)t≥0, we have constructed an
ordinal representation associated with it: the family of all ordinal patterns (rt)t≥0 of length L.

We denote by SL the group of the L! permutations of 0, 1, . . . , L − 1, which represents
the set of symbols (also called “alphabet”) of the ordinal representation.

In the following, we consider discrete-time stationary processes X = (Xt)t≥0, both
deterministic and random, taking values in a closed interval I ⊂ R. We define a “deter-
ministic process” as a “one-dimensional dynamical system” (I,B, µ, f ), where I is the state
space (a bounded interval of R), B is the “Borel σ-algebra” of I, µ is a “measure” such that
µ(I) = 1, and f : I → I is a µ-invariant map. In this case, the image (Xt)t≥0 of X is the
orbit of X0, i.e., (Xt)t≥0 = ( f t(X0))t≥0, where f 0(X0) = X0 ∈ I and f t(X0) = f ( f t−1(X0)).
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First, we associate with an ordinal representation the probability p(r) of finding an ordinal
pattern of a given rank r ∈ SL. To this aim, we assume the stationary condition: for k ≤ L − 1,
the probability of Xt < Xt+k cannot depend on t. This condition ensures that estimates
of p(r) converge as data increase. Non-stationary processes with stationary increments,
such as the fractional Brownian motion and the fractional Gaussian noise, satisfy the
condition above.

7.1. Metric and Topological Permutation Entropy

Let X be a deterministic or random process taking real values. Let p(r) be the probabil-
ity of a sequence XL

t generated by X being of type r, and let p = p(r) be the corresponding
probability distribution. We define the following:

(i) If p(r) > 0, then r is a permitted pattern for X.
(ii) If p(r) = 0, then r is a forbidden pattern.

The permutation metric entropy of order L of p is defined as

H∗(XL
0 ) = − ∑

r∈SL

p(r) ln p(r). (25)

The topological entropy of order L of the finite process XL
t , H∗

0 (XL
t ) is the upper limit of the

values of the permutation metric entropy of order L. Formally, we obtain it by assuming
that all allowed patterns of length L are equiprobable:

H∗
0 (XL

t ) := lnAL(X), (26)

where AL(X) is the number of allowed patterns of length L for X. It is evident that the
following inequalities hold:

H∗(XL
0 ) ≤ lnAL(X) ≤ ln L!

We observe that AL(X) = L! if all L-ordinal patterns are allowed.

7.2. Bandt–Pompe Permutation Entropy

In their seminal paper [28], Bandt and Pompe introduced the following notions:

• Permutation metric entropy of X:

hM(X) := lim sup
L→∞

1
L

H∗(XL
0 ) = − lim sup

L→∞

1
L ∑

r∈SL
p(r) ln p(r),

where XL
0 = X0, . . . , XL−1.

• Topological permutation entropy of X:

hT(X) := lim sup
L→∞

1
L

H∗
0 (XL

0 ) = lim sup
L→∞

1
L

lnNL(X).

An important question is, what is the relationship between the permutation metric
entropy and the standard Kolmogorov–Sinai (KS) entropy of a map?

Let f be a strictly piecewise monotone map on a closed interval I ⊂ R. The vast
majority of, if not all, one-dimensional maps used in concrete applications belong to the
class of piecewise monotone maps. In [29], it was proved that

hM( f ) = hKS( f ).

The same relation holds for the topological versions of the two entropies. This is a
fundamental result since it allows us to compute the KS entropy using the ordinal analysis
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approach. The above theorem and its generalizations imply that the number of permitted
patterns of length L for a deterministic process grows exponentially as L increases.

|L-permitted patterns for deterministic X = f | ∼ eτ( f )L,

where τ( f ) is the topological KS entropy. In turn, this implies that the number of prohibited
patterns grows super-exponentially.

At the other extreme, we have random processes without prohibited patterns. An
elementary example is white noise. According to Stirling’s formula,

|L-possible patterns | = L! ∼ eL ln L.

It is also worth noting that noisy deterministic time series may not have prohibited patterns.
For example, in the case of dynamics on a non-trivial attractor where the orbits are

dense, observational white noise will “destroy” all prohibited patterns, regardless of how
little the noise is.

In general, random processes exhibit super-exponential growth in permitted patterns.
Random processes can also have prohibited patterns. In this case, the growth will be

“intermediate,” meaning it is still super-exponential but subfactorial.

7.3. A Fundamental Problem

For random processes without prohibited patterns, the permutation entropy diverges
in the limit as L → ∞:

hT(X) = lim
L→∞

1
L

ln|L-possible permitted patterns| = lim
L→∞

1
L

ln L! = lim
L→∞

ln L = ∞

Also, in general, hM(X) = ∞. Therefore, it is natural to consider the problem of extending
the notion of permutation entropy to make it an intrinsically finite quantity. We assume
that for a random process X,

|L-possible permitted patterns for X| ∼ eg(L).

where g(L) is a certain function that depends on the type of process considered.
Can we find a suitable, generalized permutation entropy that converges as L → ∞?

7.4. Group Entropies and Ordinal Analysis

We can obtain a new solution to this problem through the theory of group entropies.
Philosophy: Instead of using the Shannon-type permutation entropy introduced by

Bandt and Pompe as a universal entropy valid for all random processes, we will adapt our
entropic measure to the specific problem we wish to address:

• We will classify our processes into complexity classes, defined by complexity functions
g(t). These classes, in ordinal analysis, represent a notion entirely analogous to the
universality class described earlier (inspired by statistical mechanics).

