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Abstract: The paper addresses the problem of distinguishing the leading agents in the group. The
problem is considered in the framework of classification problems, where the agents in the group
select the items with respect to certain properties. The suggested method of distinguishing the
leading agents utilizes the connectivity between the agents and the Rokhlin distance between the
subgroups of the agents. The method is illustrated by numerical examples. The method can be useful
in considering the division of labor in swarm dynamics and in the analysis of the data fusion in the
tasks based on the wisdom of the crowd techniques.
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1. Introduction

The behavior of the group of autonomous agents includes a variety of physical and
cognitive actions, like collective motion and cooperative decision-making. Each of these
actions depends on the individual abilities of the agents, on the division of the agents
among the teams, and on the division of labor between the agents and the teams.

To simplify control of the teams’ and the group’s activities, some of the agents are
often determined as leaders, whose task is to influence the other agents and promote them
to fulfill the mission. Such procedures are widely known as elections in distributed systems,
which are considered both in social and political processes and in different contexts of
computer science and robots’ control [1–3].

Given a group of communicating agents, elections are conducted as follows: The
agents consider the candidate agents, and after deliberations, they identify and label
a certain agent as the leader. Then, the elected leader influences the other agents and
coordinates their activities [1]. Certainly, each team in the group can elect its leader, and
then these leaders elect the leader of the group, which results in hierarchical control in
the system.

The process that is close to the election of the leader is the selection of the leader [4–7].
In this process, the leader is selected according to the known characteristics of the agents
and their correspondence with the characteristics required for fulfilling the mission of the
group. Usually, after the section of the leader, the other agents are considered followers.
Note that, in contrast to the election of the leader, the leader selection is not necessarily
conducted by the agents but can be processed by the central coordinator or controller of
the group.

Now, assume that the group leader or the team leader already exists. Then rises an
inverse problem—to distinguish the leaders in the distributed system. Namely, given a
group of communicating agents, it is required to identify the leaders, which are the agents
who mostly influence the other agents in the group.

In the paper, the problem of distinguishing the leading agents is considered in the
context of the classification problem [8,9]. In such a classification, it is assumed that the
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agents have different levels of expertise, and the cooperative classification is obtained by a
certain version of plurality voting.

The most popular method of avoiding the influence of non-competent agents uses
the weighted opinions of the agents. This method was implemented in the well-known
Dawid–Skene algorithm [10,11], which iterates the expectation of the correct choice with
respect to the agents’ expertise and maximizes the likelihood of the agents’ expertise with
respect to the expected correct choice.

Another approach to selecting the competent agents was implemented in the algo-
rithms [12,13], which are based on the similarities of the agents’ classifications, and in the
algorithm [14], where the competent agents are selected using the expectation bias [15].

After selecting the subgroup of competent agents, the resulting classification is ob-
tained using the opinions of these agents and ignoring the opinions of non-competent
agents.

However, studies in social psychology [16], which can be traced back to the well-
known experiments by Asch [17,18], demonstrate that the opinion of the group member
is highly influenced by the opinions of the other members of the group. Consequently,
competent agents are not necessarily the most influential or leading agents. Together with
that, it is reasonable to assume that the leader must be competent in certain fields and be
elected on the basis of this competence (see the 11th rule by Peterson [19]).

In the paper, we suggest a method of distinguishing the leaders in the group. The
method considers the connectivity between the agents and creates the subgroups by maxi-
mizing the distances between the partitions formed by these subgroups.

Note that the elections in the group are internal processes in which the leaders are
identified following certain criteria known to the agents, while distinguishing the leaders
is an external operation in which the agents are characterized by their relations with the
other agents. Thus, the distinguished leaders can differ from the elected leaders: elections
specify who will govern, and distinguishing specifies who must govern.

The rest of the paper is organized as follows: Section 2 includes a formulation of the
problem, and Section 3 considers an example that clarifies the problems of classification,
distinguishing the competent agents, and distinguishing the leading agents. Section 4
presents a suggested solution based on the connectivity between the agents and the Rokhlin
distance between the agents’ subgroups. Section 5 presents the methods of distinguishing
the experts, and Section 6 considers two examples that illustrate the relationship between
the group of experts and the group of leaders. Section 7 concludes the discourse.

2. Problem Formulation

The main problem considered in the paper is the problem of distinguishing the leaders
in the group of agents. As indicated above, this problem differs from the problem of electing
the leader and requires consideration of communication between the agents.

We consider the problem in the context of the classification of given items by a group
of agents, where some of the agents are experts in the field of classification and others are
deletants.

Consideration of these two problems gives rise to the third problem, which is the
problem of relations between the group of leaders and the group of experts.

2.1. Distinguishing the Leaders

Let A = {a1, a2, . . . , al} be a group of communicating agents conducting a certain
common mission. Communication between the agents is defined by the directed graph
G = (V, E) in which the vertices v ∈ V are associated with the agents and the edges e ∈ E
are defined by the adjacency matrix R =

(
rij
)

l×l such that rij = 1 if agent ai communicates
with agent aj and rij = 0 otherwise.

The problem of distinguishing the leaders in group A is formulated as follows: Given
the adjacency matrix R, it is required to recognize a subgroup A∗ ⊂ A of the agents such
that the agents a∗ ∈ A∗ have maximal influence in the group A.
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Consideration of the agent’s influence in the group is based on the following intuition
inspired by the flows on graphs (see, e.g., [20]). Assume that each vertex v ∈ V in the graph
G is a source of unique colored flow and that the color of the vertex is a mix of its own color
and the colors of the incoming flows. Then, the influence of the agent is associated with the
impact of its vertex on the colors of the other vertices in the graph G.

