

Article HAG-NET: Hiding Data and Adversarial Attacking with Generative Adversarial Network

Haiju Fan * and Jinsong Wang

College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China; wangjinsong@stu.htu.edu.cn

* Correspondence: fanhaiiju8706@163.com

Abstract: Recent studies on watermarking techniques based on image carriers have demonstrated new approaches that combine adversarial perturbations against steganalysis with embedding distortions. However, while these methods successfully counter convolutional neural network-based steganalysis, they do not adequately protect the data of the carrier itself. Recognizing the high sensitivity of Deep Neural Networks (DNNs) to small perturbations, we propose HAG-NET, a method based on image carriers, which is jointly trained by the encoder, decoder, and attacker. In this paper, the encoder generates Adversarial Steganographic Examples (ASEs) that are adversarial to the target classification network, thereby providing protection for the carrier data. Additionally, the decoder can recover secret data from ASEs. The experimental results demonstrate that ASEs produced by HAG-NET achieve an average success rate of over 99% on both the MNIST and CIFAR-10 datasets. ASEs generated with the attacker exhibit greater robustness in terms of attack ability, with an average increase of about 3.32%. Furthermore, our method, when compared with other generative stego examples under similar perturbation strength, contains significantly more information according to image information entropy measurements.

Keywords: adversarial attack; watermarking; generative adversarial networks; deep learning; image information entropy

1. Introduction

Conventional image-based watermarking techniques typically alter the pixel values or structure of an image, potentially making the watermark detectable or modifiable by attackers. In contrast, recent research introduces a method that incorporates adversarial perturbations into watermark samples, enabling the watermark to disrupt the classification process of the target neural network. This not only enhances the robustness and stealthiness of the watermark but also safeguards the integrity and security of the image data. Consequently, even if attackers attempt to manipulate the image to compromise the watermark, it can effectively maintain the integrity and security of the image data, thus paving the way for new possibilities in covert communication and watermarking. As a result, certain watermarking techniques, such as ADV-EMB [1] and JAS [2], have been developed to integrate adversarial perturbations, which are adversarial to steganalysis networks, with embedding distortions.

Unfortunately, the aforementioned novel watermarking techniques primarily focus on making the watermark resistant to detection by target steganalysis while neglecting the need to protect the information of the carrier image itself. With the rapid development of big data applications, a multitude of security risks for users have emerged. Image data, being a pivotal component of big data, frequently harbor personal information such as portraits, addresses, income, and interests. When identified by target classification networks utilized in big data applications, it not only exposes the risk of personal information leakage (including spam messages and telecom fraud) but also potentially jeopardizes user safety. Hence, it becomes imperative to integrate watermarking with adversarial attack techniques.

Citation: Fan, H.; Wang, J. HAG-NET: Hiding Data and Adversarial Attacking with Generative Adversarial Network. *Entropy* **2024**, 26, 269. https://doi.org/10.3390/ e26030269

Academic Editors: Yilun Shang and Alexandre G. Evsukoff

Received: 6 February 2024 Revised: 9 March 2024 Accepted: 13 March 2024 Published: 19 March 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Therefore, we propose a novel dynamic data hiding method called HAG-NET (Hiding data and Adversarial attacking with Generative adversarial Network), which is capable of directly generating Adversarial Steganographic Examples (ASEs). In contrast to previous approaches, the ASEs generated by HAG-NET can adversarially attack the target recognition network while concealing the secret information, as depicted in Figure 1. HAG-NET employs three convolutional networks to generate ASEs. The encoder network takes the cover image and secret message (random binary bit string) as input and outputs the ASEs. Conversely, the decoder network accepts the ASEs and attempts to recover the embedded secret message.

We summarize HAG-NET's contributions as follows:

- In contrast to prior research, we propose a novel Generative Adversarial Network (GAN) framework named HAG-NET, wherein a generator, discriminator, and an attacker are trained jointly. Through co-training with the attacker, HAG-NET further enhances the robustness of the watermark.
- Building upon secret message embedding and resistance to steganalysis, HAG-NET achieves protection against detection for the carrier data.
- The information contained in the adversarial embedded disturbance generated by our method is superior to those of others with the same intensity.

Figure 1. Schematic diagram illustrating the variance in perturbations generated by various generative methods. The string represented beneath these perturbations denotes the secret data or the targeted class of the adversarial attack embedded within. *D* represents the decoder, responsible for decoding the secret data, while its output represents the decoded secret information. *C* denotes the target classification network, with its output indicating the classified prediction, and the red section highlights inaccuracies in the prediction.

2. Related Work

2.1. Adversarial Examples

Adversarial Examples (AEs) possess the capability to significantly reduce the recognition accuracy of target classification networks by introducing minimal perturbations to the original image. This phenomenon was first identified by Christian et al. in [3,4]. Subsequently, various adversarial attack algorithms have been proposed, broadly categorized into two groups: white-box attacks, where all data of the target model are known, and black-box attacks, where the training process and parameters of the target model are unknown. Among these, white-box attacks are most relevant to our proposed method.

Ian J Goodfellow et al. [4] introduced FGSM, which calculates gradients through backpropagation to effectively generate perturbations. Madry et al. [5] proposed PGD

based on FGSM, which updates the perturbations with a smaller step size in iterations, resulting in steady loss reduction during the iteration process and yielding improved attack effectiveness and visual quality. The Adversarial Examples generated by PGD demonstrate outstanding attack capabilities across various undefended and defended target classification networks.

In [6], an algorithm based on Zero-Order Optimization (ZOO) is proposed to approximate the gradient of the target model. Additionally, in [7], an optimization-based C&W attack algorithm is introduced with the aim of optimizing the objective equation $\|\delta\|_p + c \cdot f(x + \delta)$, where $f(\cdot)$ is the objective function measuring the attack effect, δ represents the generated disturbance, c is a constant greater than 0 and $p \in (0, 2, \infty)$. The disturbance δ for optimal attack and visual quality is determined by optimizing the target equation under the constraint of $\|\cdot\|_p$ and *c*.