• Each complexity class will correspond to a group permutation entropy, i.e., a specific
information measure designed for the class under consideration.

• This measure will be convergent as L → ∞.

Functions and Complexity Classes

A process X is said to belong to the complexity class g if

ln |allowed L-patterns for X|︸ ︷︷ ︸
AL(X)

∼ g(L) for L → ∞.
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The bi-continuous function g(t) is called the complexity function of X. The process X belongs
to the exponential class if

g(L) = cL (c > 0)

X belongs to the factorial class if
g(L) = L ln L

Example 1. A deterministic process X belongs to the exponential class. A random process X like
white noise (X i.i.d.) belongs to the factorial class.
A process X belongs to the subfactorial class if one of the following conditions holds:

(i)
g(L) = o(L ln L)

(ii)
g(L) = cL ln L; with ; 0 < c < 1

Example 2. Processes with

g(L) = L ln(k) L; ; (ln(k) L ≡ ln ◦ ln ◦ · · · ◦ ln︸ ︷︷ ︸(L)
k times

) with k ≥ 2

belong to subfactorial class (i). Processes with g(L) = cL ln L, 0 < c < 1 can also be constructed
explicitly.

7.5. Group Permutation Entropy

Main Result: The conventional permutation entropy of Bandt–Pompe can be consis-
tently generalized. According to our philosophy, the complexity class g “dictates” its associated
permutation entropy, which becomes finite in the limit of large L.

Definition 1. The group entropy of order L for a process X of class g is

Z∗
g,α(pL) = g−1(Rα(pL))− g−1(0)

where pL is the probability distribution of the L-ordinal patterns of X0L = X0, . . . , XL−1 and
Rα(pL) is the Rényi entropy. The corresponding topological group entropy of order L is

Z∗
g,0(pL) = g−1(lnAL(X))− g−1(0)

The group metric permutation entropy is

z∗g,α(X) = lim
L→∞

1
L

g−1(Rα(pL))

The topological group permutation entropy is

z∗g,0(X) = lim
L→∞

1
L

g−1(lnAL(X))

The functions defined in this manner are group entropies. Furthermore, they satisfy the inequalities

0 ≤ z∗g,α(X) ≤ z∗g,0(X) = 1 ∀α > 0.

The following are various examples of group permutation entropies:
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(a) For gexp(t) = ct : Z∗
gexp,α(pL) =

1
c

Rα(pL)

(b) For gfac(t) = t ln t : Z∗
gfac,α(pL) = eL[Rα(pL)] − 1

(c) For gsub(t) = ct ln t (0 < c < 1) : Z∗
gsub,α(pL) = eL[Rα(pL)/c] − 1 (27)

8. Thermodynamics

The application of non-Boltzmann–Gibbs–Shannon entropies to thermodynamics is
subtle. We recall that in standard thermodynamics, it is possible to interpret the Lagrange
multiplier corresponding to the constraint on the average energy as the inverse of the
physical temperature. However, it is not clear if a similar procedure can be adopted for any
generalized entropy.

One can certainly derive the probability weights p∗i corresponding to the extrema of

J = S − λ1(∑ pi −N )− λ2(∑
i

Ei pi − E) (28)

and we can compute the entropy for these weights S[p∗i ]. However, given an arbitrary gen-
eralized entropy S, we do not know if, for some physical systems, there exists a relationship
between S[p∗i ] and Clausius’s thermodynamic entropy defined in terms of heat flow. Hence,
to us, the relationship between generalized entropies and thermodynamics in the sense of
a theory of heat and energy of physical systems, apart from several interesting analogies,
remains an open field of research. Detailed discussions concerning the construction of
generalized thermostatistics for the case of the Tsallis entropy Sq are available, e.g., in the
monographs in [30,31].

9. Discussion

The group entropy formalism described has the pleasant property that all group
entropies arise systematically and transparently from a set of underlying axioms combined
with the requirement of extensivity. This approach is in contrast to those adopted to define
many of the existing entropies, which, sometimes, are intuitively proposed or justified by
axioms that ignore the need for composability. Many of the most commonly used entropies
are included and classified within the group theoretic framework.

The use of information measures adapted to the universality classes of systems, which
are extensive by construction, looks promising in several application contexts, such as the
study of neural interconnections in the human brain, classical and quantum information
geometry, and data analysis in a broad sense. We plan to further investigate complex
systems with super-exponentially growing state spaces as a paradigmatic class of examples
where these new ideas can be fruitfully tested.

10. Conclusions

We have reviewed a group-theoretic approach to the classification and characterization
of entropies, regarded as functionals on spaces of probability distributions. The theoretical
framework proposed is axiomatic and generalizes the set of Shannon–Khinchin axioms by
replacing the fourth additivity axiom with a more general composition axiom. Perhaps the
most relevant achievement so far is the systematic classification of the multitude of existing
entropies in terms of the rate at which the corresponding dimension of the state space grows
with the number of components in the system. A related result is a constructive procedure
for entropies, which exhibit extensivity on state spaces of any assigned growth rate. In
turn, this property triggers the application of group entropies to information geometry and
data analysis.
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