The vertices v∗ ∈ V∗ ⊂ V associated with the leading agents a∗ ∈ A∗ are called the
leading vertices. The leading agent such that its vertex in the graph G has no predecessors
is called a dictator, and the leading agent whose vertex is a separating vertex (see, e.g., [21])
is called a monarch.

2.2. Distinguishing the Experts

Let X = {x1, . . . , xn} be a set of n items, which represent certain objects, concepts, or
symbols. Classification problem requires to label the items xi ∈ X, i = 1, 2, . . . , n, by m
labels, 1 < m < n, such that each item is labeled by a single label.

Formally, the problem is to distribute the items xi ∈ X, i = 1, 2, . . . , n, over m sets
C1, C2, . . . , Cm, 1 < m < n, called classes, such that each item xi is included only in one
class Cj and that there is no item which is not included in some classes. Then, the resulting
classification is the partition γ = {C1, C2, . . . , Cm} of the set X, where Cj ⊂ X, j = 1, . . . , m,
Cj′ ∩ Cj′′ = ∅ for j′ ̸= j′′ , and

⋃m
j=1 Cj = X.

If classification is conducted by a single agent, then the resulting classification γ
depends on the competence of this agent. The quality of classification is defined by the
difference between the classification γ and the correct classification γ̌. Certainly, the correct
classification γ̌ is not available to the agent and is used for testing the classification methods.

Now assume that the classification is conducted by the indicated above group A =
{a1, a2, . . . , al} of agents where each agent ak ∈ A, k = 1, 2, . . . , l, provides classification
represented by the partition γk =

{
Ck,1, Ck,2, . . . , Ck,m

}
. By the general assumption of “the

wisdom of the crowd” techniques [8,9], some combination of the agents’ classification will
provide classification γ, which is as close as possible to the correct classification γ̌.

Then, the problem is to aggregate the agents’ partitions γk into a single partition γ
such that it, as best as possible, represents the correct partition γ̌.

The simplest method of creating the partition γ is plurality voting. By this method,
the item x is included in the class C, which was chosen by most agents a ∈ A (the ties are
broken randomly). Despite its popularity, this method strongly depends on the competence
of the agents, such that non-competent agents can influence the resulting classification.

To avoid such influence, in more sophisticated methods [10–14], the problem is di-
vided into two stages. First, using the agents’ classifications γk, k = 1, 2, . . . , l, the agents
competent in certain classes are distinguished, and second, the resulting classification γ is
obtained by aggregation of the classes provided by the competent agents.

2.3. Relationship between the Leaders and the Experts

Finally, assume that the group A = {a1, a2, . . . , al} of l communicating agents classifies
the set = {x1, . . . , xn} of n items to m classes C1, C2, . . . , Cm, 1 < m < n.

In addition, assume that the group A of the agents includes a non-empty subgroup
A∗ ⊂ A of leaders and non-empty subgroup A′ ⊂ A of experts.

Then, the problem is to check whether there exists a relationship between the set of
leaders A∗ and the set A′ of experts, and if it exists, what this relationship is.

We assume that in real-world situations, such a relationship is possible, and the leaders
are assumed to be experts in at least one class. The problem is to confirm or withdraw this
hypothesis.

3. Illustrative Example

Assume that the group A includes l = 9 communicating agents and that communica-
tion between the agents is defined by the directed graph G = (V, E), where the vertices
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v ∈ V are associated with the agents and the edges e ∈ E specify the communication
between the corresponding agents. The graph G is shown in Figure 1.
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Figure 1. Example of the graph defining communication between the agents.

The sets of input and output vertices in this graph are presented in Table 1.

Table 1. The sets of input and output vertices in the graph G.

Vertex v1 v2 v3 v4 v5 v6 v7 v8 v9

Input set ∅ {v1} ∅ {v1, v2} {v4, v4, v8} {v5, v8} {v4} {v7, v9} ∅

Output set {v1, v4} {v4} {v5} {v5, v7} {v6} ∅ {v8} {v5, v6} {v8}

As indicated above, in consideration of the agents’ impacts, each vertex of the graph G
is considered a source of the unique colored flow. The color absorbed by the vertex is a mix
of its own color and the colors of the incoming flows. The impact of the agent is considered
to be the impact of its vertex on the color of the other vertices. Then, intuitively, the vertex
with a maximal number of predecessors and successors is associated with the agents with
maximal influence.

Following the cardinality of the sets of input and output vertices, it can be sup-
posed that the set of vertices associated with the candidates to the leading agents is
Vc = {v1, v4, v5, v8} such that a1 is a dictator and a4 is a monarch. In addition, because
of the maximal number of predecessors, intuitively, vertex v6 can also be considered a
candidate for the leading vertex.

Assume that the agents a from the group A distribute n = 12 items x from the set X
over m = 4 classes C. The results of the classification are shown in Table 2.

Table 2. Example of n = 12 items distributed by l = 9 agents over m = 4 classes. Partitions γk,
k = 1, 2, . . . , 9 represent the agents’ classifications; partition γ̌ represents correct classification; and
partition γPl represents the result of plurality voting.

