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Abstract: Rapid and continuous advancements in remote sensing technology have resulted in finer
resolutions and higher acquisition rates of hyperspectral images (HSIs). These developments have
triggered a need for new processing techniques brought about by the confined power and constrained
hardware resources aboard satellites. This article proposes two novel lossless and near-lossless
compression methods, employing our recent seed generation and quadrature-based square rooting
algorithms, respectively. The main advantage of the former method lies in its acceptable complexity
utilizing simple arithmetic operations, making it suitable for real-time onboard compression. In
addition, this near-lossless compressor could be incorporated for hard-to-compress images offering a
stabilized reduction at nearly 40% with a maximum relative error of 0.33 and a maximum absolute
error of 30. Our results also show that a lossless compression performance, in terms of compression
ratio, of up to 2.6 is achieved when testing with hyperspectral images from the Corpus dataset.
Further, an improvement in the compression rate over the state-of-the-art k2-raster technique is
realized for most of these HSIs by all four variations of our proposed lossless compression method. In
particular, a data reduction enhancement of up to 29.89% is realized when comparing their respective
geometric mean values.

Keywords: hyperspectral images; image compression; lossless compression; near-lossless
compression; remote sensing; seed generation; square rooting

1. Introduction

The wealth of information in hyperspectral images (HSIs) and increases in sensor
performance have opened perspectives for a variety of applications, including space ex-
ploration, remote sensing, medical imaging, environmental monitoring, industrial quality
control, and forensic science, among many others [1,2]. While the full potential of HSI
techniques has not been fully explored, there is an increasing demand for this technology
in the marketplace and in various aspects of life. According to Business Communications
Company (BCC) research [3], the growth of the global market for HSI has increased at a
compound annual growth rate (CAGR) of 15.1% for the period from 2018 to 2023.

A major problem with hyperspectral images is their immense size, collected by hun-
dreds of contiguous spectral bands, where the size of each HSI can easily reach hundreds of
megabytes. This would engender logistical problems in terms of storage, transmission, and
processing. According to the Consultative Committee for Space Data Systems (CCSDS), the
large data volume associated with hyperspectral images poses significant challenges for
the myriad resources utilized for data processing in both onboard satellites and on-ground
stations [4]. As a result, the use of efficient compression methods to decrease the size
of these images without compromising their valuable information becomes mandatory.
The availability of such compression techniques for hyperspectral images is a key enabler
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for unlocking the full potential of this powerful technology. It would pave the way for
exploiting its full capability and enhancing our understanding of the world around us in
meaningful ways. This motivated us further to undertake this research.

Image compression methods are mainly categorized into lossless and lossy compres-
sion techniques. Lossless compression allows for the exact reconstruction of the image at
the expense of realizing modest compression ratios when compared to lossy compression
methods. This is due to the theoretical boundary imposed by entropy on the lossless
compression [5]. Entropy depends on the statistical nature of the source data and is defined
as the average Shannon information content. Let X be the set of all possible outcomes xi of
these source data. The entropy of the set X, denoted by H(X), is formulated as follows:

H(X) = −
M−1

∑
i=0

p(xi) · log2 p(xi), (1)

where M is the cardinality of the set X; that is, M =|X|, and p(xi) corresponds to the
probability of the outcome xi [6]. In this work, the unit of the calculated entropy is
bits, though the calculated entropy can be expressed in various units depending on the
application. Accordingly, the range of H(X) is bound within [0, log2|X|].

Several studies have expanded on lossless and lossy compression algorithms [2,7–9].
Lossless compression algorithms are mainly implemented by means of prediction-based
techniques, such as fast lossless (FL) [10], differential pulse code modulation (DPCM) [11],
recursive least squares (RLS) [12], and the standard developed by the Consultative Com-
mittee for Space Data Systems (CCSDS), famously known as CCSDS-123 [13,14]. Predictive
techniques are also employed in lossy compression algorithms, such as low-complexity
predictive lossy compression (LCPLC) [15].

On the other hand, the implementation of lossy compression techniques relies heavily
on employing transform-based methods such as principal component analysis (PCA) [16,17],
discrete cosine transform (DCT) [18,19], discrete wavelet transform (DWT) [20], pairwise
orthogonal transform (POT) [21], and the lossy compression algorithm for hyperspectral
images (HyperLCA) [22]. The integer version of the transform-based techniques is also
applied for lossless compression with limited results in terms of compression ratios. In
this category, the integer version of the Karhunen–Loéve transform (KLT) is utilized to
achieve lossless compression [23]. Similarly, the integer-based DWT is adopted in lossless
compression as a part of the JPEG 2000 compression algorithm [24].

A third category, called near-lossless, achieves higher compression ratios than lossless
compression while limiting the pixel distortion to a pre-defined absolute or relative er-
ror [25–29]. A more uncompromising definition of near-lossless limits the maximum error
to the intrinsic noise of the original data produced by the used instrument or other sources,
such as atmospheric correction [30]. Generally, near-lossless compression is achieved by
one of the following means: (1) losslessly coding the quantized prediction error; (2) apply-
ing pre-quantization of the original image followed by lossless coding; or (3) a two-stage
near-lossless coding.

The first category is the most popular due to its low complexity. Here, the typical pre-
diction technique is the context-based, adaptive, lossless image codec (CALIC) method [31].
It can be extended to 3D-CALIC [32] and M-CALIC [33] by exploiting the correlation
presented in the hyperspectral data. However, CALIC-based algorithms are not hardware-
friendly, as reported by Zheng et al. [25]. Nonetheless, two compression techniques tailored
to hardware implementations, promulgated by the Consultative Committee for Space
Data Systems, include the near-lossless version of the algorithm (NL-CCSDS-123) [34] and
the CCSDS-123-AC. The latter employs a context-based arithmetic coder (AC) and offers
lower computational complexity [35]. Both of these methods use CCSDS-123 as a predictor,
except that the former employs a range encoder, and the latter employs a context-based
arithmetic encoder. The former encoder is a simplified version of the latter, though it yields
suboptimal results [34,35].
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In the second category, lossless compression is performed on a pre-quantized image.
Such techniques yield poor compression performance with increasing tolerance values [27].
To bind the tolerance to a certain δ value, the quantizer step size is set to 2δ + 1 [33].
The technique proposed in [36] falls under this category. It extends the existing CCSDS
algorithm for Image Data Compression (CCSDS-IDC) with a pre-quantizer to increase the
compression rate. The quantization in this study is carried out by employing a quantization
table instead of a scaler-based quantizer.

The third category combines both lossy and lossless compression. The residual image
resulting from the difference between the original image and the lossy compressed image
is quantized and then losslessly encoded. A two-stage coder is proposed by Beerten et al.,
with the JPEG 2000 being the lossy layer [27]. The residual image is then encoded bit-plane
by bit-plane using binary arithmetic coding. This allows the encoder to terminate the coding
process at any arbitrary bit rate. Other studies propose pairing the lossless compression
technique CALIC with a wavelet-based approach [26,37] or with JPEG 2000 [38] as the
lossy layer.

In our previous work reviewing hardware-accelerated compression of remotely sensed
hyperspectral images, results show that lossless compression started to gain the attention
of the research community as early as 2009 [9]. Then, it increased thereafter, perhaps due
to the growing demand for loss-free hyperspectral images by a myriad of research and
development projects for various analysis tasks. Our investigation also shows that there
is a limited number of studies on the development of near-lossless compression when
compared to the rich literature on lossless and lossy compression methods [9].

Overall, the work described herein makes the following main research contributions:

• A novel lossless compression technique of remotely sensed hyperspectral images
is proposed by employing our recent method of seed generation based on bit ma-
nipulation techniques [39]. Four variations are employed in our experiments using
the Corpus dataset of HSIs. Our performance results yield an enhancement in data
reduction that reaches 29.89% when comparing the corresponding geometric mean
value with that obtained by the state-of-the-art k2-raster method [40].

• A novel near-lossless compression of HSIs is also proposed by incorporating our pub-
lished quadrature-based square rooting method [39]. A data reduction that varies from
38.90% to 39.73% is realized with a maximum relative error of 0.33 and a maximum
absolute error of only 30. Since hyperspectral images with high entropies are hard
to losslessly compress due to their reduced correlation, this approach can be applied
with a small to negligible impact on the accuracy of the decompressed data.

The rest of the paper is structured as follows: Section 2 gives a short review of some
recent works related to the compression of HSIs. Then, Section 3 describes the lossless com-
pression of remotely sensed hyperspectral images utilizing our seed generation approach.
This is followed by the proposed near-lossless compression employing our quadrature-
based square rooting method in Section 4. In Section 5, we present the experimental results
and compression performance obtained by both proposed compression systems. Finally,
our concluding remarks and future work are provided in Section 6.

2. Related Work

In this section, we review some recent studies pertaining to this research focus, with
a particular emphasis on works published since 2018. Some of the reviewed papers span
HSI compression systems that are transform based and tensor based. Others rely on a
multitude of computational techniques that include machine learning, compressive sensing,
and recursive least-squares.