2.2. Watermarking

The most relevant methods are as follows: (1) Least-Significant Bit (LSB) [8]: Information hiding involves systematically modifying the least significant bits of selected pixels in the cover image based on the secret information. Several watermarking methods based on LSB are introduced in [9,10]. Although these methods ensure that perturbations caused by pixel modifications are imperceptible to the naked eye and result in excellent visual quality of stego examples, the systematic alteration of pixel values affects the image's statistics, making such stego examples easily identifiable [11]. (2) Other watermarking algorithms differ in their approach to measuring minimum distortion during encoding. For example, Highly Undetectable steganography (HUGO) [8] measures the distortion degree of the encoded image by calculating the weights of local neighboring pixels of the cover image. Wavelets Obtained Weight (WOW) [12] employs a bank of directional filters to penalize distortion in predictable regions of the image. S-UNIWARD [13] resembles WOW but can be utilized to embed in arbitrary domains.

2.3. Generative Approach

Generative networks have gained considerable popularity for data generation and have witnessed significant advancements in recent years. Saeed et al. [14] introduced the concept of generative adversarial perturbations utilizing U-Net [15] and ResNet [16], laying the foundation for subsequent research in this domain. Expanding on their work, Mao et al. [17] further improved the realism of generated Adversarial Examples (AEs), enhancing their visual perception. Additionally, ADV-GAN in [18], achieved successful targeted attacks on black-box models by incorporating distillation networks and dynamic queries. AI-GAN [19] achieves adaptive attacks against arbitrary target classes.

Generative networks have also found application in watermarking, with prior works typically integrating Deep Neural Networks (DNNs) as a specific component within the overall process. In [20], DNNs were solely used to quantify the watermark strength of each image region, while [21,22] employed DNNs either as encoders or decoders. Reference [23] introduced HiDDeN, the first to fully model the steganographic system using DNNs. Fan, Zexin et al. [2] proposed Joint Adversarial Steganography (JAS), combining adversarial steganography with handcrafted adjustment strategies to design a more secure embedding distortion technique. Tang, Weixuan et al. [1] introduced ADV-EMB, which closely resembles our approach. It adjusts modifications of carrier image units based on gradients propagated from the target steganalysis, deceiving the steganalysis while embedding covert information. However, none of the aforementioned methods provide protection for the carrier data while ensuring watermark security. Moreover, alternative forms of watermarking methods have been explored. In [24], a generative network was trained to conceal an entire image within another image. Uchida et al. [25] embedded watermarks into the trained neural network weights, whereas Fang et al. [26] embedded messages into text carriers using an LSTM network.

HAG-NET adopts an end-to-end training approach, akin to the HiDDeN framework proposed in [23] and based on GAN. In contrast to previous studies, HAG-NET operates on a query attack and generative watermarking basis, facilitating both data hiding and adversarial attack functionalities by adaptively generating ASE. This capability enables the creation of adversarial steganography while simultaneously ensuring protection for the carrier data. Adversarial Steganographic Examples generated by HAG-NET exhibit excellent attack efficacy against both target and non-target adversaries. The framework of HAG-NET is illustrated in Figure 2.

Figure 2. The framework of HAG-NET: the encoder *E* receives the cover image I_{CO} and the secret message M_{IN} to generate encoded image I_E ; the decoder *D* recovers M_{IN} from I_E and outputs the decoded message M_{OUT} ; the attacker generates adversarial example I_A . The adversarial discriminator *A* receives I_{CO} or I_A and I_E to predict whether the input has been encoded; the target classifier *C* predicts the classification of I_E . The loss function L_E is the pixel-level difference between I_E and I_{CO} ; the loss function L_C is used to optimize the ability to resist attacks. The loss function L_G provides adversarial loss for *E*. The loss function L_D minimizes the difference between M_{IN} and M_{OUT} . The dashed line indicates that data are transferred according to the settings.

3. Our Approach

3.1. Problem Description

Consider a classification network, denoted as C, trained on dataset $X \in \mathbb{R}^n$, where n represents the dimension of inputs. During non-target attacks, (x_i, y_i) denotes the i^{th} instance in the training data, where $x_i \in X$ is a cover image generated from an unknown distribution, and y_i represents the correct classification of x_i . Conversely, during target attacks, (x_i, t_i) denotes the i^{th} instance in the training data, where t_i represents the target classification to be attacked for x_i , and $t_i \neq y_i$. $M_{IN} \in [0, 1]^L$ be a binary secret message of length *L*. An instance and a secret message (M_{IN}) are used to generate an Adversarial Steganographic Example (ASE), denoted as $E((x_i, y_i), M_{IN}) = I_E$ or $((x_i, t_i), M_{IN}) = I_E$, which resembles x_i based on a certain distance measure and is adversarial to *C*. The decoder *D* attempts to recover M_{IN} from the received Adversarial Steganographic Example (I_E) as the decoded message (M_{OUT}). We aim for classification *C* to produce incorrect predictions when the Bit Error Rate between M_{OUT} and M_{IN} is below a certain threshold.

- 1. When the input is (x_i, y_i) , making $C(E((x_i, y_i), M_{IN})) \neq y_i$, namely $C(I_E) \neq y_i$, it is referred to as the non-target attack;
- 2. When the input is (x_i, t_i) , making $C(E((x_i, t_i), M_{IN})) = t_i$, namely $C(I_E) = t_i$, it is referred to as the target attack.

3.2. Loss Functions

As illustrated in Figure 1, the HAG-NET network consists entirely of Deep Neural Networks (DNNs). Its main components include the following: encoder E_{θ} , decoder D_{\emptyset} , adversarial discriminator A_{γ} , attacker, and target classifier C_{β} , where θ , \emptyset , and γ represent the trainable parameters in E_{θ} , D_{\emptyset} , and A_{γ} respectively, and β denotes the pre-trained parameters of C_{β} . To facilitate the mathematical description of the loss function, in the remainder of this article, we use the symbol I_{CO} instead of x_i and the symbol T_{CO} instead of y_i , t_i , namely $T_{CO} = y_i$ or $T_{CO} = t_i$.