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ̌ γPl

x1 2 2 2 4 3 1 1 3 4 2 2

x2 1 3 1 4 3 1 1 2 3 1 1

x3 3 2 2 1 1 1 2 1 3 2 1

x4 4 4 4 3 1 3 4 3 1 3 4

x5 4 4 4 3 2 3 4 3 2 3 4

x6 1 3 1 1 2 2 2 3 1 1 1

x7 4 3 3 1 4 4 4 4 3 4 4
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Table 2. Cont.

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ̌ γPl

x8 1 3 1 2 2 2 1 2 3 1 2

x9 3 3 4 2 4 4 2 4 4 4 4

x10 3 2 2 1 1 1 2 1 1 2 1

x11 4 3 4 3 2 3 4 3 3 3 3

x12 3 3 3 1 4 4 1 3 4 4 3

In the table, the first agent a1 included the item x1 into the class C2, the item x2 into
the class C1, the item x3 into the class C3 and so on, such that the partition γ1 created by
the first agent is

γ1 = {{x2, x6, x8}, {x1}, {x3, x9, x10, x12}, {x4, x5, x7, x11}}.

The second agent a2 included the item x1 into the class C2, the item x2 into the class
C3, the item x3 into the class C2 and so on, such that the second agent is

γ2 = {∅, {x1, x3, x10}, {x2, x6, x7, x8, x9, x11, x12}, {x4, x5}},

and so on. Correct classification is represented by the following partition:

γ̌ = {{x2, x6, x8}, {x1}, {x3, x9, x10, x12}, {x4, x5, x7, x11}},

and the partition obtained by the plurality voting is

γPl = {{x2, x3, x6, x10}, {x1, x8}, {x11, x12}, {x4, x7, x9}},

It is seen that the classifications γk provided by the agents ak, k = 1, 2, . . . , l, are rather
far from the correct classification γ̌ as well as the aggregated classification γPl obtained by
plurality voting.

However, some agents created certain classes that are equivalent to the classes in the
correct classification, namely,

• agent a1—class C1 = {x2, x6, x8},
• agent a2—class C2 = {x1, x3, x10},
• agent a3—classes C1 = {x2, x6, x8} and C2 = {x1, x3, x10},
• agent a4—class C3 = {x4, x5, x11},
• agent a5—class C4 = {x7, x9, x12},
• agent a6—classes C3 = {x4, x5, x12} and C4 = {x7, x9, x12}.

The other agents a7, a8 and a9 provided completely erroneous classifications, where
despite the correct classification of some items, all obtained classes differ from the classes
appearing in the correct classification. Then, aggregating the appropriate classes from the
classifications created by the agents a1, . . . , a6 and avoiding classifications created by the
agents a7, . . . , a9, provides correct classification γ = γ̌.

In the considered case of random classifications and relations between the agents,
a possible set of leaders is A∗ = {a1, a4, a5, a8} and possible set of experts is A′ =
{a1, a2, a3, a4, a5, a6}, which means that there is no clear relationship between these sets.
However, since in real-world situations, the leader must be competent in at least one field
of knowledge, the absence of such a relationship is not obvious, and its consideration is
reasonable.

4. Distinguishing the Group of Leaders Using the Entropy-Based Metric

Let A = {a1, a2, . . . , al} be a group of agents and G = (V, E) be the directed graph
representing communication between the agents such that the vertices v ∈ V are associated
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with the agents and the edges e =
(
vi, vj

)
∈ E define communication between the agents

ai, aj ∈ A, i, j = 1, 2, . . . , l.

Denote by
↼
u (v, ξ) ∈ V a predecessor of the vertex v ∈ V such that the shortest path

from
↼
u (v, ξ) to v in the graph G is of the length ξ, and by

⇀
u (v, ξ) ∈ V a successor of the

vertex v ∈ V such that the shortest path from v to
⇀
u (v, ξ) in the graph G is of the length

ξ. In particular,
↼
u (v, 1) =

↼
u (v) is a direct predecessor of v and

⇀
u (v, 1) =

⇀
u (v) is a direct

successor of v. For completeness, we also say that
↼
u (v, 0) =

⇀
u (v, 0) = v.

It is clear that each v ∈ V and all its predecessors are the predecessors of each successor
of v, and each v ∈ V and all its successors are the successors of each predecessor of v.

For a vertex v ∈ V, denote by
↼
U(v, ξ), the set of its predecessors

↼
u (v, ξ) and by

⇀
U(v, ξ) the set of all its successors

⇀
u (v, ξ). The set of direct predecessors is denoted by

↼
U(v, 1) =

↼
U(v) and the set of direct successors is denoted by

⇀
U(v, 1) =

⇀
U(v).

Given a graph G, let
↼
U(v) be the set of direct predecessors of the vertex v,

↼
U
(
↼
u (v)

)
be the sets of direct predecessors of the vertices

↼
u (v) ∈

↼
U(v),

↼
U
(
↼
u
(
↼
u (v)

))
be the sets

of direct predecessors of the vertices
↼
u
(
↼
u (v)

)
∈

↼
U
(
↼
u (v)

)
and so on, up to, but not

including, the set that already appears among the sets of direct predecessors obtained at
the previous steps.