In the realm of machine learning and, in particular, deep learning, several algorithms
have been proposed [41–43]. In 2019, a lossy hyperspectral image compression system
that combines an onboard predictive compressor and a ground-based convolutional neural
network (CNN) for image reconstruction was described in [41]. Results show that the
quantization of hyperspectral data followed by the lossless mode of CCSDS-123.0-B-2
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outperforms the lossy mode of the standard in terms of speed. Furthermore, a comparable
rate-distortion performance is achieved by incorporating the ground-based CNN. Deep
learning is also employed in lossless compression as proposed in [42] by leveraging deep
recurrent neural networks (RNN) to improve the prediction accuracy of the traditional
DPCM approach. Another approach based on machine learning involves the application
of support vector regression (SVR) [43]. First, a 3D wavelet transform is used to simulta-
neously capture spatial and spectral features. Then, SVR is used to predict the behavior
of the 3D wavelet coefficients. Entropy encoding, including run-length encoding and
arithmetic encoding, is used to achieve a high rate-distortion performance of 40.65 dB that
yields a classification rate baseline of 75.8% [43]. A lossy hyperspectral image compression
algorithm, leveraging autoencoders and deep learning techniques, is described in [44].
It yields significant improvements in compression ratio and a 28% enhancement in peak
signal-to-noise Ratio (PSNR). The classification accuracy remains largely unaffected by the
compression process, demonstrating effectiveness in preserving image quality. In 2023, a
novel hyperspectral compression network via contrastive learning (HCCNet) is proposed
to enhance feature distinction [45]. Contrastive learning aims to learn useful data represen-
tations by comparing similar and dissimilar pairs of examples [46,47]. Innovative modules
like contrastive informative feature encoding (CIFE) and contrastive invariant feature re-
covery (CIFR) preserve informative attributes resulting in significant improvements. The
former, CIFE, is designed to extract and organize discriminative attributes, while the latter,
CIFR, is intended to recover lost attributes caused by compression. However, a semantic
gap between compressed and original images remains, indicating areas for future research.

Multiple studies explored the application of transform-based methods in the com-
pression of hyperspectral images. In a recent study by Melián et al. [48], the information
extracted from subsequent frames is reused to speed up the compression performance of
the lossy compressor, known as HyperLCA. Results show a 27% reduction in the floating-
point operations (FLOPs) while maintaining a comparable signal-to-noise ratio (SNR).
Another study focuses on the hardware aspect of the algorithm through the introduction
of HW-HyperLCA [22]. The latter utilizes integer arithmetic for high compression ratios
(CRs) and compression–distortion ratios (CDRs). Further, the method supports the devel-
opment of different integer versions that can be implemented for specific applications. A
lossy compression scheme using three-dimensional wavelet block tree coding (3D-WBTC)
exploits intra and inter-sub-band correlations is disclosed in [49]. The proposed method
outperforms the three-dimensional set partition embedded block coding (3D-SPECK) strat-
egy at low bit rates and exhibits faster decoding and encoding times. The work in [50]
introduces a method to enhance three-dimensional discrete cosine transform (3D-DCT)
-based compression of hyperspectral images by using a luminance transform. The approach
involves two steps: initially applying the luminance transform to reduce brightness and
contrast differences within spectral band groups, followed by compression using 3D-DCT
and entropy encoding. Compared to the traditional 3D-DCT, this method shows improved
results [50]. Tzamarias et al. introduce integer-to-integer transforms within bi-orthogonal
graph filter banks to enable lossless compression [51]. Such filter banks decompose hyper-
spectral images into different frequency sub-bands using graph-based operations, which
take into account both the spatial and spectral correlations in the data. This decomposition
enables efficient compression by focusing on capturing the most relevant information in
the image while discarding redundant or less critical components.

Tensor-based compression methods have gained interest for effectively managing
complex multi-dimensional data, especially in hyperspectral image compression. A new
approach called tensor-robust CUR, for TRCUR, aimed at addressing the challenges of
compressing and denoising of hyperspectral data, which frequently suffer from quality
degradation due to noise is provided in [52]. While the reported method, tensor robust
principal component analysis (TRPCA), is effective, it imposes significant computational de-
mands, especially for large datasets that may exceed memory capacity limits. To overcome
this constraint, TRCUR adopts a divide-and-conquer strategy by heavily downsampling
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the input data to create smaller subtensors. TRPCA is then applied to these subtensors
to obtain low-rank solutions. Finally, the desired hyperspectral image is reconstructed by
combining these low-rank solutions using tensor CUR reconstruction. Expanding upon
the concept of CUR decomposition, it is a technique where a given matrix A is broken
down into three matrices: C, U, and R. Matrix C contains a small subset of actual columns
from A, while R consists of a small subset of actual rows from A. Matrix U is meticulously
constructed to ensure that the product C×U × R closely approximates the original matrix
A [53]. Another study presents a compression method based on tensor decomposition for
hyperspectral images [54]. It involves obtaining a differential representation of the data
between consecutive spectral bands. Then, the first band is compressed using JPEG, while
the differential data are compressed using a special mathematical operation called sparse
Tucker tensor decomposition. During decoding, the compressed first band and differential
data are combined to reconstruct the hyperspectral image [54].

Compressed sensing (CS) has emerged as a powerful tool for hyperspectral image
compression, offering efficient reconstruction from sparse measurements [55]. Compressed
sensing, combined with dictionary learning, is employed for lossless compression and
reconstruction of hyperspectral images in [56]. The method involves training a BlockSparse
dictionary without prior knowledge about how the training data are grouped. Then, a
measurement matrix is used to compress the hyperspectral data. The final step involves re-
constructing the image by using the trained dictionary incorporating classification features
of the hyperspectral data. CS is also employed in [57], where sparsification of hyperspectral
image and reconstruction (SHSIR) is introduced. The adopted method incorporates the
robust minimum volume simplex algorithm (RMVSA) to improve the accuracy of endmem-
ber extraction while the Bregman solver is employed to boost the reconstruction accuracy.
Another method called context-aware compressed sensing (CACS) is presented in [58]. This
method incorporates contextual information into the process of learning the dictionary and
reconstructing the hyperspectral images. Further, the study in [59] employs compressed
sensing in the spectral dimension by sparsely expressing this dimension as a column vector
and utilizing a small dictionary. This approach avoids repeated calculations and eliminates
the effects of blocking.

The recursive least squares method stands out as a commonly employed technique
for hyperspectral image compression. In this regard, the bimodal conventional recursive
least-squares (B-CRLS) is designed to address issues like misalignment-induced boresight
effects and blurry band predictions in hyperspectral images [60]. Due to the improved
band prediction, the method achieves a comparable lossless compression performance,
when compared to adaptive-length and fixed-length CRLS while providing relatively lower
computational times. Additionally, two parallel methods, SuperRLS and BSuperRLS, are
proposed for lossless compression of hyperspectral images in [61]. These methods involve
superpixel segmentation, parallel prediction using Recursive Least-squares, and encoding
residuals with an arithmetic encoder. SuperRLS offers advantages such as parallelizability,
competitive compression ratios, and reconstruction of pixels under selected superpixels.
BSuperRLS, having a similar structure, achieves the best compression performance with
lower computational times.

Finally, the works by Chow et al. describe the compression of hyperspectral images
by utilizing a k2-raster compact data structure that achieves a compression ratio simi-
lar to classical techniques, enabling direct access without decompression [40,62]. The
k2-tree structure serves as a compact representation of the adjacency matrix for a directed
graph [63]. Chow et al. also suggest that the k2-raster structure works best when combined
with directly addressable codes (DACs) [40,62]. We conclude this review of recent research
works on HSI compression by summarizing the key aspects of the above-mentioned studies
in Table 1.
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Table 1. Overview of recent studies related to HSI compression.

Reference Method Category Type Year

[40] k2-raster Compact Data Structure Lossless 2020
[45] HCCNet Deep Learning Lossy 2023
[44] Autoencoders Deep Learning Lossy 2021
[43] SVR Machine Learning Lossy 2020
[42] RNN Deep Learning Lossless 2019
[41] CNN Deep Learning Lossy 2019
[48] HyperLCA Transform-Based Lossy 2022
[22] HW-HyperLCA Transform-Based Lossy 2019
[49] 3D-WBTC Transform-Based Lossy 2019
[51] Spectral Graph Transform Transform-Based Lossless 2019
[50] 3D-DCT Transform-Based Lossy 2018
[52] Tensor-Robust CUR Tensor-Based Lossy 2023
[54] Tucker Decomposition Tensor-Based Lossy 2021
[59] Optimized CS Compressed Sensing Lossy 2020
[58] CACS Compressed Sensing Lossy 2019
[57] SHSIR Compressed Sensing Lossy 2019
[56] BlockSparse Dictionary Compressed Sensing Lossy 2018
[60] B-CRLS Recursive Least-Squares Lossless 2018
[61] SuperRLS Recursive Least-Squares Lossless 2018
[61] BSuperRLS Recursive Least-Squares Lossless 2018

3. Lossless Compression

We employ our recent method for seed generation to achieve lossless compression [39].
The main advantage of this approach lies in its reasonable time complexity based on using
simple arithmetic operations, potentially making it suitable for real-time compression
onboard satellites. Reduction is realized by utilizing the fact that the integer part of the
square root of x requires ⌈n/2⌉ bits, where n is the number of bits required to obtain
the binary representation of x [64]. In addition, for a uniformly distributed x ∈ N, the
distribution of the values of

⌊√
x
⌋
, given by f (x), is skewed to the left and is formulated as

f (x) = 2
⌊√

x
⌋
. This means, for example, that there are more integers mapped to the square

root value of 9 (nineteen values comprising integers from 81 to 99) than integers mapped to
the square root value of 2 (five values comprising integers from 4 to 8). This fact yields a
reduced entropy of the integer square roots when compared to the corresponding values of
x. As a result, further reduction can be realized by employing any simple entropy encoder.

To losslessly achieve this reduction, we also need to preserve the fractional part of the
square root for accurate retrieval of the original value of x. In the following section, we
provide details on the computation and encoding scheme of both the integral and fractional
parts of the square root to achieve lossless compression.