The Encoder E_{θ} receives I_{CO} , T_{CO} and $M_{IN} \in [0, 1]^L$ to generate I_E . The Adversarial Steganographic Example (I_E) generated by E_{θ} aims to resemble I_{CO} or I_A as closely as possible. We employ the L_2 norm distance to quantify the difference between $\widetilde{I} \in \{I_{CO}, I_E\}$ (when attackers are not involved in the training process) or $\widetilde{I} \in \{I_A, I_E\}$ (when attackers are involved in the training process), denoted as $L_E(\cdot)$, namely:

$$L_E\left(\widetilde{I}\right) = \frac{\|I_{CO} - I_E\|_2^2}{(c \times H \times W)} \text{ or } L_E\left(\widetilde{I}\right) = \frac{\|I_A - I_E\|_2^2}{(c \times H \times W)}$$
(1)

The variables *W* and *H* represent the pixel width and pixel height of the cover image respectively, while *c* denotes the number of channels in the cover image. Therefore, $c \times H \times W$ denotes the total number of pixels in the carrier image.

The Adversarial Discriminator A_{γ} takes as input the sample $I \in \{I_{CO}, I_E\}$ or $I \in \{I_A, I_E\}$ and predicts whether the input image is encoded. The prediction result of A_{γ} , denoted as $A(\cdot) \in [0, 1]$, indicates the confidence with which A_{γ} considers the input sample to be I_E . Here, we employ Binary Cross-Entropy (BCE) to measure this classification loss L_A , expressed as follows:

$$L_{A}(A(I_{co}), A(I_{E})) = log \left(1 - \left(1 + e^{-A(I_{co})}\right)^{-1}\right) + log \left(\left(1 + e^{-A(I_{E})}\right)^{-1}\right)$$

or
$$L_{A}(A(I_{A}), A(I_{E})) = log \left(1 - \left(1 + e^{-A(I_{A})}\right)^{-1}\right) + log \left(\left(1 + e^{-A(I_{E})}\right)^{-1}\right)$$
(2)

And the adversarial loss L_G from A_γ is

$$L_G(A(I_E)) = log \left(1 - \left(1 + e^{-A(I_E)}\right)^{-1}\right)$$
(3)

The Decoder D_{\emptyset} receives I_E and then outputs $M_{OUT} \in [0, 1]^L$, which is decoded from I_E . It is important to note that the lengths of M_{IN} and M_{OUT} should be the same. Similar to L_E , we also employ the L_2 norm distance to measure the bit-level difference between M_{IN} and M_{OUT} . The loss function L_D is defined as follows:

$$L_D(M_{in}, M_{out}) = \|M_{in} - M_{out}\|_2^2 / L$$
(4)

Target Classification Network C_{β} will classify I_E and obtain the classification prediction $P_i \in [0, 1]^{10}$, where P_i represents the classification prediction of the *i*th example in the current batch. Depending on the attack mode (target attack or non-target attack), C_{β} will receive different T_{CO} values ($T_{CO} = y_i$ or $T_{CO} = t_i$) to calculate L_C and the loss function L_C is divided into two situations as follows:

1. Non-target attack: In this scenario, the content of T_{CO} is y_i , which represents the correct classification of I_{CO} . Let P_{real} be equal to the y_i^{th} dimensional vector in P_i , and let P_{other} be the vector in vectors in P_i excluding the y_i^{th} dimensional vector. Therefore, P_{real} represents the confidence level of that C_β in considering I_E to belong to the y_i^{th}

$$L_C(I_E, T_{co}) = max(P_{real} - max(P_{other}), 0)$$
(5)

2. Target attack: In this scenario, the content of T_{CO} is t_i , which represents the target classification of attack. Let P_{target} be equal to the t_i^{th} dimensional vector in P_i , and let P_{other} be the vector in P_i excluding the t_i^{th} dimensional vector. Therefore, P_{target} represents the confidence level of that C_β in considering I_E to belong to the t_i^{th} class. Conversely, P_{other} represents the confidence level of all other classes in P_i except the t_i^{th} class, Thus, we have

$$L_{C}(I_{E}, T_{CO}) = max(max(P_{other}) - P_{target}, 0)$$
(6)

Our objective is to maximize the effectiveness of the attack during embedding. To achieve this, we employ Stochastic Gradient Descent (SGD) to minimize the objective function by optimizing θ and \emptyset based on the distribution of I_{CO} , M_{IN} , and T_{CO} , namely

$$\begin{array}{l} \text{minimize } E_{I_{CO},M_{in},T_{co}} \left[L_D(M_{IN},M_{OUT}) + \lambda_E L_E\left(\widetilde{I}\right) + \lambda_G L_G(I_E) + \lambda_C L_C(I_E,T_{CO}) \right] \\ \text{subject to } L_D(M_{IN},M_{OUT}) \leq d \end{array}$$
(7)

where λ_E , λ_G and $\lambda_C \in [0, 1]$ are hyperparameters controlling the weights of different losses. The constant d is a small number, set to 10^{-3} . Following the GAN concept, we concurrently train the parameter γ . The adversarial discriminator A_{γ} aims to minimize the L_A loss on the same distribution:

$$\begin{array}{l} \text{minimize } E_{I_{co},M_{in},T_{co}} \left[L_A \left(A \left(\widetilde{I} \right) \right) \right] \\ \text{subject to } L_D(M_{IN},M_{OUT}) \leq d \end{array} \tag{8}$$

3.3. Architecture of HAG-NET

The Encoder E_{θ} : Initially, E_{θ} use a convolutional layer to downsample the data from I_{CO} and subsequently generates intermediate layer data. Before passing the data to the next layer, the secret message M_{IN} is expanded to match the size of the intermediate layer data and is connected to the data based on channel dimensions. This process ensures that each convolutional layer's filter in the subsequent stages has complete access to M_{IN} , enabling the encoder I_{CO} to embed M_{IN} into any spatial position of I_{CO} . Following the upsampling operation of the subsequent convolutional layers, the data are transformed to match the size of I_{CO} . To ensure that I_E closely resembles I_{CO} and is distinguishable from an autoencoder primarily focused on dimensionality reduction and I_{CO} reconstruction, we bypass and link I_{CO} with the data prior to the output layer. The schematic diagram illustrating this process is depicted in Figure 3.