Similarly, let
⇀
U(v) be the set of direct successors of the vertex v,

⇀
U
(
⇀
u (v)

)
be the

sets of direct successors of the vertices
⇀
u (v) ∈

⇀
U(v),

⇀
U
(
⇀
u
(
⇀
u (v)

))
be the sets of direct

successors of the vertices
⇀
u
(
⇀
u (v)

)
∈

⇀
U
(
⇀
u (v)

)
and so on, up to, but not including, the set

that already appears among the sets of direct successors obtained at the previous steps.

Finally, for the vertex v, let us form the predecessors’ tree
↼
T(v) and the successors’ tree

⇀
T(v). In the tree

↼
T(v), the root is associated with the set

↼
U(v) and the leaves at their levels

are associated with the sets
↼
U
(
↼
u (v)

)
,
↼
U
(
↼
u
(
↼
u (v)

))
and so on, respectively. Similarly, in

the
⇀
T(v), the root is associated with the set

⇀
U(v) and the leaves at their levels are associated

with the sets
⇀
U
(
⇀
u (v)

)
,
⇀
U
(
⇀
u
(
⇀
u (v)

))
and so on.

For illustration, the predecessors’ tree
↼
T(v8) and the successors’ tree

⇀
T(v8) of the

vertex v8 in the graph G are shown in Figure 2.

Entropy 2024, 26, 318 6 of 14 
 

 

Denote by �⃐� 𝑣, 𝜉 ∈ 𝑉 a predecessor of the vertex 𝑣 ∈ 𝑉 such that the shortest path 
from �⃐� 𝑣, 𝜉  to 𝑣 in the graph 𝐺 is of the length 𝜉, and by �⃑� 𝑣, 𝜉 ∈ 𝑉 a successor of the 
vertex 𝑣 ∈ 𝑉 such that the shortest path from 𝑣 to �⃑� 𝑣, 𝜉  in the graph 𝐺 is of the length 𝜉. In particular, �⃐� 𝑣, 1 = �⃐� 𝑣  is a direct predecessor of 𝑣 and �⃑� 𝑣, 1 = �⃑� 𝑣  is a direct 
successor of 𝑣. For completeness, we also say that �⃐� 𝑣, 0 = �⃑� 𝑣, 0 = 𝑣. 

It is clear that each 𝑣 ∈ 𝑉 and all its predecessors are the predecessors of each suc-
cessor of 𝑣, and each 𝑣 ∈ 𝑉 and all its successors are the successors of each predecessor 
of 𝑣. 

For a vertex 𝑣 ∈ 𝑉 , denote by �⃐� 𝑣, 𝜉  , the set of its predecessors �⃐� 𝑣, 𝜉   and by �⃑� 𝑣, 𝜉  the set of all its successors �⃑� 𝑣, 𝜉 . The set of direct predecessors is denoted by �⃐� 𝑣, 1 = �⃐� 𝑣  and the set of direct successors is denoted by �⃑� 𝑣, 1 = �⃑� 𝑣 . 
Given a graph 𝐺, let �⃐� 𝑣  be the set of direct predecessors of the vertex 𝑣, �⃐� �⃐� 𝑣  

be the sets of direct predecessors of the vertices �⃐� 𝑣 ∈ �⃐� 𝑣 , �⃐� �⃐� �⃐� 𝑣  be the sets of 
direct predecessors of the vertices �⃐� �⃐� 𝑣 ∈ �⃐� �⃐� 𝑣  and so on, up to, but not including, 
the set that already appears among the sets of direct predecessors obtained at the previous 
steps. 

Similarly, let �⃑� 𝑣  be the set of direct successors of the vertex 𝑣, �⃑� �⃑� 𝑣  be the sets 
of direct successors of the vertices �⃑� 𝑣 ∈ �⃑� 𝑣 , �⃑� �⃑� �⃑� 𝑣  be the sets of direct succes-
sors of the vertices �⃑� �⃑� 𝑣 ∈ �⃑� �⃑� 𝑣  and so on, up to, but not including, the set that 
already appears among the sets of direct successors obtained at the previous steps. 

Finally, for the vertex 𝑣, let us form the predecessors’ tree �⃐� 𝑣  and the successors’ 
tree �⃑� 𝑣 . In the tree �⃐� 𝑣 , the root is associated with the set �⃐� 𝑣  and the leaves at their 
levels are associated with the sets �⃐� �⃐� 𝑣 , �⃐� �⃐� �⃐� 𝑣  and so on, respectively. Simi-
larly, in the �⃑� 𝑣 , the root is associated with the set �⃑� 𝑣  and the leaves at their levels are 
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Figure 2. Example of the predecessors’ and successors’ trees: (a) the predecessors’ tree �⃐� 𝑣  and 
(b) the successors’ tree 𝑇 𝑣  of the vertex 𝑣  in the graph shown in Figure 1. 

The sets associated with the leaves of the trees �⃐� 𝑣  and �⃑� 𝑣  form, respectively, 
the predecessor cover �⃐� 𝑣  and the successor cover 𝜏 𝑣  of certain subsets of the set 𝑉 
of vertices. 

For example, the predecessor and successor covers of the vertex 𝑣   are �⃐� 𝑣 =𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣  and 𝜏 𝑣 = 𝑣 , 𝑣 , 𝑣 . 