3.1. Computation of the Integral Part

The initial estimation of the square root of x is given by the seed s0. This seed can be
obtained by averaging the value of the leftmost ⌈n/2⌉ bits of the binary representation of x,
denoted as the most significant half (MSH), and the quantity 2⌊n/2⌋, where n is as defined
previously. This is formulated as follows:

s0 = 0.5×
(

MSH + 2⌊n/2⌋
)

. (2)

We observe from the above equation that the seed s0 estimates the integer square root
of an unsigned integer x using only two operations: one addition followed by a single-bit
right shift. This generated seed is an accurate estimate of the integer square root of unsigned
integers up to eight bits. Beyond this size, a deviation from the correct square root begins
to follow a pattern of connected parabola-like curves (PLC) with a different focal point
for each side of the curve (see Figure 1a). The vertices (v) of the PLCs are located at the
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even powers of two on the x-axis whereas the peaks, denoted by xpeak, are seen at the odd
powers of two [39].
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The magnitude of each one of the peaks, given by ypeak, follows a first-degree polyno-
mial provided by the equation below:

ypeak = 0.0572speak, (3)

where speak is the calculated seed of xpeak using Equation (2). For instance, the calculated
seed of xpeak = 223 is equal to 3072 with a deviation of +175.7 from the correct square root
value of 2896.3. This error can be estimated using Equation (3), producing the same value
of 175.7 = 0.0572× 3072. It follows that by knowing both xpeak and ypeak, the focal point ( f )
for each side of the PLC is calculated as follows:

f =
(

xpeak − v
)2

/
(

4× ypeak

)
. (4)

Thus, by incorporating the equation of the vertical parabola, the deviation of the estimated
square root (denoted by err) of an unsigned integer x is obtained as next:

err = (x− v)2/(4× f ). (5)

Since the bit depth of the selected HSIs does not exceed 16 bits, we consider two approaches
to handling this error [65]. We can either compensate for the error over the entire bit depth
or completely avoid it by processing the acquired data as two distinct bytes.

3.1.1. Error Compensation

As noted from Figure 1, the generated error is always positive. This means that
the estimated integer square root is always equal to or greater than the integer square
root of x

(
s0 ≥

⌊√
x
⌋)

. We compensate for the generated error by utilizing the following
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observation. There are 2si non-square integers between every two consecutive square
integers s2

i and s2
i+1. This is derived as follows:

s2
i+1 − s2

i − 1 = (si + 1)2 − s2
i − 1

= s2
i + 2si + 1− s2

i − 1
= 2si.

(6)

In Figure 2, we illustrate this increasing distance between consecutive square integers
relative to their corresponding square roots. According to the figure, a single step from the
integer square root si to si+1 translates to a distance of 2si + 1 between their corresponding
square integers. Therefore, a deviation of d in the plane of integer square roots translates to
a distance of ∑i+d−1

i (2si + 1) in the plane of unsigned integers.
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Figure 2. The distance between consecutive integer square numbers increases relative to their
corresponding square roots.

In order to find the desired square root si, we roll back from the deviated value si+d
while knowing the value of x. This is achieved by first computing the difference between
s2

i+d and x. Then, from the squared value of si+d, we roll back a distance of ∑i+d−1
i (2si + 1)

towards x one leap at a time until the difference is no longer positive. For instance, the
calculated seed for the square number x = 8464 is 97. This value is deviated by +5 from
the correct integer square root s = 92. Knowing the distance between x and 972, we can
compensate for this deviation by first rolling back a distance of 2× 96 + 1. If the distance
remains positive, we subtract one from the estimated square root and repeat the process.
This is performed multiple times until the correct integer square root is reached. This
example is detailed below by showing the roll-back of a distance of 945(= 97 2 − 8464

)
one leap at a time:

Step 1: 945−
(

2× 96 + 1
)
= 752,

Step 2: 752−
(

2× 95 + 1
)
= 561,

Step 3: 561−
(

2× 94 + 1
)
= 372,

Step 4: 372−
(

2× 93 + 1
)
= 185, and

Step 5: 185−
(

2× 92 + 1
)
= 0.

Thus, the correct integer square root value of 92 is reached when the remainder is equal
to zero. However, the remainder zero is reached here because x is a perfect square. For
non-square integers, the correct integer square root is reached when the remainder is less
than zero. The example below shows the same procedure employing the non-square integer
x = 24576. The generated seed s0 for x = 24576 is 160. As a result, the distance between s2

0
and x is 1602 − 24576 = 1024. That is, we can apply the rollback as follows:

Step 1: 1024−
(

2× 159 + 1
)
= 705,

Step 2: 705−
(

2× 158 + 1
)
= 388,

Step 3: 388−
(

2× 157 + 1
)
= 73, and

Step 4: 73−
(

2× 156 + 1
)
= −240.

The iterative subtraction is stopped when the remainder is less than zero giving the correct
integer square root value of 156. We can generalize the above by stating that the correct
integer square root is reached when the remainder is less than or equal to zero. We
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formulate the procedure of calculating the integer square root in Algorithm 1, for n > 8 bits,
as given below:

Algorithm 1. Calculation of the integer square root of x by rolling back from s0.

Input: x, s0
Output: s // integer square root of x
Initialization: si ← s0
D ← s2

i − x
While (D > 0 ) Do
si ← si − 1
D ← D− (si ≪ 1)− 1
End Do
s← si

To reduce the computational complexity of finding the correct integer square root, we
suggest computing the distances (2× si + 1) in parallel. As illustrated in Figure 1b, the
maximum deviation from the correct integer square root of a 16-bit unsigned integer is +11,
located at x = 215. Therefore, we suggest computing the worst-case scenario (11 distances)
at once and then serializing the jump using subtraction. As per [66], the number of cycles
required by the integer instructions of Intel Pentium and Pentium MMX are as follows:
one clock cycle for addition or subtraction, one clock cycle for comparison, one cycle
for a shift operation, and 11 cycles for multiplication. As a result, computing the total
distance s2

i − x requires 12 cycles. Then, the eleven instances of si − 1 are unrolled and
calculated in parallel within one cycle. This is followed by two cycles to calculate the
jumps, (si ≪ 1) + 1, simultaneously. Finally, the conditional update of the D value requires
11 cycles for subtraction and 12 cycles for comparison. In addition to the cost of two cycles
incurred in calculating the seed s0, we obtain a total of 40 clock cycles for calculating the
correct integer square root for a 16-bit unsigned integer.

3.1.2. Error Avoidance

The generated error can be completely avoided by processing the 16-bit values of the
hyperspectral data byte by byte. This produces an accurate estimate of the integer square
root directly by using Equation (2). We note here that the sparsity of the hyperspectral data
is expected to increase after their partitioning into 8-bit chunks, especially for decorrelated
data. We define sparsity of hyperspectral data to mean the percentage of zero elements
comprised within the image [67]. Handling zeros before square rooting avoids unnecessary
computations. Further, it improves the compression ratio by shortening long streams of
zeros. This is achieved by removing all the zero bytes, leaving a single-bit indicator that
instructs the decoder on how to interpret the forthcoming bits. A compression could be
obtained only when the following condition related to sparsity is satisfied. Let p be the
percentage of having all zero bytes in the partitioned data. Removing the zero elements
reduces the average number of bits to (1− p)× 9 + p× 1 = 9− 8 p. In order to obtain any
reduction in this value, it is desired to have:

9− 8p < 8⇒ p > 0.1250. (7)

This means that the number of zero elements must occupy more than 12.50% for any
reduction to be obtained using the aforementioned approach. A similar argument applies
to unpartitioned hyperspectral data in the following way

(1− p)× 17 + p× 1 < 16⇒ p > 0.0625 (8)

In this case, the percentage of zero elements is halved to 6.25% of the 16-bit values for
any compression to be realized. Further reduction can be obtained by employing the run-
length encoder (RLE) as the occurrence of the zero elements becomes significant after data
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decorrelation and partitioning. To maintain longer streams of zeros, we suggest processing
the odd bytes first, as they are mostly zeros after the preprocessing stage. This processing
scheme yields a greatly varying length of zero streaks. Therefore, to efficiently encode these
lengths, the first vector of the RLE holds the unary code that indicates the number of bits
required to represent each length. The second vector holds the binary representation of
these lengths. For example, the numbers: 365,698; 2; 356; 2; and 5254 represent the first
five lengths of the alternating zero and non-zero streaks of the Mt. St. Helens image after
preprocessing. The number of bits required to represent each length is 19, 1, 9, 1, and 13,
respectively. We clarify here that the use of a single bit is sufficient to indicate two possible
lengths (1 and 2) since the length value cannot be zero in this case. This also impacts the
rest of the length values as their corresponding binary representations are decremented by
one. Thus, the first vector contains the unary codes:

1111111111111111110, 0, 111111110, 0, 1111111111110.

And the binary vector contains the following values:

1011001010010000001, 1, 101100011, 1, 1010010000101.

Consequently, the stream of indicator bits is reduced from 371,312 bits
(= 365,698+ 2+ 356+ 2+ 5254) to 86 bits (= 2× 19+ 2× 1+ 2× 9+ 2× 1+ 2× 13) only,
for this specific example.

3.2. Computation of the Fractional Part

To encode the fractional part, we utilize the same observation formulated in Equation (6).
As presented in Figure 2, it is evident that the integer numbers s2

i ≤ x < s2
i+1 share the same

integer square root si. However, to differentiate between the fractions that correspond to
each number in this range, we need ⌈log2 2si⌉ bits. For instance, there are eight non-square
integers (2× 4) between the square integers 16 and 25 (42 and 52). These eight values
share the same integer square root value of 4, and we can differentiate between them by
using three bits to indicate eight distinct fractions. In other words, the fractional part of
the square root of x can be encoded as the distance of x from the nearest square number s2

i ,
where s2

i < x. Calculating the distance costs one multiplication (si × si) and one subtraction
(x− s2

i ). Note that the distance between every two consecutive square integers decreases
as these integers become smaller. Hence, more compression can be realized. This can be
achieved by utilizing the correlation presented in the hyperspectral data. The number of
bits required to represent the fractional part according to the value of the integer square
root si is depicted in Table 2.