The Decoder D_{\emptyset} and The Adversarial Discriminator A_{γ} : In contrast to the encoder E_{θ} , the channels of intermediate data generated by D_{\emptyset} and A_{γ} have the same length *L*. Following global spatial pooling and prediction with fully connected linear prediction layers, the output M_{OUT} of D_{\emptyset} matches the size of the secret message M_{IN} . The output of A_{γ} is a value indicating the likelihood that A_{γ} considers the input sample to be I_E .

Target Classification Network *C*: We pre-trained some classification networks on CIFAR-10 and MINST datasets, including Model A [22], Model B [6], ResNet32 [22], Wide ResNet34 (WRN34), and the All-Convolution Network [24]. To achieve higher classification accuracy, we made some modifications to the ResNet32 and WRN34, based on their original network architectures. The network architectures are presented in Table 1 below.

Figure 3. Schematic diagram of the skip connection of the secret message in middle layers, where secret message is M_{IN} , cover image is I_{CO} , and the expanded secret message will be the same size as I_{CO} and the middle layers data.

Table 1. The network frameworks of ResNet32 and WRN34.

ResNet 32	WRN 34
conv2d layer(kernel = 3, stride = 1, depth = 16)	conv2d layer(kernel = 3, stride = 1, depth = 16)
basic block layer1 = basic block(16) \times 5	basic block layer1 = basic block(16, 160) \times 5
(basic block(16,16):	(basic block:
conv2d layer(kernel = 3, stride = 1, depth = 16)	batch norm layer(eps = 0.00001, depth = 16)
batch norm layer(eps = 0.00001, depth = 16)	conv2d layer(kernel = 3, stride = 1, depth = 160)
conv2d layer(kernel = 3, stride = 1, depth = 16)	batch norm layer(eps = 0.00001 , depth = 160)
batch norm layer(eps = 0.00001, depth = 16)	conv2d layer(kernel = 3, stride = 1, depth = 160)
shortcut)	shortcut:)
basic block layer2 = basic block(32) \times 5	basic block layer2 = basic block(160, 320) \times 5
basic block layer3 = basic block(64) \times 5	basic block layer3 = basic block(320, 640) \times 5
average pooling layer(kernel- = 6, stride = 1)	average pooling layer(kernel- = 6, stride = 1)
flatten layer	flatten layer
softmax classifier	softmax classifier

Attacker: We input I_{CO} and T_{CO} into the attacker based on PGD to generate I_A through targeted or non-targeted attacking. The iterative principle is shown as follows:

$$I_A^{N+1} = \prod_{I_co+S}^{I_A^0 = I_{co}} \left\{ I_A^N + \alpha sign \left[\nabla_{I_A^N} J \left(\beta, I_A^N, T_{co} \right) \right] \right\}$$
(9)

where $J(\cdot)$ is the cross-entropy loss function, β is the parameter of the pre-trained target classifier, α is the amplitude of image pixel update in each iteration, S is the maximum perturbations strength, α is the iterative maximum perturbation intensity, and $\nabla_{I_A^N}$ represents the gradient of I_A^N ; these gradients inform us of the direction in which I_A^N should move to decrease the loss function. Each iteration updates I_A^N to I_A^{N+1} , and the final output is the adversarial sample I_A , which participates in the training process of HAG-NET. Both images I_A and I_{CO} have the same size, and the adversarial image I_A is then forwarded to A_γ for classification using an alternative approach. The pseudo-code flow is outlined in Algorithm 1.

Algorithm	1 uses PGD attack method to generate AE
Input:	Cover image I_{CO} , the parameters β of pre-trained target classification network, the maximum iterations <i>T</i> , the perturbation step size α , and the maximum perturbation range <i>S</i>
Output:	Adversarial example I_A
1:	$I_A^0 \leftarrow I_{CO}$ //The initial adversarial example is the cover image.
2:	for $i = 0 : T do$
3:	$g^i = abla_{I_{CO}} J(eta, I^i_A, T_{CO}) / / ext{Get}$ the gradient at the current iteration exampl.
4:	$d^i = \alpha \times sign(g^i) / /Get$ the perturbation magnitude at the current iteration.
5:	if $I_A^i + d^i \in I_{CO} + S$ then
6:	$I_A^{i+1} = I_A^i + d^i / / \text{Update the perturbed image}$
7:	Else
8:	$I_A^{i+1} = Clip(I_A^i + d^i, I_{CO} + S) / / Confine the perturbations to the range$
9:	end if
10:	end for
11:	$I_A = I_A^T$

Finally, the pseudo-code of HAG-NET when generating I_E and updating the parameters of each component is shown in Algorithm 2.

Algorithm	2 HAG-NET generate adversarial embedding examples
Input:	Carrier image I_{co} , target attack label T_{co} , accompanying switch, secret message M_{in} ,
	pre-trained target classification network C, maximum training number e.
Output:	Encoder parameters \emptyset , decoder parameters γ and adversarial stego example I_E
1:	$\oslash^0 \leftarrow rand, \gamma^0 \leftarrow rand, heta^0 \leftarrow rand//parameter$ initialization
2:	for $i \leftarrow 1, \ldots, e do$
3:	$M_{in}^i \leftarrow rand$
4:	Generating I_A by Algorithm 1
5:	$I_E^i = E_{\theta^{i-1}} \left(I_{co}, M_{in}^i \right)$
6:	$M_{out}^{i} = D_{\varnothing^{i-1}} \left(I_{E}^{i} \right)^{\prime}$
7:	If switch = True then
8:	$\widetilde{I} \in \left\{ I_A, I_E^i \right\}$
9:	Else
10:	$\widetilde{I} \in \left\{ I_{co}, I_E^i \right\}$
11:	end if
12:	$L_A^i = L_A \left(A_{\gamma^{i-1}} \left(\widetilde{I} \right) \right)$
13:	$\gamma \leftarrow \gamma^i / / $ Update the parameters γ to γ^i
14:	$L_E^i = L_E\left(\widetilde{I}\right)$
15:	$L_G^i = L_G\left(A_{\gamma}\left(I_E^i\right)\right)$
16:	$L_D^i = L_D\left(M_{in}^i, M_{out}^i\right)$
17:	$L_C^i = L_C \left(I_E^i, T_{co} \right)$
18:	Backward $\lambda_E \times L_E^i + \lambda_G \times L_G^i + L_D^i + \lambda_C \times L_C^i$
19:	Update encoder's parameters θ^i and decoder's parameters \emptyset^i
20	end for
21:	$\theta = \theta^e$, $\emptyset = \emptyset^e / / \text{Save the optimal parameters of encoder } E$, decoder D
22:	$I_E = E_{\theta}(I_{co}, M_{in}) / / \text{Output Adversarial Steganographic example}$