Figure 2. Example of the predecessors’ and successors’ trees: (a) the predecessors’ tree
↼
T (v8) and

(b) the successors’ tree
⇀
T (v8) of the vertex v8 in the graph shown in Figure 1.
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The sets associated with the leaves of the trees
↼
T(v) and

⇀
T(v) form, respectively, the

predecessor cover
↼
τ (v) and the successor cover

⇀
τ (v) of certain subsets of the set V of

vertices.
For example, the predecessor and successor covers of the vertex v8 are

↼
τ (v8) =

{{v1, v2}, {v4}, {v7, v9}} and
⇀
τ (v8) = {{v5, v6}, {v6}}.

The predecessor cover
↼
τ (V′) of the subset V′ ⊂ V of vertices is a set

↼
τ
(
V′) = ⋃

v∈V′
↼
τ (v)

of the predecessor covers
↼
τ (v) of the vertices v ∈ V′, and the successor cover

⇀
τ (V ′′ ) of the

subset V ′′ ⊂ V of vertices is a set

⇀
τ (V ′′ ) =

⋃
v∈V′′

⇀
τ (v)

of the successor covers
↼
τ (v) of the vertices v ∈ V ′′ .

For example, for the indicated above set Vc = {v1, v4, v5, v8} of vertices, the pre-
decessor and successor covers are

↼
τ (Vc) = {{v1, v2}, {v3, v4, v8}, {v4}, {v7, v9}} and

⇀
τ (Vc) = {{v2, v4}, {v4}, {v5, v6}, {v5, v7}, {v8}}.

Then, we say that the subset V∗ ⊂ V is a set of leading vertices if the distance
d
(
↼
τ (V∗),

⇀
τ (V∗)

)
between its predecessor cover

↼
τ (V∗) and successor cover

⇀
τ (V∗) is

maximal over all possible subsets of the set V.
The agents a∗ associated with the leading vertices v∗ ∈ V∗ are called the leaders and

the group A∗ ⊂ A of leading agents is called the leading group.
Distance d

(
↼
τ (V′),

⇀
τ (V ′′ )

)
between the covers

↼
τ (V′) and

⇀
τ (V ′′ ) can be calculated

using different methods. Here, we suggest the distance measure, which is based on the
Rokhlin metric [22]. Since in the considered task, the main stress is on the communication
between the agents and on the classification of the data items, the use of such an entropy-
based metric is reasonable. Together with that, since the suggested method deals with
formal sets of vertices in the graph, the other measures, e.g., the Ornstein distance [23,24],
can be applied. For a comparison between the Rokhlin distance and the Ornstein distance,
see [25]. Note that both Rokhlin and Ornstein metrics require the defined probability
measure on the sets; if such a probability does not exist, then the normalized Hamming
distance [12] can be used.

The Rokhlin metric is defined as follows. Let (Ω,Q, p) be a probability space with a
probability measure p on Ω, and let α = {Q|Q ∈ Q}, Qi ∩ Qj = ∅, i ̸= j,

⋃
Q∈α Q = Ω, be

a partition of Ω. The entropy of the partition α is the value

H(α) = −∑Q∈α
p(Q)log p(Q),

where log is base 2, and it is assumed that p(∅)log p(∅) = 0log 0 = 0. In addition, let
β = {R|R ∈ Q}, Ri ∩ Rj = ∅, i ̸= j,

⋃
R∈β R = Ω, be another partition of Ω. Then the

conditional entropy of partition α given partition β is the value

H(α|β) = −∑R∈β ∑Q∈α
p(Q, R)log p(Q|R),

where p(Q, R) = p(Q ∩ R) and p(Q|R) = p(Q∩R)
p(R) .

The Rokhlin metric [22], which defines the distance between partitions α and β is a
sum

dR(α, β) = H(α|β) + H(β|α),

For basic properties of this metric and its role in dynamical systems theory, see [26,27]; for
additional properties and comparison with the Ornstein metric, see [25].
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To apply this metric for measuring the distance between the covers
↼
τ (V′) and

⇀
τ (V ′′ ),

note again that each of these sets does not necessarily cover the set of vertices V, but the
subsets

⋃
Q∈↼

τ (V′)
Q ⊂ V and

⋃
R∈↼

τ (V′′ )
R ⊂ V of this set. Then, let us add to each of these

sets the set which completes it to the cover of V.
Namely, the set

↼
τ (V′) is completed with the set Q′ = V\⋃

Q∈↼
τ (V′)

Q and the set
⇀
τ (V ′′ ) is completed with the set R′ = V\⋃

R∈⇀
τ (V′′ )

R. As a result, the sets

↼
τ
′(

V′) = ↼
τ
(
V′) ∪ {

Q′} and
⇀
τ
′
(V ′′ ) =

⇀
τ (V ′′ ) ∪

{
R′}

cover the set V of vertices.
Then, it is required to define the probability measure p : V → [0, 1] on the set of

vertices. Since there is no additional information about the agents, we assume that

p(v) =
1

#V

for each vertex v ∈ V, and

p(Q) = ∑v∈Q p(v) =
#Q
#V

for each subset Q ⊂ V of vertices.
For the conditional entropy, we have

H
(
↼
τ
′
(V′)

∣∣∣⇀τ ′
(V ′′ )

)
= −∑

R∈⇀
τ
′
(V′′ )

∑
Q∈↼

τ
′
(V′)

p(Q, R)log p(Q|R)

= −∑R∈⇀
τ (V′′ ) ∑

Q∈↼
τ
′
(V′)

p(Q, R)log p(Q|R)− ∑
Q∈↼

τ
′
(V′)

p(Q, R′)log p(Q|R′)

= −∑R∈⇀
τ (V′′ )

(
∑Q∈↼

τ (V′)
p(Q, R)log p(Q|R) + p(Q′, R)log p(Q′|R)

)
−∑Q∈↼

τ (V′)
p(Q, R′)log p(Q|R′)− p(Q′, R′)log p(Q′|R′)

= −∑R∈⇀
τ (V′′ ) ∑Q∈↼

τ (V′)
p(Q, R)log p(Q|R)

−∑R∈⇀
τ (V′′ )

p(Q′, R)log p(Q′|R)− ∑Q∈↼
τ (V′)

p(Q, R′)log p(Q|R′)

−p(Q′, R′)log p(Q′|R′).