Table 2. Number of bits required to represent the fractional part relative to the integer square
root value.

s0 Fractional Bits

20 1
21 2

21 < si ≤ 22 3
22 < si ≤ 23 4
23 < si ≤ 24 5
24 < si ≤ 25 6
25 < si ≤ 26 7
26 < si ≤ 27 8
27 < si ≤ 28 9

There are cases where the number of non-square integers bound between two square
integers s2

i and s2
i+1 is exactly equal to log2 2si, which leaves no room to include the zero

fraction that corresponds to the perfect square root si. For instance, all the integers x
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within the set {4, 5, 6, 7, 8} map to integer square root value of 2. To differentiate between
the fractions that correspond to each integer, we need more than two bits to include the
zero fraction that corresponds to the integer number 4. This occurs consistently when the
integer square roots are powers of two, e.g., si = 1, 2, 4, 8, . . . , etc. Here, we demonstrate
another advantage of eliminating the zero bytes beforehand. To avoid adding an extra bit,
perfect squares that are powers of two are encoded with four zeros in the integer part. This
instructs the decoder to interpret the next fractional bits as a unary code. Therefore, the
cost of the fractional part, represented by the number of bits, remains consistent within
each range. That is, the number of bits allocated for the fraction is always ⌈log2 2si⌉ for all
si values. Table 3 below presents the codewords of the proposed lossless square root-based
encoder. For si in the form 2m, m represents the number of ones in the unary code of the
fractional part. For example, when si = 4 = 22, we have m = 2 and the corresponding
unary code of the fractional part is 110.

Table 3. Codewords of the lossless square root-based encoder.

x s0 Integer Bits Fractional Bits

1 1 0000 0 (unary)
2 1 0001 0
3 1 0001 1

4 2 0000 10 (unary)
5 2 0010 00
6 2 0010 01
7 2 0010 10
8 2 0010 11
9 3 0011 00
... ... ... ...

16 4 0000 110 (unary)
17 4 0100 000
18 4 0100 001
19 4 0100 010
20 4 0100 011
21 4 0100 100
22 4 0100 101
23 4 0100 110
24 4 0100 111
25 5 0101 0000
... ... ... ...

3.3. Preprocessing

A typical lossless compressor consists of a preprocessor followed by an entropy en-
coder [68]. The preprocessor’s main function is to decorrelate the input data, which is
then passed to the entropy encoder. Decorrelation can be achieved by means of predic-
tion [25,62,69–72] or transform-based techniques [51,73–76]. According to [69], techniques
that use lookup tables and vector quantization are also categorized as prediction-based
since both types are used to generate a prediction of the data. The best predictor is the
one that yields the lowest entropy and is easy to implement. Predictive techniques offer
low computational complexity and moderate memory requirements [25]. In general, the
transform-based techniques are more successful in lossy compression. This is due to the
fact that these methods must be integer-based to achieve lossless compression, which in
turn may compromise their ability to decorrelate [69].

As it is well known, the use of prediction techniques may produce negative residuals.
Thus, to avoid passing such residuals to the square root computation step, a simple mapping
technique, reported in [70], is employed to maintain positive values. This technique maps a
residual r into an unsigned integer by utilizing the formula below for the mapping M(r):
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M(r) =
{

2r , r ≥ 0
2|r| − 1 , r < 0.

(9)

We note here that the use of Equation (9) increases the range of the values by one bit. In
particular, the maximum residual for a 16-bit hyperspectral image of (216 − 1) maps to
(217 − 2) with the minimum being equal to zero. Since 17 is not a multiple of 8, partitioning
it into 8-bit blocks leaves an extra bit that requires additional handling. A better solution
is to employ a bitwise exclusive-or (XOR) operation to decorrelate hyperspectral data.
The application of the XOR operation as a decorrelation technique for improved lossless
compression is detailed by Cooper in [77]. Generally, the correlated data tend to have
similar values in their most significant bits. Therefore, the use of the XOR operation sets
the most significant bits into zeros, resulting in a lower data entropy while maintaining
positive values within 16 bits. The goal is to XOR the adjacent bands Bi of each line of the
acquired scene, except for the first band B0, as indicated by Equation (10) next. Then, the
original data can be retrieved at the decoder by repeating the XOR operation starting from
the first band. This is similar to the use of XOR operation in data encryption [78], where
the original message is XORed with the key to generate the ciphered message. Afterward,
the original message is recovered by XORing the ciphered message with the same shared
key. In our case, the first band B0 corresponds to our key. Hence, we have:

B̂i = Bi ⊕ Bi−1 , for i > 0, (10)

where B̂i and ⊕ represent the decorrelated band and the XOR operation, respectively.
Consequently, this procedure offers a layer of security for critical data, which can be
achieved by ciphering the first band of each acquired line of the scene. Hyperspectral
data tend to have stronger spectral than spatial correlation [79]. Nonetheless, we will
investigate the impact of both spectral and spatial decorrelation by employing the bitwise
XOR operation in Section 5.

3.4. Postprocessing

As mentioned earlier, the entropy of the integer square roots
⌊√

x
⌋

is significantly
smaller than the entropy of the x values. A simple entropy encoder can be utilized to
further reduce the total number of bits. We suggest using the well-known Rice coding
technique [80] to map the most frequent values into a smaller number of bits. Rice coding
is preferable when the data to be compressed follow a geometric statistical distribution [68].
This distribution is usually determined after data have been processed in an earlier stage.
Typically, a Rice code of the binary representation of x is obtained by concatenating the
unary representation of the quotient (q = x/2k) and the least significant k bits of x [81].

3.5. Lossless Encoder/Decoder

The flowchart of the proposed lossless compressor is depicted in Figure 3a. The
diagram highlights its three main stages: (1) preprocessing by employing one-dimensional
XOR operation; (2) square rooting by means of seed generation; and (3) postprocessing
by utilizing Rice codes. The decoder, presented by Figure 3b, receives the encoded data
in a structure of three vectors: (1) the indicator vector (to be decoded bit by bit); (2) the
Rice codes vector (to be decoded code by code); and (3) the variable length vector, where
the number of bits to be processed is determined by the deciphered value of the Rice code,
i.e., the value of s0. Next, we provide in Algorithms 2 and 3 the pseudocodes for the lossless
encoder and decoder, respectively.

The sequential time complexity of the lossless compression algorithm is primarily
dictated by the corresponding time complexities of the preprocessing, seed generation, frac-
tion calculation, and post processing stages. The total time complexity can be approximated
as O(n3), where n represents the number of values along each of the three dimensions
of the input hyperspectral image. We assume, for the sake of simplicity, that each HSI is
represented by a cube. The algorithm begins by XORing each value of the input image



Entropy 2024, 26, 316 13 of 35

with its adjacent one, resulting in a complexity of O(n3) as a result of traversing the entire
input data. Subsequently, the XORed values undergo seed generation, where a single
shift and add operations are applied. This requires a constant complexity for each pixel
value along all n bands. Thus, a total of O(n3) operations are needed to complete this
step. The calculation of the corresponding fractional part also entails a cubic complexity,
involving squaring the generated seed and subtracting it from the XORed value. For the
postprocessing stage, the worst-case time complexity of run-length encoding is O(n3). This
is because in the worst-case scenario, every element in the input data would be unique;
hence requiring each element to be encoded separately. Finally, the direct mapping of Rice
codes using lookup tables would exhibit a time complexity of O(n3) since it operates on
each generated seed value.

Algorithm 2. Pseudocode for the compressor part of the proposed lossless compression.

Input: x // hyperspectral data
Outputs:
vecRice, // a vector that stores the calculated seed values.
vecFrac, // a vector that stores the calculated fractions.
vecRLE, // a vector that holds the counts of consecutive runs of zero and nonzero values.
vecUnary. // a vector that holds the variable unary codes corresponding to the number of bits of
each count.
Initializations:
x0 ← 0 , // the initial value to be XORed with the first element of x.
nZ0 ← 0 , // initialize the first nonzero value with 0.
cnt← 1 , // counts the number of consecutive runs.
PO2← 2 , // to calculate the required number of bits for each run.
nVar ← 11 , // the required number of bits for each run.
n← the number of bits required to represent x.
done ← 0

For all xi in x Do
1. Preprocessing
xored ← xi ⊕ xi−1 // perform exclusive-or operation.

If xored > 0 Then
nZi ← 1
2. Calculation of the integral part
MSH ← the leftmost ⌈n/2⌉ bits of xored

Q← 2⌊n/2⌋

seed← (MSH + Q)≫ 1
riceCode← mappedRice(seed)
vecRice.add(riceCode )
3. Calculation of the fractional part
m← ⌈log2(2 · seed)⌉
Fr ← xored− seed2 // The fraction encoded as the distance between the xored value and the
squared value of the seed

If Fr > 0 Then
Fr ← Fr− 1
Else
Fr ← Unary(seed)
seed ← 0
End If

Frout ← the rightmost m bits of Fr
vecFr.add(Frout )
Else
nZi ← 0
End If
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Algorithm 2. Cont.

4. Run length encoding of nZ
If nZi = nZi−1 Then
cnt← cnt + 1

If cnt = PO2 Then
PO2 ← PO2≪ 1
nVar ← nVar + 1
End If

Else
vecRLE.add(cnt )
vecUnary.add(nVar )
cnt ← 1
PO2 ← 2
End If
End Do

If done Then
vecRLE.add(cnt )
vecUnary.add(nVar )
End If

Algorithm 3. Pseudocode for the decompressor part of the proposed lossless compression.

Inputs: vecRice, vecFrac, vecRLE, vecUnary.
Output: x // reconstructed hyperspectral data.
Initializations:
nVar ← the number of bits derived from the next unary code in vecUnary.
cnt← the run length obtained by interpreting the next nVar bits from vecRLE.
Flag← 0

For all cnt in vecRLE Do
While cnt > 0 Do
If Flag = 0 Then
xi ← 0
Else
riceCode ← get the next rice code from vecRice.
seed← decode (riceCode )

If seed = 0 Then
seed← the value of the next unary code from vecFrac
Fr ← 0
Else
m← ⌈log2(2 · seed)⌉
Fr ← get the next m bits from vecFrac.
Fr ← Fr + 1
End If

xi ← seed2 + Fr

End If
cnt← cnt− 1
End Do

Flag ← not Flag
End Do
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4. Near-Lossless Compression

We aim in this part of our research to utilize our method for computing the square
root value in order to achieve near-lossless compression of remotely sensed hyperspectral
images [39]. Square rooting depends on exploiting the concept of quadrature. In this regard,
the quadrature problem of a plane figure involves geometrically constructing a square of
the same area, hence the name “quadrature” [82].