4. Experiments and Results

4.1. Experimental Setting

The target classification network is most vulnerable to attacks under the white-box setting, wherein the adversary possesses complete knowledge of all its parameters. There-

fore, we concentrate on evaluating HAG-NET's attack capabilities against various target classification networks. For training on the MNIST dataset, we chose Model A [22] and Model B [6] as the target classification networks. Similarly, for the CIFAR-10 dataset, the target classification networks were ResNet32 and WRN34.

Figure 4a depict curves illustrating the Mean Squared Error (MSE), representing the L_2 norm distance between the Adversarial Steganographic Example I_E and the original cover image I_{CO} , and Figure 4b depict the classification accuracy, indicating the success rates at which the target classification networks correctly classify images. These curves are generated under different settings after 50 epochs of pre-training. Specifically, they display the results for various embedding capacities (0.01BPP, 0.1BPP, and 0.2BPP) while training HAG-NET to attack Model A on MNIST (Figure 4a,b), ResNet32 on MNIST (Figure 4c,d), and ResNet32 on CIFAR-10 (Figure 4e,f). Lower MSE values signify better visual quality of the ASE, while decreased classification accuracy indicates improved adversarial attack efficacy of the ASE against the target classification network.

Figure 4. Pre-training of HAG-NET under different experimental settings, where (**a**,**b**) show the curves of L_E loss and the classification accuracy of target classification network Model A in MNIST dataset, (**c**,**d**) show the curves of L_E loss and the classification accuracy of the target classification network ResNet32 in the MNIST dataset, (**e**,**f**) show curves of L_E loss and the classification accuracy of the target classification network ResNet32 in the CIFAR-10 dataset.

We primarily measure capacity in terms of bits per pixel (BPP), representing the number of secret message bits hidden per pixel of the Adversarial Steganographic Example (ASE), which is calculated as $L/(c \times H \times W)$. During the 50 epochs of pre-training, we observed a consistent downward trend in the Mean Squared Error (MSE) curves, as depicted in Figure 4a,c,e. This trend is also correlated with different embedding capacities. Specifically, the MSE associated with a 0.01 BPP embedding capacity consistently reached the lowest value after 50 epochs of pre-training, irrespective of the dataset, as shown in Figure 4a,c, or the target networks, as shown in Figure 4c,e. In other words, the ASEs generated with a 0.01 BPP setting are the most indistinguishable from the cover image. Although the curves of classification accuracy for different target classification networks and datasets also exhibit a similar downward trend, as depicted in Figure 4b,d,f, the curve of classification accuracy under a smaller embedding capacity setting is not always lower than that under a larger embedding capacity at the same epoch. For instance, the ASE generated with a 0.1 BPP achieved the lowest classification accuracy value in Figure 4f, but it also yielded the highest value in Figure 4b.

To achieve the optimal visual effect of Adversarial Steganographic Examples (ASEs), we will assess the attack effectiveness of HAG-NET under an embedding capacity setting of 0.01 BPP, which is independent of the attack capability. Specifically, for the CIFAR-10 dataset with images of size $32 \times 32 \times 3$, the length *L* of M_{IN} is set to 31 bits, whereas for

MNIST, a grayscale image dataset with images of size $28 \times 28 \times 1$, the length *L* of *M*_{*IN*} is set to 8 bits.

4.2. Loss Funcationes Evaluation

To assess the influence of each loss function on the generation process of HGA-NET, we conducted experiments by individually removing L_E , L_D , L_G , and L_C from the objective function of HGA-NET while keeping the rest unchanged. The resulting sample images and corresponding perturbations after 50 epochs of training are presented in Table 2 and Figure 5 for comparison.

Table 2. A schematic diagram depicting the partial loss functions during the training process of HGA-NET is absent.

Figure 5. HAG-NET provides line graphs illustrating the variations in different types of data when each component loss function is individually removed. Among these, (**a**) illustrates the changes in Mean Squared Error (MSE) between ASE and the carrier image under various conditions; (**b**) displays the variations in Bit Error Rate (BER) of decoded information; and (**c**) demonstrates the changes in accuracy of target classification network in recognizing ASE.

From Table 2, we observe that upon removal of the L_E constraint, the strength of adversarial embedding perturbations is no longer restricted, resulting in the degradation of the carrier image data. Similarly, as depicted in Figure 5a, it can be noted that the Mean Squared Error (MSE) between the adversarial steganographic embedding (ASE) generated by the L_E -unconstrained HAG-NET and the carrier image surpasses that of the removal of other loss functions. After removing the loss function L_G , the authenticity of ASE will be called into question. This is primarily because the absence of adversarial loss from discriminator D will lead to an increase in the divergence between the data of ASE and that of real images, resulting in an enlarged gap between their data distributions. For the loss functions L_D and L_C , they ensure that ASE achieves both data hiding and adversarial robustness against the target classification network. When either one is removed, the other effect of ASE becomes more pronounced. As shown in Table 2 and Figure 5b,c, after removing L_C , ASE emphasizes data hiding more, resulting in better visual quality and smaller perturbation strength. However, the adversarial robustness of ASE towards the target classification network is completely lost. Conversely, removing L_E shifts ASE's focus towards adversarial robustness, leading to decreased visual quality, increased perturbation strength, and the inability of the decoder to extract any secret information from the perturbations. This also demonstrates why tuning the hyperparameters of the generator loss function can adjust the performance emphasis of Adversarial Steganographic Embedding (ASE).