In this formula, the first term is equivalent to the conditional entropy of the sets
↼
τ (V′) and

⇀
τ (V ′′ ), the second term represents the influence of the sets Q′ and R′ to the elements of the
sets

↼
τ (V′) and

⇀
τ (V ′′ ), and the last term defines the conditional entropy of Q′ with respect

to R′.
This definition is a direct extension of the definition of conditional entropy of the

partitions. In fact, if the sets
↼
τ (V′) and

⇀
τ (V ′′ ) are covers of V, then Q′ = ∅ and R′ = ∅.

Then,

H
(
↼
τ
′(

V′)∣∣∣⇀τ ′
(V ′′ )

)
= H

(
↼
τ
(
V′)∣∣∣⇀τ (V ′′ )

)
= −∑R∈⇀

τ (V′′ ) ∑Q∈↼
τ (V′)

p(Q, R)log p(Q|R),

and if
↼
τ (V′) and

⇀
τ (V ′′ ) are partitions of V, then it is equivalent to the definition of the

conditional entropy.

Note that since
↼
τ
′
(V′) and

⇀
τ
′
(V ′′ ) are covers of the set V, the conditional entropy

H
(
↼
τ
′
(V′)

∣∣∣⇀τ ′
(V ′′ )

)
does not necessarily meet all the properties of the conditional entropy

defined for the partitions. However, here, we will not consider specific properties of the
conditional entropy of the covers but will use it directly to define the distance between the
predecessor cover

↼
τ (V′) and the successor cover

⇀
τ (V ′′ ).
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The distance d
(
↼
τ (V′),

⇀
τ (V ′′ )

)
between the predecessor cover

↼
τ (V′) and the succes-

sor cover
⇀
τ (V ′′ ) is defined by the Rokhlin distance between the covers

↼
τ
′
(V′) and

⇀
τ
′
(V ′′ )

of the set V of vertices as

d
(
↼
τ
(
V′),

⇀
τ (V ′′ )

)
= H

(
↼
τ
′(

V′)∣∣∣⇀τ ′
(V ′′ )

)
+ H

(
↼
τ
′
(V ′′ )

∣∣∣⇀τ ′(
V′)),

For example, the distance between the predecessor cover
↼
τ (Vc) = {{v1, v2}, {v3, v4, v8},

{v4}, {v7, v9}} and the successor cover
⇀
τ (Vc) = {{v2, v4}, {v4}, {v5, v6}, {v5, v7}, {v8}} is

calculated as follows:
The completed sets for the covers

↼
τ (Vc) and

⇀
τ (Vc) are Q′ = {v1, v2, . . . , v9}\{v1, v2,

v3, v4, v7, v8, v9} = {v5, v6} and R′ = {v1, v2, . . . , v9}\{v2, v4, v5, v6, v7, v8} = {v1, v3, v9}.
Then, the completed covers of the set V of vertices are

↼
τ (Vc) = {{v1, v2}, {v3, v4, v8}, {v4}, {v7, v9}, {v5, v6}}

and
⇀
τ (Vc) = {{v2, v4}, {v4}, {v5, v6}, {v5, v7}, {v8}, {v1, v3, v9}}.

The probability of each vertex v ∈ V is p(v) = 1
9 . Then, conditional entropies

H
(
↼
τ
′
(Vc)

∣∣∣⇀τ ′
(Vc)

)
and H

(
⇀
τ
′
(Vc)

∣∣∣↼τ ′
(Vc)

)
are (the zero terms are omitted).

H
(
↼
τ
′
(Vc)

∣∣∣⇀τ ′
(Vc)

)
= −p({v2})log p({v2})

p({v2,v4})
− p({v4})log p({v4})

p({v2,v4})

−p({v4})log p({v4})
p({v2,v4})

− p({v7})log p({v7})
p({v5,v7})

− p({v5})log p({v5})
p({v5,v7})

−p({v1})log p({v1})
p({v1,v3,v9})

− p({v3})log p({v3})
p({v1,v3,v9})

− p({v9})log p({v9})
p({v1,v3,v9})

= − 1
9 log 1

2 − 1
9 log 1

2 − 1
9 log 1

2 − 1
9 log 1

2 − 1
9 log 1

2 − 1
9 log 1

3 − 1
9 log 1

3 − 1
9 log 1

3

= 1.08,

H
(
⇀
τ
′
(Vc)

∣∣∣↼τ ′
(Vc)

)
= −p({v2})log p({v2})

p({v1,v2})
− p({v1})log p({v1})

p({v1,v2})

−p({v4})log p({v4})
p({v3,v4,v8})

− p({v4})log p({v4})
p({v3,v4,v8})

− p({v8})log p({v8})
p({v3,v4,v8})

−p({v3})log p({v3})
p({v3,v4,v8})

− p({v7})log p({v7})
p({v7,v9})

− p({v9})log p({v9})
p({v7,v9})

−p({v5})log p({v5})
p({v5,v6})

= − 1
9 log 1

2 − 1
9 log 1

2 − 1
9 log 1

3 − 1
9 log 1

3 − 1
9 log 1

3 − 1
9 log 1

3 − 1
9 log 1

2 − 1
9 log 1

2 − 1
9 log 1

2

= 1.26,

The distance between the predecessor and successor covers of the set Vc = {v1, v4, v5, v8}
of vertices is

d
(
↼
τ (Vc),

⇀
τ (Vc)

)
= 1.08 + 1.26 = 2.34.