Let x be the area of the rectangle ABCD (see Figure 4). The generated seed s0 represents
one side of the rectangle (segment BC). The other side is simply obtained by dividing x over
s0. The average of both sides of the rectangle produces the hypotenuse of the right triangle

MCF. The goal is to find the length of the adjacent segment that represents the square root
value. The opposite segment is calculated as the difference between s0 and the hypotenuse.
Given both the hypotenuse and the opposite segments of this right triangle, we can calculate
sin θ from which we can obtain the angle θ. Ultimately, the length of the adjacent segment is
obtained by multiplying the hypotenuse by the cosine value of the angle θ. The pseudocode
of the quadrature-based square rooting method is described next in Algorithm 4 [39].

Algorithm 4. The quadrature-based method to compute the square root value of x.

Inputs: x, s0
Output : s // square root of x.
Initialization: BC ← s0
CD ← x/BC
M← 0.5× (BC + CD)
CM← BC−M
sin θ ← CM/M
cos θ ← retrieved from a lookup table utilizing sin θ.
s← cos θ ×M
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Figure 4. The quadrature of a plane rectangle ABCD: (a) The case when s0 is the longer side of the
rectangle; (b) The case when s0 is the shorter side of the rectangle. In both cases, segment BC is equal
to s0.

The angle θ is equal to zero when the hypotenuse and adjacent segments are coincident;
i.e., both segments are of equal lengths. This means that the shape, with which we started,
is a perfect square and s0 is an accurate estimate of the square root. Less accuracy of s0
translates to a wider deviation of θ from 0◦. The worst-case scenario is when the hypotenuse
is almost perpendicular to the adjacent side with an angle of nearly±90◦. Simulation results,
presented in Figure 5a, show that by employing the seed s0, the worst-case scenario of θ
is limited to −30◦ [39]. Since both sin θ and sin(−θ) map to the same cosine value, the
polarity of the angle θ has no impact on the calculated length of the adjacent segment,
which corresponds to the square root value.
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The value of sin θ ranges between 0 and 0.5 since θ ∈ [−30◦, 4◦). Using a step size of
0.01 quantizes this range into 51 values. Our objective is to use these values to directly
address the corresponding cosine value that is required to calculate the square root. Based
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on our study in [39], we found that only 24 values are actually accessed via the lookup
table resulting in a corresponding utilization rate of 37.5%. These 24 variations of the index
can be represented using 5 bits. However, better reduction can be achieved when using
unary coding for the index part of the code. This is demonstrated by Figure 5b since most
of the x values revisit the narrow range of θ ∈ (−4◦, 4◦) and only a few values of x expand
towards θ = −30◦. An extra reduction could be obtained by utilizing the fact that some
combinations of the indices and s0 never occur. For instance, index 6 is only reached by
seven variations of s0 and index 10 is only reached by three. Table 4 shows the possible
number of variations of s0 that can access each value of these 24 indices.

Table 4. Number of bits required to represent the variations of s0 for each of the 24 index values.

Index Variations of s0 Number of Bits

0 157 8
1 111 7
2 83 7
3 66 7
4 52 6
5 31 5
6 7 3
7 5 3
8 4 2
9 5 3
10 3 2
11 4 2
12 2 1
13 2 1
14 1 0
15 1 0
17 1 0
18 1 0
20 1 0
21 1 0
25 1 0
27 1 0
33 1 0
50 1 0

As a result, instead of encoding s0 with fixed-length 8-bit codes, variable-length codes
are used that do not exceed eight bits in the worst case. For indices ≥ 14, the decoder
directly infers the value of the integer square root. The length of the concatenated code
herein is equal to zero. Mapping s0 values to the reduced codes is achieved using lookup
tables. Since the number of bits remains at eight bits for the index value of zero, mapping in
this case would only translate to an extra lookup table. Accordingly, the mapping requires
a structure of lookup tables limited to only the indices in the range between 0 and 14
exclusively (0 < index < 14). These lookup tables are distributed as follows: (1) five lookup
tables of size 256 bytes each for the range 1 ≤ index ≤ 5; (2) another five lookup tables
of 16 bytes each for 6 ≤ index ≤ 10; (3) and for the range 11 ≤ index ≤ 13, we need
only three lookup tables of eight bytes each. This results in a total of 1.4 KB for the entire
structure of lookup tables. Table A1, provided in the Appendix A, shows the values of s0
that map to each index. This is followed by Table A2, which encloses the MATLAB code
used to generate Table A1. Table 5 below gives an example that illustrates the encoding of
a sequence of ten 16-bit unsigned integers x.
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Table 5. Sequence of ten 16-bit integers x with both their s0 values and corresponding indices.

x s0 Index

29 5 7
12,317 112 0
22,556 152 1
31,003 185 4
5403 74 0
1818 44 3

21,017 146 0
61,974 249 0
15,125 123 0
10,260 104 2

Based on the previous table, the 16-bit binary representations of the original stream of
x values are as follows:

0000000000011101, 0011000000011101, 0101100000011100, 0111100100011011,

0001010100011011, 0000011100011010, 0101001000011001, 1111001000010110,

0011101100010101, 0010100000010100.

Therefore, the corresponding codewords that employ the quadrature-based square rooting
method are:

11111110000, 001001011, 100111110, 11110000110, 001000000, 11100010110,

001101101, 010010110, 001010110, 1100111000.

The unary code for the resulting indices is underlined. The binary representation that follows
is the order of s0 within a given index, as provided in Table A1. The number of bits required
to represent the order is determined in advance by utilizing Table 4. For instance, the unary
code of index 7, which is equal to 11111110, instructs the decoder to parse the next three bits
to capture the value of s0, which happens to be the first element for index 7, as depicted in
Table A1.

Near-Lossless Encoder/Decoder

The flowchart of the quadrature-based encoder used to achieve near-lossless compression
is exhibited in Figure 6. Starting with the hyperspectral image as an input, we apply seed
generation to obtain the value of s0. Next, the quadrature-based square rooting method
is employed to compute the index value. Both the index and s0 values are then used to
obtain the encoded value of s0 from the lookup table structure described earlier. Finally,
the unary code of the index value and the code obtained from the corresponding lookup
table are then concatenated to generate the compressed stream. In our case, we note that the
use of decorrelation by means of either prediction or XORing may hinder the compression
performance. This is due to the fact that decorrelation would reduce the majority of s0 values,
which yields smaller values of θ and thus limits the indices to the first few. Consequently, the
quadrature-based encoder would not be able to benefit from the distribution presented in
Table A1.
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As described in Algorithm 4, the square root value is obtained by multiplying the
hypotenuse by the cosine value of θ. The hypotenuse length, denoted by M, is a floating-
point number, yet s0 is an integer. Therefore, by employing the concatenation of s0 with its
corresponding index value, we would obtain better compression performance and maintain
integer-based computations for the encoder. This is instead of relying on the floating-point
value provided by the hypotenuse. Consequently, the last two steps of Algorithm 4 shall be
assigned to the decoder on the ground station. The value of M is generated at the decoder
by dividing the value of s0 by (1 + sin θ). This is derived as follows:

sin θ = CM
M and CM = s0 −M

=⇒ sin θ =
s0 −M

M
=

s0

M
− 1

=⇒ M = s0/(1 + sin θ) .

(11)

Then, the square root value of x is reconstructed at the decoder by multiplying cos θ with M.
Squaring the resulting product gives the desired value of x. Figure 7 displays the different
steps involved in the reconstruction of the original stream by the decoder.
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Next, we disclose the pseudocodes for the near-lossless encoder and decoder in
Algorithms 5 and 6, respectively.

The sequential time complexity of the near-lossless algorithm is dominated by the seed
generation and quadrature-based square rooting steps, as both involve basic arithmetic
operations that contribute to a worst-case time complexity of O(n3). Unary encoding, which
typically involves appending a sequence of 1s followed by a single 0, also plays a role
in the algorithm’s time complexity. However, the use of a precomputed lookup table for
the 24 indices and their corresponding unary codes would only require a constant time
complexity, thus maintaining the overall complexity at O(n3). Overall, the entire algorithm
can be considered to have a worst-case sequential time complexity of O(n3).
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Algorithm 5. Pseudocode for the compressor part of the proposed near-lossless compression.

Input: x // hyperspectral data.
Outputs: vecSeed, vecUnary.
Initialization: n← the number of bits required to represent x.
For all xi in x Do

1. Seed generation
MSH ← the leftmost ⌈n/2⌉ bits of xi
Q← 2⌊n/2⌋

seed ← (MSH + Q)≫ 1
2. Quadrature-based square rooting
BC ← seed
CD ← x/BC
M← 0.5 · (BC + CD)
CM← BC−M
sin θ ← CM/M
3. Preparing the compressed stream
index ← 102 · sin θ

order ← the corresponding order of the seed value within the lookup table of the index
(Table A1).
m ← the number of bits that correspond to index (Table 4).
varCode← the least significant m bits of order.
vecSeed.add(varCode ) // add the encoded seed to vecSeed vector.
unary ← the corresponding unary code of the index value.
vecUnary.add(unary ) // add unary code to vecUnary vector.

End Do

Algorithm 6. Pseudocode for the decompressor part of the proposed near-lossless compression.