4.3. White-Box Attack Evaluation

HAG-Net demonstrates remarkable performance in adversarial embedding, enhancing the efficiency of adversarial embedding, as illustrated in Table 3 below.

	FGSM	C&W	PGD	HUGO	HAG-NET
Runtime	0.06 s	>3 h	0.7 s	0.08 s	<0.01 s

To enhance the adversarial effect of Adversarial Steganographic Examples (ASEs), we pre-train the encoder and decoder until the Bit Error Rate (BER) between M_{IN} and M_{OUT} is below 10^{-5} . The Bit Error Rate (BER) is calculated by dividing the number of erroneously decoded bits by the length L of the secret message. This pre-trained network effectively embeds and extracts secret messages, employing an adversarial approach from the inception of training.

We randomly select 500 images from the MNIST and CIFAR-10 datasets for verification purposes, showcasing the target attack success rates of HAG-NET across different target classification networks. The simulations are conducted under the condition that the BER of the decoded message is less than 10^{-5} , as detailed in Table 4.

On the CIFAR-10 dataset, HAG-NET achieves average success rates of 99.03% and 99.16% with ResNet32 and WRN34, respectively. Similarly, on the MNIST dataset, HAG-NET demonstrates outstanding performance, achieving success rates of 99.26% with Model A and 99.11% with Model B. Furthermore, HAG-NET achieves success rates above 98.40% with different target classification networks for any target classes, with the maximum success rate reaching 99.88%, above the minimum success rate of 1.44%. This result illustrates the robustness of HAG-NET's adversarial attack effect across MNIST and CIFAR-10 datasets. Additionally, this robustness is corroborated by the average success rates when attacking both grayscale and RGB images, both exceeding 99%.

	MN	IST	CIFA	R-10
Target Class	Model A	Model B	ResNet32	WRN34
Class 0	98.58%	99.69%	98.88%	98.98%
Class 1	99.04%	98.32%	99.68%	99.38%
Class 2	99.25%	98.80%	99.16%	99.36%
Class 3	99.88%	98.65%	99.50%	99.16%
Class 4	98.79%	99.00%	98.40%	99.30%
Class 5	99.40%	99.72%	99.48%	99.10%
Class 6	99.21%	99.42%	98.88%	99.32%
Class 7	99.65%	99.33%	98.91%	99.35%
Class 8	98.98%	99.17%	98.76%	98.83%
Class 9	99.83%	99.04%	98.65%	98.85%
Average	99.26%	99.11%	99.03%	99.16%

Table 4. The attack success rate of target attacks by HAG-NET on each target classification networks in MNIST and CIFAR-10 datasets.

We primarily compare HAG-NET with recent generative adversarial attack methods, namely ADV-GAN and AI-GAN, as they emphasize adversarial attacks and share similarities with our approach. In Table 5, we blod the best average success rates achieved with

different methods across various target classification networks and datasets. The results indicate that HAG-NET emerges as one of the top-performing generative adversarial attack methods under similar dataset and target classification network settings. Our method achieves the highest average success rates with Model A, Model B, and WRN 34. Compared with the worst-case scenario among the same target classification networks, HAG-NET demonstrates improvements of 1.36%, 0.81%, and 4.46%, respectively. Notably, compared to AI-GAN, which secured second place, HAG-NET achieves a 3.32% improvement under the same WRN34 setting. Conversely, ADV-GAN achieves the best average success rates with ResNet32, with HAG-NET trailing closely by only 0.27%. It is important to note that the adversarial attack effectiveness of ASEs also considers decoding error rates less than 10^{-5} , imposing stricter constraints compared to other methods. Thus, we assert that HAG-NET exhibits superior adversarial attack effectiveness among them.

The Figure 6 shows the ASE (I_E) of targeted classes 0–4 generated on the CIFAR-10 dataset and 5–9 targeted class generated on the MNIST dataset. In the Figure 6, I_{CO} represents the cover images, and $|I_{CO} - I_E|$ indicates the perturbations between I_{CO} and I_E .

Figure 7a illustrates a natural image of a dog being transformed into the I_E of the remaining nine classes, arranged from top to bottom and left to right as follows: airplane, car, bird, cat, deer, frog, horse, boat, and truck. HAG-NET is capable of performing different target attacks on the same natural image, as depicted in Figure 7b. The corresponding perturbations are displayed at the same location. It can be observed that the disturbance generated by attacking a target class similar to the original class is relatively small compared to other classes. For instance, the original image of a dog being attacked and classified as a cat, shown in the first column of the second row in Figure 7b, produces an I_E that is the most indistinguishable from I_{CO} .

Figure 6. The ASE of 0-4 target class in CIFAR-10 and the ASE of 5-9 target class in MNIST.

Figure 7. (a) shows the ASE of that a dog image has been attacked into remaining nine classes, from top to bottom and left to right they are plane, car, bird, cat, deer, frog, horse, ship, and truck.(b) shows the corresponding adversarial embedded disturbance at the same location.

	MN	IST	CIFAR-10		
Methods	Model A	Model B	ResNet32	WRN34	
ADV-GAN	97.90%	98.30%	99.30%	94.70%	
AI-GAN	99.14%	98.50%	95.39%	95.84%	
HAG-NET	99.26%	99.11%	99.03%	99.16%	

Table 5. The average attack success rate of ADV-GAN, AI-GAN, and HAG-NET to target attack Model A, Model B, ResNet32, and WRN34 on MNIST and CIFAR-10 datasets.

4.4. Robustness Evaluation

In this subsection, we assess HAG-NET under the scenario where the target classification network is aware of potential attacks. Consequently, the target classification network will employ several commonly used defense methods proposed in [19] to counter adversarial attacks. These methods have been proven to significantly enhance the robustness of the target classification network. They include: (1) adversarial training with FGSM (Adv), (2) ensemble adversarial training (Ens), and (3) adversarial training with PGD.

The adversarial attack methods involved in this evaluation do not have access to the specific parameters of the target classification networks or the defense mechanisms employed by them. Additionally, during the training process of these attack methods, the target classification networks are replaced by vanilla models. The experimental results comparing HAG-NET, PGD, ADV-GAN, and AI-GAN under various defense methods for the target classification networks are presented in Table 6 below.