For comparison, the distance between the indicated above predecessor cover
↼
τ (v8) =

{{v1, v2}, {v4}, {v7, v9}} and the successor cover
⇀
τ (v8) = {{v5, v6}, {v6}} of the vertex

v8 is
d
(
↼
τ (v8),

⇀
τ (v8)

)
= 1.96.

Then, the group Ac = {a1, a4, a5, a8} of the agents associated with the vertices of the
group Vc = {v1, v4, v5, v8} is preferable as a group of leaders than a group Ac = {a8},
which includes only one agent a8 associated with the vertex v8.

Hereby, we defined the group A∗ ⊂ A of leading agents and suggested the criterion
for its recognition among the other agents in the group A. The same procedure can
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be continued over the group A∗ and then recurrently over the obtained groups up to
distinguishing a unique leading agent.

The algorithmic solution to the problem of distinguishing the leading agents is a
complex task which requires an exhaustive search among all possible subsets of the agents
from the group A or, that is, the same, among all possible subsets of vertices from the set V.
Together with that, certain heuristics omitting the vertices with a relatively small number
of predecessors and successors can strongly decrease the number of candidate solutions.

5. Distinguishing the Group of Experts

Assume that the group of agents A = {a1, a2, . . . , al} considers the set X = {x1, . . . , xn}
of n items and each agent ak ∈ A, k = 1, 2, . . . , l, provides partition γk =

{
Ck,1, Ck,2, . . . , Ck,m

}
of the set X to m classes. The resulting classification is an aggregated partition γ =
{C1, C2, . . . , Cm} created from the agents’ partitions γk, k = 1, 2, . . . , l, and to obtain the
correct partition γ, it is required to recognize partitions provided by the competent agents
and avoid partitions provided by non-competent agents.

Distinguishing the experts is based on the assumption that the agents with the same
competence in the same fields provide similar classifications of the items related to their
field of expertise and can provide different classifications of the items that are outside of
the scope of their competence [12]. In other words, we follow the well-known phrase by
Father Dominique Bouhours ([28] (p. 125), punctuation and grammar preserved):

“Great Minds often think alike on the same Occasions, and we are not always to suppose,
that such Thoughts are borrow’d from one another when exprest by Persons of the same
heroick Sentiments.”

Following this assumption, agent ak ∈ A is considered a weak expert in a certain class
Cj if the agent’s partition γk includes Cj and there exist the other agents ak′ , ak′′ , . . . ∈ A,
such that their partitions γk′ , γk′′ ,. . . include Cj. If the partition γk class Cj is at the same
position as in the partitions γk′ , γk′′ ,. . ., then the agent ak is called strong expert or expert,
for briefness.

The number of agents with equivalent classes Cj required for specifying the agent as
an expert varies and depends on the number l of agents in the group. Following general
statistical assumptions, we say that the number of such agents is at least 10% of l and, for
small groups, is not less than 2.

As indicated above, there exist several algorithms of classification that implement
the difference between the opinions of competent and non-competent agents [10–13]. In
particular, the Distance-Based Collaborative Classification (DBCC) algorithm [12] directly
considers the normalized Hamming distance dH(γk, γk′ |j) between the partitions γk ={

Ck,1, Ck,2, . . . , Ck,m
}

and γk′ =
{

Ck′ ,1, Ck′ ,2, . . . , Ck′ ,m
}

with respect to each class Cj

dnH(γk, γk′ |j) = #
(

Ck,j∆Ck′ ,j

)
/
(

#Ck,j + #Ck′ ,j

)
,

where Ck,j∆Ck′ ,j =
(

Ck,j ∪ Ck′ ,j

)
\
(

Ck,j ∩ Ck′ ,j

)
is a symmetric difference between the classes

Ck,j and Ck′ ,j.
If on the set X of items, a probability measure p : X → [0, 1] is defined, then using this

measure, the distance between the partitions γk and γk′ of X with respect to the class Cj
can be defined as

dpH(γk, γk′ |j) = −p
(

Ck,j∆Ck′ ,j

)
,

or in the form of the Rokhlin metric as

dpR(γk, γk′ |j) = −p
(

Ck,j\Ck′ ,j

)
log p

(
Ck,j\Ck′ ,j

)
− p

(
Ck′ ,j\Ck,j

)
log p

(
Ck′ ,j\Ck,j

)
.

Below, we assume that the experts are already distinguished by these or other methods
and consider the relationship between the group of leaders and the group of experts.
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6. Relationship between the Group A* of Leaders and the Group A′ of Experts

Let us return to the above example and assume that the distinguished group of experts
is A′ = {a1, a2, a3, a4, a5, a6}. Our aim is to check whether this group of experts is also a
group of leaders.