Inputs: vecSeed, vecUnary
Output: x // reconstructed hyperspectral data
Initialization: index ← the index value obtained by interpreting the next unary code in vecUnary
For all index Do

m← the number bits to be read from vecSeed based on index value (Table 4).
order ← get the next m bits from vecSeed.
seed← get the seed value given the index (Table A1).
cos θ ← given the index value (that corresponds to sin θ value), retrieve the cosine value
from the lookup table.
sin θ ← index/102

M← seed/(1 + sin θ)
s← cos θ ×M
x ← s× s

End Do

5. Experimental Results and Discussion

Our simulation results were obtained using the MATLAB computing environment
R2020 installed on a MacBook Pro machine with a 2.4-GHz Apple M2 Max processor. This
system has 32 GB of RAM and is running a macOS Ventura 13.3.1.

5.1. Dataset Description

To ensure the reproducibility of the results and allow for comparison with other state-
of-the-art works, the Corpus dataset is used for analysis [83]. Since this dataset represents
a collection of both multispectral and hyperspectral images, only the latter type will be
utilized in this work. Further, the Corpus dataset is heavily employed by the research
community, including CCSDS, to evaluate the performance of compression algorithms [84].
The description of the 32 selected hyperspectral images is provided in Table 6. All files
are stored in band sequential format (BSQ). The data types of these images are either
u16be (unsigned 16-bit big-endian) or s16be (signed 16-bit big-endian) integers. These
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integers are represented using the two’s complement format [85]. In our study, the BSQ
format is transformed into band interleaved by line (BIL) format to simulate the line-by-line
acquisition of the underlying scene in real time. In Figure 8, we display three examples
of hyperspectral scenes used in our experiments. The first two originate from the AVIRIS
imager and the third belongs to CASI.
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Table 6. Description of the hyperspectral images within the Corpus dataset, selected for the evaluation
of compression performance.

Imager Scene Data Type Dimensions C\U * Bit Rate

AIRS

gran9

u16

1501 × 135 × 90

U 12

gran16 1501 × 135 × 90
gran60 1501 × 135 × 90
gran82 1501 × 135 × 90
gran120 1501 × 135 × 90
gran126 1501 × 135 × 90
gran129 1501 × 135 × 90
gran151 1501 × 135 × 90
gran182 1501 × 135 × 90

AVIRIS

Hawaii

u16

224 × 512 × 614

U 16
Maine 224 × 512 × 680
Yellowstone (sc00) 224 × 512 × 680
Yellowstone (sc03) 224 × 512 × 680

AVIRIS

Yellowstone (sc00)

s16

224 × 512 × 677

C 16
Yellowstone (sc03) 224 × 512 × 677
Yellowstone (sc10) 224 × 512 × 677
Yellowstone (sc11) 224 × 512 × 677
Yellowstone (sc18) 224 × 512 × 677
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Table 6. Cont.

Imager Scene Data Type Dimensions C\U * Bit Rate

CRISM
sc182

u16
545 × 450 × 320

U 12sc214 74 × 2700 × 64

CASI
t0477f06

u16
72 × 1225 × 406

U 12t0180f07 72 × 2852 × 405

Hyperion

Cuprite

u16

242 × 1024 × 256

U 12
ErtaAle 242 × 3187 × 256
LakeMonona 242 × 3176 × 256
MtStHelens 242 × 3242 × 256

M3

globalA

u16

86 × 512 × 320

U 12
globalB 86 × 512 × 320
targetA 260 × 512 × 640
targetB 260 × 512 × 640
targetC 260 × 512 × 640

SFSI Mantar u16 240 × 140 × 496 U 12
* Calibrated (C)/Uncalibrated (U).

5.2. Results of Lossless Compression

The compression performance of the proposed lossless compressor is evaluated and
compared to the compact data structure k2-raster combined with directly addressable
codes, as recently published in [40]. The k2-raster method is a technique for compactly
representing raster data, such as images, using a hierarchical tree structure. The method
begins by partitioning the matrix representing the raster data into square sub-quadrants
of equal size. If the matrix cannot be perfectly partitioned into such sub-quadrants, it is
enlarged to a size that can accommodate the partitioning. This enlarged matrix is then
recursively partitioned until each quadrant contains cells with identical values or reaches a
size of 1 × 1. This partitioning process forms a tree structure, represented as a bitmap. At
each level of the tree, the maximum and minimum values of each quadrant are computed
and compared with the parent values. The differences between the quadrant extrema and
the parent extrema are stored in arrays. By storing differences instead of original values, the
method facilitates compression. DAC is then used to compress k2-raster data and provide
access to variable-length codes. The time complexity to generate all k2-rasters is equal to
O(n3). This is besides the time complexity needed to query each cell in the tree structure,
which is equal to O(logk n · L), where k2 is the size of the sub-quadrant at each one of the
L levels of the tree [62]. We selected this study because it shows thorough details of the
compression performance and complete information regarding the selected images in the
Corpus dataset. It would also allow for a one-to-one comparison of the compression results
obtained for each HSI.

We first investigate the impact of using the XOR operation for decorrelating hyper-
spectral data characterized by the percentage of zero elements, also defined as sparsity. The
increased sparsity is presented in Tables 7 and 8 for a 16-bit and 8-bit data, respectively. As
stated previously in Section 3, the zero elements must occupy more than 6.25% of the 16-bit
image and 12.50% of the byte-partitioned image for any reduction to be obtained. These
two tables show the impact of decorrelation and partitioning on the compression ratio for
hyperspectral data produced by AVIRIS. The column labeled original sparsity provides
sparsity values before data decorrelation. We observe that the two scenes Yellowstone (sc03,
C) and Yellowstone (sc10, C) exhibit an interesting characteristic whereby their sparsity
values after decorrelation remain nearly unchanged from their original values when us-
ing 16-bit representations, as displayed in Table 7. This is in contrast to their respective
values when using 8-bit representations where there is, as expected, an increase in their
sparsity after decorrelation (see Table 8). Our justification for these two occurrences is
that the behavior of these two images, with respect to sparsity, may be influenced by their
calibration status or inherent data characteristics. However, without detailed information
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from the dataset provider regarding the former factor, it is challenging to pinpoint the
precise reasons involved. Moreover, the presence of noise or artifacts in the two images
could also affect their sparsity levels, as they may introduce additional variations in pixel
values. Since this behavior did not manifest itself again when the images are blocked into
bytes, the sparsity increased significantly. This suggests that while the values across bands
may exhibit similarities in their most significant bits (MSBs), the differences are significant
enough such that when considering the entire 16 bits they may influence the resulting
sparsity values after decorrelation.

Table 7. The impact of data decorrelation on the sparsity of the hyperspectral data, represented by
the percentage of zero elements, when using 16 bits for the AVIRIS dataset.

Scene Original Sparsity Sparsity after
Decorrelation

Average Bit
Rate CR

Hawaii (U) 01.45% 25.84% 12.87 1.2
Maine (U) 0% 25.90% 12.86 1.2

Yellowstone (sc00, C) 0% 30.80% 12.07 1.3
Yellowstone (sc00, U) 01.19% 19.86% 13.82 1.2
Yellowstone (sc03, C) 0% 00.19% 16.97 0.9
Yellowstone (sc03, U) 02.65% 24.69% 13.05 1.2
Yellowstone (sc10, C) 0% 00.18% 16.97 0.9
Yellowstone (sc11, C) 07.68% 35.58% 11.31 1.4
Yellowstone (sc18, C) 02.03% 27.12% 12.66 1.3

Table 8. The impact of data decorrelation on the sparsity of the hyperspectral data, represented by
the percentage of zero elements, when using 8 bits for the AVIRIS dataset.

Scene Original Sparsity Sparsity after
Decorrelation

Average Bit
Rate CR

Hawaii (U) 04.74% 43.05% 5.56 1.4
Maine (U) 11.77% 53.51% 4.72 1.7

Yellowstone (sc00, C) 14.28% 54.23% 4.66 1.7
Yellowstone (sc00, U) 04.43% 43.82% 5.49 1.5
Yellowstone (sc03, C) 00.96% 27.52% 6.80 1.2
Yellowstone (sc03, U) 06.53% 44.91% 5.41 1.5
Yellowstone (sc10, C) 01.33% 28.85% 6.69 1.2
Yellowstone (sc11, C) 14.12% 52.40% 4.81 1.7
Yellowstone (sc18, C) 05.80% 47.85% 5.17 1.5

The average bit rate used in finding the compression ratio is calculated using
Equations (7) and (8). For instance, the percentage of zero elements of the Maine scene is
53.51% after decorrelation and blocking into eight bits. The calculated average bit rate,
using Equation (8), is reduced from 8 to 4.7192, that is 0.5351× 1 + 0.4649× 9. As a result,
the obtained compression ratio has reached a promising value of 8/4.7192 = 1.6952 by
using preprocessing techniques for this specific image. As revealed in Tables 7 and 8,
the obtained compression ratio of the preprocessing step is higher with the adoption of
byte-wise processing. The geometric mean of the compression ratio for all the selected
hyperspectral images is 1.2 for the decorrelated 16-bit values and 1.5 for the decorrelated
8-bit values.