Table 6. The success rates of different adversarial attack methods against a target classifier with defense mechanisms.

	MNIST					CIFAR-10						
	Model A		Model B		ResNet32		WRN34					
Methods	Adv.	Ens.	Iter.Adv	Adv.	Ens.	Iter.Adv	Adv.	Ens.	Iter.Adv	Adv.	Ens.	Iter.Adv
PGD	20.59	11.45	11.08	10.67	10.34	9.90	9.22	10.06	11.41	8.09	9.92	9.87
Adv-GAN	8.00	6.30	5.60	18.70	13.50	12.60	10.19	8.96	9.30	9.86	9.07	8.99
AI-GAN	23.85	12.17	10.90	20.94	10.73	13.12	9.85	12.48	9.57	10.17	11.32	9.91
HAG-NET(A)	15.37	10.65	7.16	15.49	10.02	13.03	10.78	12.02	10.99	9.64	10.00	10.33
HAG-NET(B)	19.60%	11.88	11.56	19.91	11.30	15.23	10.30	11.45	12.10	10.05	12.17	11.16

HAG-NET(A) is HAG-NET without attacker and HAG-NET(B) is HAG-NET with attacker. All data in this table are presented in % unit, and the top two results of each experiment are shown in bold.

Through calculation, the average success rates of PGD, ADV-GAN, AI-GAN, HAG-NET (A), and HAG-NET (B) are 11.05%, 10.09%, 12.92%, 11.29%, and 13.06%, respectively. As depicted in Table 4, it is evident that the success rates of HAG-NET (B) across different defense methods and datasets either match or outperform other methods. Notably, the success rates of HAG-NET (A) rank in the top two only for ResNet32 with the Iter-Adv defense method and Model B with the Adv defense method, which are generally lower than other adversarial attack methods, except ADV-GAN. This observation is further supported by their average success rates. However, compared to HAG-NET (A), the success rates achieved by HAG-NET (B) trained with PGD attacker demonstrate a significant enhancement, with an average improvement of 2.91% on Model A and Model B. Nevertheless, it is regrettable that the improvement of HAG-NET (B) is only 0.41% on CIFAR-10. We posit that HAG-NET (B) may inherit a certain degree of robustness from the AE generated by the PGD method on the MNIST dataset, given that the performance of the PGD method on the CIFAR-10.

4.5. Data Hiding and Image Information Entropy

We compare the Bit Error Rate (BER) of HAG-NET with classical watermarking algorithms such as HUGO, WOW, and HiDDeN, as well as with the latest adversarial embedding method ADV-EMB, which shares similar functionalities with ours, across various embedding capacities. The Bit Error Rate (BER) of decoded messages serves as the experimental index value, as illustrated in Table 7 below.

 Table 7. BRE differences between HAG-NET and other data hiding methods under different capacity settings.

Method	BPP	BER	BPP	BER	BPP	BER
HUGO	0.010	0	0.100	0	0.200	0
WOW	0.010	0	0.100	0	0.200	0
HiDDeN	0.011	$< 10^{-5}$	0.101	$< 10^{-5}$	0.203	$< 10^{-5}$
ADV-EMB	0.011	$< 10^{-5}$	0.101	$< 10^{-5}$	0.203	$< 10^{-3}$
HAG-NET	0.011	$< 10^{-5}$	0.101	$< 10^{-5}$	0.203	$< 10^{-3}$

Unfortunately, HAG-NET still exhibits the characteristic decoding errors that are shared with the latest generative watermarking methods, HiDDeN and ADV-EMB. At an embedding capacity setting of 0.101 bits per pixel (BPP), the Bit Error Rate (BER) of the decoded message for both our method and HiDDeN remains below 10^{-5} . However, when the embedding capacity setting increases to 0.203 BPP, the BER of HAG-NET rises to 10^{-3} . However, under the setting of 0.203 bits per pixel (BPP), HAG-NET performs consistently with ADV-EMB in terms of performance. It is noteworthy that, compared to the perturbations generated by ADV-EMB, which are only adversarial against binary steganalysis, HAG-NET achieves adversarial robustness against larger classification networks.

To determine whether Adversarial Steganographic Examples (ASEs) contain more information than other watermarking methods based on image information entropy, we selected some samples generated by our method and others with similar disturbance intensity and the same embedding capacity setting for calculating image information entropy. This process aims to ensure that Deep Neural Networks (DNNs) perceive these samples generated by different methods similarly and that they possess the same level of information as perceived by human eyes. The results are presented in Table 6.

From Table 8, it is evident that the samples generated by all watermarking methods exhibit an increase in image entropy compared to that of the carrier image, indicating an augmentation in the amount of information contained within the images. Across all embedding capacities, adversarial embedding methods consistently demonstrate higher information content than HiDDeN, implying that adversarial information is effectively embedded into the carrier image in an imperceptible manner. While at 0.101 BPP, the MSE of ASE produced by HAG-NET exceeds that of ADV-EMB, at 0.010 BPP, HAG-NET still maintains the highest image entropy despite having a lower MSE compared to ADV-EMB. We attribute this observation to the adversarial perturbations generated by our method containing more information when confronted with larger, more complex networks compared to the binary classification network detection countered by ADV-EMB.

		0.010 BPP			0.101 BPP	
	MSE	IMAGE	ENTROPY	MSE	IMAGE	ENTROPY
Ico	0	<u>Be</u>	≈6.793	0		≈1.847
HiDDeN	0.0042	<u>BU</u>	≈7.037	0.8120	L.	≈5.078
ADV-EMB	0.0045	<u>BU</u>	≈7.046	0.8319	L.	≈5.158
HAG-NET	0.0040	CE M	≈7.056	0.8550		≈5.319

Table 8. The difference of MSE and information entropy value between HAG-NET and others.

5. Conclusions

In this paper, we introduce a novel generative adversarial watermarking model, HAG-NET, which is jointly trained by an encoder, decoder, and an attacker. The Adversarial Steganographic Examples (ASEs) generated by the trained HAG-NET can embed secret messages and achieve protection against detection for the carrier data. Compared with recent generative watermarking or attack methods, our approach demonstrates comparable or superior performance. We verified that under the same disturbance intensity, the perturbation of ASEs consistently contains more information than perturbations generated by other methods across various settings such as embedding capacity and dataset.

Author Contributions: Conceptualization, H.F.; Methodology, J.W.; Software, J.W.; Validation, H.F.; Formal analysis, H.F.; Writing—original draft, J.W.; Writing—review & editing, H.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Ethical review and approval were waived for this study due to this study did not involve human or animal subjects, and thus, no ethical approval was required. The study protocol adhered to the guidelines established by the journal.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Tang, W.; Li, B.; Tan, S.; Barni, M.; Huang, J. CNN-based adversarial embedding for image steganography. *IEEE Trans. Inf. Forensics Secur.* **2019**, *14*, 2074–2087. [CrossRef]
- Fan, Z.; Chen, K.; Qin, C.; Zeng, K.; Zhang, W.; Yu, N. Image Adversarial Steganography Based on Joint Distortion. In Proceedings of the ICASSP 2023—IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; IEEE: Piscataway, NJ, USA, 2023.
- 3. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.J.; Fergus, R. Intriguing Properties of Neural Networks. In Proceedings of the ICLR 2014—International Conference on Learning Representations, Banff, AB, Canada, 14–16 April 2014.
- Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and Harnessing AE. In Proceedings of the ICLR 2015—International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.
- Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards Deep Learning Models Resistant to Adversarial Attacks. In Proceedings of the ICLR 2018—International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.
- Chen, P.-Y.; Zhang, H.; Sharma, Y.; Yi, J.; Hsieh, C.-J. ZOO: Zeroth Order Optimization based Black-box Attacks to Deep Neural Networks without Training Substitute Models. In Proceedings of the AISec 2017—10th ACM Workshop on Artificial Intelligence and Security, Dallas, TX, USA, 3 November 2017; pp. 15–26.
- Carlini, N.; Wagner, D. Towards Evaluating the Robustness of Neural Networks. In Proceedings of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2017; pp. 39–57.
- Pevný, T.; Filler, T.; Bas, P. Using High-Dimensional Image Models to Perform Highly Undetectable Steganography. In *Lecture Notes in Computer Science, Proceedings of the 12th International Conference on Information Hiding, Calgary, AB, Canada, 28–30 June 2010;* Springer: Berlin, Heidelberg, 2010; pp. 161–177.
- Van Schyndel, R.G.; Tirkel, A.Z.; Osborne, C.F. A digital watermark. In Proceedings of the IEEE Conference on Image Processing, Austin, TX, USA, 13–16 November 1994; IEEE: Piscataway, NJ, USA, 1994.
- 10. Wolfgang, R.B.; Delp, E.J. A watermark for digital images. In Proceedings of the 3rd IEEE International Conference on Image Processing, Lausanne, Switzerland, 19 September 1996; IEEE: Piscataway, NJ, USA, 1996; Volume 3, pp. 219–222.
- 11. Qin, J.; Xiang, X.; Wang, M.X. A review on detection of LSB matching steganography. Data Technol. J. 2010, 9, 1725–1738. [CrossRef]
- 12. Holub, V.; Fridrich, J. Designing steganographic distortion using directional filters. In Proceedings of the 2012 IEEE International Workshop on Information Forensics and Security (WIFS), Costa Adeje, Spain, 2–5 December 2012; pp. 234–239.
- 13. Holub, V.; Fridrich, J.; Denemark, T. Universal distortion function for steganography in an arbitrary domain. *EURASIP J. Data Secur.* **2014**, 2014, 1. [CrossRef]
- Poursaeed, O.; Katsman, I.; Gao, B.; Belongie, S. Generative adversarial perturbations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4422–4431.
- 15. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional Networks for Biomedical Image Segmentation. In *Medical Image Computing and Computer-Assisted Intervention—MICCAI*; Springer: Cham, Switzerland, 2015; pp. 234–241.
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

- 17. Mao, X.; Chen, Y.; Li, Y.; He, Y.; Xue, H. Gap++: Learning to generate target conditioned AE. arXiv 2020, arXiv:2006.05097.
- 18. Jandial, S.; Mangla, P.; Varshney, S.; Balasubramanian, V. Advgan++: Harnessing latent layers for adversary generation. In Proceedings of the ICCV Workshops, Seoul, Republic of Korea, 28 October 2019.
- 19. Bai, T.; Zhao, J.; Zhu, J.; Han, S.; Chen, J.; Li, B.; Kot, A. Ai-Gan: Attack-Inspired Generation of Adversarial Examples. *arXiv* 2021, arXiv:2002.02196v2.
- Jin, C.; Wang, S. Applications of a neural network to estimate watermark embedding strength. In Proceedings of the 8th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS '07), Santorini, Greece, 6–8 June 2007; IEEE: Piscataway, NJ, USA, 2007.
- 21. Kandi, H.; Mishra, D.; Gorthi, S.R.S. Exploring the learning capabilities of convolutional neural networks for robust image watermarking. *Comput. Secur.* 2017, *65*, 247–268. [CrossRef]
- Mun, S.M.; Nam, S.H.; Jang, H.U.; Kim, D.; Lee, H.K. A robust blind watermarking using convolutional neural network. *arXiv* 2017, arXiv:1704.03248.
- Zhu, J.; Kaplan, R.; Johnson, J.; Li, F.-F. Hidden: Hiding Data with Deep Networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 657–672.
- 24. Baluja, S. Hiding images in plain sight: Deep steganography. In Proceedings of the NIPS—30th Annual Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017.
- Uchida, Y.; Nagai, Y.; Sakazawa, S.; Satoh, S. Embedding watermarks into deep neural networks. In Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval, Bucharest, Romania, 6–9 June 2017.
- 26. Fang, T.; Jaggi, M.; Argyraki, K. Generating steganographic text with LSTMs. In Proceedings of the ACL Student Research Workshop, Vancouver, BC, Canada, 30 July–4 August 2017; Number EPFL-CONF-229881.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.