The decorrelated 8-bit values are passed next to the seed generator to produce an
accurate estimate of the integer square root. We note that by partitioning the data into bytes,
the generated error is completely avoided, and thus, no error compensation is required.
Since square rooting reduces the number of bits into four, the value of s0 ∈ [1, 15]. This is
because all zero elements are removed in the preprocessing stage. The zero value is used to
encode the integer square roots of the perfect square integers. When employing our seed
generation approach, we observe that the distribution of the obtained integer square roots
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follows a certain pattern, especially for the same imager. Although the observed pattern is
not geometrically distributed per se, its consistent shape allows for offline mapping between
the Rice codes and the integer square roots. In this regard, Figure 9 displays the distribution
of the integer square roots for nine images of the AIRS and AVIRIS instruments, respectively.
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To maximize the benefit of Rice coding, we suggest following the descending order
of the most frequent values of s0 given in the histogram data. This order is obtained by
finding the integer square root value that appears the most often, known as the mode,
for the dataset within the same instrument. For analysis purposes, we consider both one-
dimensional and two-dimensional XORing for the preprocessing stage. One-dimensional
XORing involves computing the bitwise XOR operation between consecutive spectral
values, that is across bands only. On the other hand, two-dimensional XORing is applied by
calculating the bitwise XOR operation along both the spectral and spatial dimensions, that
is, across bands and along the line of the scene. Table 9 shows the mapping of Rice codes to
the integer square roots according to the data distributions of the AIRS and AVIRIS imagers.
The goal is to directly access Rice codes of the obtained integer square root in a single clock
cycle utilizing a small-sized lookup table. Direct addressing into lookup tables locates
the desired entry in O(1) time [86]. Nonetheless, smaller lookup tables are preferable for
area and power considerations. The required size of such a lookup table is 16 bytes only,
including the 16 variations from 0 to 15, where each code has a maximum length of 8 bits.
The value obtained from the lookup table is then concatenated to the calculated distance
between x and s2

0.
To find the reduction percentage, the total number of bits after compression is divided

by the total number of bits of the original hyperspectral image. Then, the obtained value
is subtracted from one. These results are compared to those yielded by the state-of-the-
art k2-raster method, as reported in [40]. This comparison is displayed in Table 10. We
clearly observe that an improved reduction is realized when employing our proposed
seed generation technique by the lossless compressor, especially with direct addressing of
Rice codes. A compression ratio of up to 2.6 is achieved while maintaining a reasonable
computational complexity. As observed from the table, the preprocessing of hyperspectral
data using two-dimensional XORing is sometimes detrimental, although it shows the
highest compression performance for a few images. This is confirmed by the geometric
mean values of the results encoded using Rice codes. These values are 34.45% and 33.13%
for the images decorrelated by employing 1D and 2D XORing, respectively. Similarly,
the geometric mean values for the images encoded using mapped Rice are 36.89% and



Entropy 2024, 26, 316 25 of 35

35.72% for the images employing the same respective decorrelations. Furthermore, these
values show that the best results are obtained when combining both 1D XORing and
mapped Rice codes. Overall, the generated results by the four variations of our proposed
method for lossless compression outperform those produced by the k2-raster method [40].
Specifically, reduction enhancements ranging from 16.65% to 29.89% are achieved by all
these variations when compared in terms of their geometric mean values with that obtained
by the k2-raster technique.

Table 9. Suggested order of mapping the integer square roots to Rice codes using 1D and 2D XORing
in the preprocessing stage.

Rice Code AIRS-1D AIRS-2D AVIRIS-1D AVIRIS-2D

0.0 0 0 0 0
0.1 3 3 1 1
10.0 2 2 2 2
10.1 1 1 15 3
110.0 5 5 3 5
110.1 7 7 7 15
1110.0 15 15 5 7
1110.1 4 4 14 4
11110.0 10 11 10 10
11110.1 14 10 4 11
111110.0 6 6 6 6
111110.1 11 14 11 14
1111110.0 9 8 9 8
1111110.1 13 9 13 9
11111110.0 8 13 8 13
11111110.1 12 12 12 12

Table 10. Data reduction percentage of four variations of our proposed method for lossless compres-
sion and their comparison with results obtained using k2-raster [40]. Higher reduction values are
displayed in boldface. The geometric mean values and the achieved enhancements in data reduction
of the four variations are displayed in the last two rows.

Imager Scene Entropy
(Bits) k2-Raster

Proposed (1D
XOR, Rice)

Proposed (2D
XOR, Rice)

Proposed (1D
XOR,
Mapped Rice)

Proposed (2D
XOR,
Mapped Rice)

AIRS

gran9 11.2 21% 22% 23% 25% 26%
gran16 11.1 24% 24% 24% 26% 26%
gran60 11.5 19% 18% 20% 20% 22%
gran82 11.0 - 29% 27% 32% 30%
gran120 11.2 - 25% 25% 27% 27%
gran126 11.5 20% 20% 21% 22% 24%
gran129 11.1 28% 31% 29% 34% 31%
gran151 11.6 21% 23% 23% 26% 25%
gran182 11.6 19% 19% 20% 22% 22%

AVIRIS

Hawaii 8.6 - 58% 57% 59% 57%
Maine 9.1 - 58% 57% 58% 57%
Yellowstone
(sc00, U) 12.6 25% 19% 22% 22% 25%

Yellowstone
(sc03, U) 12.3 27% 22% 25% 24% 27%

AVIRIS

Yellowstone
(sc00, C) 10.3 40% 39% 43% 41% 44%

Yellowstone
(sc03, C) 9.9 41% 40% 44% 43% 46%

Yellowstone
(sc10) 8.6 52% 53% 52% 55% 55%
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Table 10. Cont.

Imager Scene Entropy
(Bits) k2-Raster

Proposed (1D
XOR, Rice)

Proposed (2D
XOR, Rice)

Proposed (1D
XOR,
Mapped Rice)

Proposed (2D
XOR,
Mapped Rice)

AVIRIS

Yellowstone
(sc11) 9.8 45% 46% 48% 47% 49%

Yellowstone
(sc18) 10.2 39% 39% 44% 41% 46%

CRISM
sc182 11.2 16% 35% 27% 37% 29%
sc214 9.9 - 60% 52% 61% 53%

CASI
t0477f06 10.4 - 24% 23% 27% 25%
t0180f07 10.7 - 15% 17% 18% 19%

Hyperion

Cuprite 9.4 - 44% 37% 46% 40%
ErtaAle 9.5 35% 43% 36% 45% 38%
LakeMonona 9.9 35% 43% 36% 45% 38%
MtStHelens 9.3 34% 40% 33% 42% 36%

M3

globalA 9.4 - 44% 37% 46% 43%
globalB 9.3 - 45% 38% 47% 45%
targetA 8.7 - 55% 48% 56% 51%
targetB 9.7 - 52% 45% 53% 48%
targetC 8.8 - 61% 54% 62% 56%

SFSI mantar 7.2 - 47% 40% 50% 45%

Geometric Mean 28.40% 34.45% 33.13% 36.89% 35.72%
Reduction Enhancement NA 21.30% 16.65% 29.89% 25.77%

Our proposed algorithm of lossless compression can be applied to power-of-two
precision of the resolution values starting from 8 bits, then 16 bits, followed by 32 bits, and
so on. All considered images in the dataset are stored using 16 bits with a 4-bit padding for
those produced by a 12-bit instrument such as those by the AIRS instrument. Although
the hyperspectral data are processed using a word length, we consider the actual bit rate
of the imager when calculating the reduction percentage to maintain a fair comparison.
For example, the total number of bits for the hyperspectral data produced by each AIRS
scene is calculated as 1501× 135× 90× 12 bits. The entropy results provided in the said
table are calculated using the entropy model given by Equation (1). In Figure 10, we exhibit
the original and the reconstructed images of the AVIRIS Yellowstone scene 10, calibrated
(band 106) after applying our lossless compression and decompression algorithms. We
note that the visual assessment of each image is extremely similar.
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Comparison with Other Lossless Methods

We provide in Table 11 a comparison of our HSI lossless compression algorithm with
other lossless methods in terms of bit rate (bpp). In addition to the four variations of our
algorithm, we include in this table results from gzip (GNU Zip), bzip2, xz [62], and k2-raster.
The results show that our algorithm outperforms k2-raster and gzip while its bit rate values
are higher when compared to those obtained by the two methods: bzip2 and xz. The latter
two techniques include transform-based algorithmic components which may make them
amenable to yield lower bit rate values. In general, transform-based compression methods can
offer superior compression ratios but can be computationally expensive, making them less
suitable for real-time applications, where minimizing computational complexity and execution
time is essential [87]. We have only included in the mentioned table the common scenes, from
the Corpus dataset, having available bit rate values among all disclosed methods [62].

Table 11. Bit rate values of four variations of our proposed method for HSI lossless compression and
their comparison with results obtained using k2-raster [40], gzip, bzip2, and xz [62] for a subset of the
Corpus dataset.

Imager Scene
Proposed
(1D
XOR, Rice)

Proposed
(2D
XOR, Rice)

Proposed
(1D XOR,
Mapped Rice)

Proposed
(2D XOR,
Mapped Rice)

k2-Raster
(DACs)

gzip bzip2 xz

AIRS gran9 9.37 9.23 9.03 8.92 9.49 10.16 7.42 7.90
gran16 9.16 9.13 8.82 8.83 9.12 9.82 7.15 7.66
gran60 9.89 9.63 9.56 9.33 9.72 10.53 7.71 8.23
gran126 9.65 9.47 9.33 9.16 9.61 10.33 7.64 8.10
gran129 8.25 8.57 7.94 8.26 8.65 9.50 6.68 7.22
gran151 9.23 9.24 8.91 8.93 9.53 10.31 7.43 7.97
gran182 9.72 9.60 9.39 9.29 9.68 10.64 7.79 8.33

AVIRIS Yellowstone (sc00, U) 12.94 12.41 12.51 12.07 11.92 12.39 9.99 10.61
Yellowstone (sc03, U) 12.46 11.95 12.11 11.63 11.74 11.98 9.54 10.23

AVIRIS Yellowstone (sc00, C) 9.83 9.18 9.47 8.90 9.61 10.12 7.51 8.04
Yellowstone (sc03, C) 9.53 8.89 9.15 8.57 9.42 9.59 7.10 7.62
Yellowstone (sc10) 7.55 7.62 7.15 7.18 7.62 7.41 5.30 5.73
Yellowstone (sc11) 8.72 8.38 8.45 8.11 8.81 9.04 6.65 7.07
Yellowstone (sc18) 9.80 8.91 9.48 8.65 9.78 10.00 7.45 7.95

CRISM sc182 7.83 8.81 7.57 8.53 10.11 10.90 8.53 7.90

Hyperion ErtaAle 6.82 7.67 6.57 7.40 7.76 8.69 6.41 6.73
LakeMonona 6.84 7.73 6.56 7.43 7.82 8.69 6.46 6.74
MtStHelens 7.18 7.95 6.93 7.69 7.91 8.26 6.28 6.48

5.3. Results of Near-Lossless Compression

For high entropy images that are hard to compress, we suggest employing our pro-
posed quadrature-based square rooting method to realize acceptable compression ratios
while maintaining highly accurate data for the decompressed stream. The compression
performance based on this method is stabilized at a reduction of nearly 40% for real-world
hyperspectral data. The near-lossless feature discussed in this work has a small to negligi-
ble impact on the accuracy of the decompressed data, as the nature of the produced error
values reflects those generated by the square rooting method. This has a direct impact on
preserving the shape of the original spectral signature of the image and is clearly seen in
Figure 11 for the Yellowstone (sc18, C) image.
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Figure 11. Original spectral data of the spatial location (100,100) of Yellowstone (sc18, C) image ver-
sus its reconstructed spectrum: (a) The spectral data showing selected bands from 100 to 224; (b) An 
enlarged plot showing the difference in magnitude between the original and the reconstructed value 
of band 147 at the same spatial location as indicated by the selection in (a) using a square shape. 

The near-lossless compressor eventually produces the concatenation of the index 
value with the generated seed 𝑠଴. To further reduce the output stream, we replace the 
binary code of the index value with the corresponding unary code. As illustrated in Figure 
12, the distributions of the indices are significantly skewed to the right for all AVIRIS test 

Figure 11. Original spectral data of the spatial location (100,100) of Yellowstone (sc18, C) image
versus its reconstructed spectrum: (a) The spectral data showing selected bands from 100 to 224;
(b) An enlarged plot showing the difference in magnitude between the original and the reconstructed
value of band 147 at the same spatial location as indicated by the selection in (a) using a square shape.

The near-lossless compressor eventually produces the concatenation of the index value
with the generated seed s0. To further reduce the output stream, we replace the binary
code of the index value with the corresponding unary code. As illustrated in Figure 12, the
distributions of the indices are significantly skewed to the right for all AVIRIS test images.
Statistically, the occurrence of the first few indices out of a total of 24 is more often than
the occurrence of the remaining indices. Therefore, instead of concatenating five bits to
represent the index, we can use the unary code instead and improve the average bit rate of
the compressed stream.
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Moreover, since the values of s0 are unevenly distributed across the indices (see
Table A1), we encode the 8-bit values of s0 with its order within the index. This translates
to a reduction in the number of bits required to represent s0, given by n where 0 ≤ n ≤ 8.
For instance, n is equal to zero for indices greater than or equal to 14 indicating a single
occurrence of s0. By applying the previous procedure, we disclose in Table 12 the data
reduction percentage as well as the Maximum Relative Error (MRE) and the Maximum
Absolute Error (MAE) for the selected dataset. All hyperspectral images that show a
reduction percentage of less than 40%, when using lossless compression, are selected for
processing by the near-lossless compressor. We calculated the maximum absolute error for
the reconstructed values x̂ using the following equation:

MAE = max(|x̂− x|). (12)

Therefore, the maximum relative error is formulated as:

MRE = max(|x̂− x|/x). (13)

In both Figures 13 and 14 below, we reveal the original and the reconstructed images of
both the CASI uncalibrated image t0477f06 (band 70) and the AIRS uncalibrated granule
16 image (band 208) obtained after applying our near-lossless compressor, respectively. We
can state that the visual assessment of each decompressed image with respect to its original
one is highly similar.

Table 12. Compression performance of the quadrature-based near-lossless HSI compressor, character-
ized by the data reduction percentage, MRE, and MAE values.

Imager Scene Data Reduction (%) MRE MAE

AIRS

gran9 39.4242 0.0667 30
gran16 39.7075 0.0038 30
gran60 39.5578 0.3333 30
gran82 39.6562 0.0038 30
gran120 39.5115 0.0667 30
gran126 39.5593 0.0667 30
gran129 39.6236 0.0038 30
gran151 39.5363 0.3333 30
gran182 39.5240 0.0667 30

AVIRIS Yellowstone (sc00, U) 39.7314 0.0667 30
Yellowstone (sc03, U) 39.7106 0.0667 30

CRISM sc182 39.4889 0.3333 30

CASI t0477f06 39.6337 0.3333 30
t0180f07 38.9011 0.3333 30
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Comparison with Other Near-Lossless Methods

When comparing to other works, vector quantization techniques were used previ-
ously in [30] to achieve near-lossless compression. This work shows high compression
ratios of 20:1. The details of the generated error for the full dataset used in the study
are not reported. However, the maximum absolute error reaches 127 when evaluating
selected images in the AVIRIS dataset. Compared to the quadrature-based method, our
results produce four times higher the accuracy. Furthermore, a recent study by Zheng et al.
shows a significant reduction of at least 53% where the authors evaluated the compression
performance by using three hyperspectral images of which only one is included in our
dataset [25]. Nonetheless, the study relies on a recursive least-squares (RLS) filter with a
loop quantizer, where the weight matrix is updated iteratively. RLS has a fast convergence
rate, yet its computational complexity is in the order of O

(
N2), which implies major limita-

tions to its applications [88,89]. This is particularly true for power-critical systems, such as
onboard computers required to process large volumes of hyperspectral data. Accordingly,
our proposed quadrature-based method may be more feasible for onboard compression as
it is highly parallelizable and needs only a single-pass for data processing while exhibiting
minimum memory requirements.

6. Conclusions

Two new methods for lossless and near-lossless compression of remotely sensed
hyperspectral images are reported in this article. We achieved lossless compression by
employing our recent method of seed generation based on bit-manipulation techniques.
Due to its acceptable complexity, the method could prove to be very efficient for lossless
compression of hyperspectral images, where power and computational resources could
be confined onboard satellites. Four variations of this technique are considered yielding a
compression ratio of up to 2.6 while outperforming a state-of-the-art method, known as
k2-raster, by as much as 29.89% in terms of data reduction obtained by using HSIs from the
Corpus dataset.

For those instances when hyperspectral images are hard to losslessly compress due to
their reduced correlation, we suggest employing our near-lossless compression technique,
which relies on our previously described quadrature-based square rooting method. Its
obtained compression performance is stabilized at nearly 40% (from 38.9011% to 39.7314%)
reduction of the original data within a maximum relative error of 0.33 and a maximum
absolute error of only 30.

For hyperspectral data compression onboard satellites, we recommend the utilization
of an adaptive lossless and near-lossless compression scheme, whereby a selection criterion
is adopted based on a threshold value set by the user to indicate the acceptable level
of compression performance. As part of our future work, we intend to implement both
compression techniques on hardware accelerators, such as FPGA boards, commonly used
for image processing.
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Appendix A

This appendix contains two tables: one providing the mapping of s0 values to the
24 indices of cos θ, followed by a second one giving the MATLAB code to generate such results.

Table A1. Nonuniform mapping of s0 values to the 24 indices of cos θ in the lookup table.

Index s0

0 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 51, 52, 53, 54, 55, 56,
57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
79, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122,
123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138,
139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154,
155, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232,
233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248,
249, 250, 251, 252, 253, 254, 255

1 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 50, 51, 52, 53, 54, 55, 56,
57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 75, 76, 77, 78, 79, 80, 81, 82, 83,
84, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 149, 150, 151, 152, 153, 154,
155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 209, 210, 211, 212, 213, 214,
215, 216, 217, 218, 219, 220, 221, 222, 223, 224

2 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 52, 53, 80, 81, 82,
83, 84, 85, 86, 87, 88, 100, 101, 102, 103, 104, 105, 106, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 203, 204, 205, 206, 207, 208, 209, 210,
211, 212, 213

3 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 22, 23, 24, 25, 29, 30, 31, 43, 44, 45,
46, 47, 48, 49, 50, 51, 85, 86, 87, 88, 89, 90, 91, 97, 98, 99, 100, 101, 102, 103,
169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 197, 198, 199, 200,
201, 202, 203, 204, 205, 206

4 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 23, 24, 25, 45, 46, 47, 48, 49, 50, 89, 90,
91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 178, 179, 180, 181, 182, 183, 184, 185, 186,
187, 188, 193, 194, 195, 196, 197, 198, 199, 200

5 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 24, 47, 48, 93, 94, 95, 96, 97, 186, 187,
188, 189, 190, 191, 192, 193, 194, 195

6 6, 7, 8, 9, 13, 14, 15

7 5, 6, 7, 8, 9

8 4, 6, 7, 8

9 3, 5, 6, 7, 8

10 5, 7, 8

11 2, 4, 6, 7

https://cwe.ccsds.org/sls/docs/SLS-DC/123.0-B-Info/TestData/
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Table A1. Cont.

Index s0

12 6, 7

13 4, 6

14 3

15 4

17 4

18 3

20 2

21 3

25 3

27 2

33 1

50 1

Table A2. MATLAB code for generating the values displayed in Table A1.

function S0 = LUT
X = 0 : 2ˆ16− 1;
% SEED GENERATION OF s0 BASED ON BIT MANIPULATION
nBits = max(1, floor(log2(X)) + 1);
nShifts = floor(0.5 ∗ nBits);
MSH = bitshift(X,−nShifts);
s0 = floor(0.5 ∗ (MSH + 2.ˆnShifts));
% QUADRATURE− BASED SQUARE ROOTING
BC = s0;
CD = X./BC; CD(isnan(CD)) = 0; % HANDLING DIVISION BY ZERO
M = 0.5. ∗ (BC + CD);
CM = abs(BC−M);
idx = floor((CM./M). ∗ 10ˆ2) + 1; % INDEXING STARTS AT (1)
idx(isnan(idx)) = 1;
for i = 1 : 51 % STEP SIZE OF 0.01
I = find(idx == i);
S0{i} = unique(s0(I));
end
end
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