Denote by V′ ⊂ V, the set of vertices in the graph G associated with the agents from
the group A′ of experts. Then, following the presented above procedure of distinguishing
the group of leading agents, the distance between the predecessor partition

↼
τ (V′) and the

successor partition
⇀
τ (V′) is

d
(
↼
τ
(
V′),

⇀
τ
(
V′)) = H

(
↼
τ
′(

V′)∣∣∣⇀τ ′(
V′))+ H

(
⇀
τ
′(

V′)∣∣∣↼τ ′(
V′)) = 0.89 + 0.70 = 1.59.

It is seen that the predecessor partition
↼
τ (V′) and successor partition

⇀
τ (V′) of the set

V′ are closer than the predecessor partition
↼
τ (Vc) and successor partition

⇀
τ (Vc) of the

previously distinguished set Vc = {v1, v4, v5, v8} of vertices associated with the agents from
the set Ac of candidate leaders (distance d

(
↼
τ (Vc),

⇀
τ (Vc)

)
= 2.34). Moreover, partitions

↼
τ (V′) and

⇀
τ (V′) are closer than the partitions

↼
τ (v8) and

⇀
τ (v8) of the vertex v8 (distance

d
(
↼
τ (v8),

⇀
τ (v8)

)
= 1.96).

Now, let us consider the classifications provided by the candidate group Ac =
{a1, a4, a5, a8} of leaders. We have

γ1 = {{x2, x6, x8}, {x1}, {x3, x9, x10, x12}, {x4, x5, x7, x11}},

γ4 = {{x3, x6, x7, x10, x12}, {x8, x9}, {x4, x5, x11}, {x1, x2}},

γ5 = {{x3, x4, x10}, {x5, x6, x8, x11}, {x1, x2}, {x7, x9, x12}},

γ8 = {{x3, x10}, {x2, x8}, {x1, x4, x5, x6, , x11, x12}, {x7, x9}}.

Despite the competence of agent a1 in class C1 of agent a4 in class C3 and of agent a5
in class C5, the resulting plurality voting partition is (item x2 is labeled randomly)

γPl = {{x3, x6, x10}, {x2, x8}, {x1, x5, x11, x12}, {x4, x7, x9}},

which is far from the correct partition γ̌.
Thus, in the considered example with random relations between the agents ak and

ak′ and randomly chosen classifications γk, k, k′ = 1, 2, . . . , l, the group of experts strongly
differs from the group of leading agents.

However, as indicated above, it is reasonable to assume that the agent elected to be a
leader or a member of the group of leaders is competent in certain fields [19].

Following this assumption, let us consider the other example and form a group of
leaders starting with the agents’ expertise [13]. Assume that the group A of l = 8 agents
classifies n = 9 items x from the set X over m = 5 classes C. The agents’ classifications are
shown in Table 3.

Table 3. Example of n = 9 items distributed by l = 8 agents over m = 5 classes. Partitions γk,
k = 1, 2, . . . , 8 represent the agents’ classifications and partition γ̌ represents correct classification.

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ̌

x1 1 1 2 4 3 5 4 3 1

x2 2 2 3 4 3 4 2 5 2

x3 3 3 2 1 4 2 5 2 3
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Table 3. Cont.

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ̌

x4 5 1 4 4 3 3 2 1 4

x5 5 2 5 5 1 4 4 3 5

x6 5 2 2 2 3 1 1 4 1

x7 4 3 1 5 2 2 4 4 2

x8 2 1 5 2 3 2 1 2 3

x9 5 1 2 4 4 4 3 2 4

By the Wisdom in the Crowd (WICRO) algorithm [13], the agents are divided into
clusters based on the number of agreements about the classes for each item x. The clusters
obtained by the agents are summarized in Table 4.

Table 4. Clusters of the agents with respect to the number of agreements about the classes of the
items.

Agent’s Cluster Chosen Class Number

x1 {a1, a2} 1

x2 {a1, a2, a7} 2

x3 {a1, a2} 3

x4 {a5, a6} 3

x5 {a1, a3, a4} 5

x6 {a2, a3, a4} 2

x7 {a5, a6} 2

x8 {a5, a6} 3

x9 {a4, a5, a6} 4

Following the table, a1 and a2 are the agents that agree that the item x1 should be in
the class C1 and the item x3 should be in the class C3; a1, a2, and a7 are the agents that agree
that the item x2 should be in the class C2 and so on.

In addition, it is seen that the agents a1 and a2 appear both in the cluster {a1, a2} and
in the cluster {a1, a2, a7} together with the agent a7. Thus, we assume that the agents a1
and a2 are predecessors and successors of each other and both are predecessors of the agent
a7. The same holds for the agents a5 and a6 and the agent a4.

Also, the agents a3 and a4 appear in two clusters {a1, a3, a4} and {a2, a3, a4}, while
each of the agents a1 and a2 appear in only one of these two clusters. So, we assume that the
agents a3 and a4 are predecessors and successors of each other and both are predecessors
of the agents a1 and a2.

Finally, the agent a8 does not appear in any cluster, so we assume that this agent is a
successor of all other agents.

Associating the agents with the vertices and the relations between the agents with the
edges, one obtains the directed graph G = (V, E) shown in Figure 3.
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Figure 3. Graph of communication between the agents with respect to the agents’ clustering.

Similarly to Table 1, the sets of input and output vertices in this graph are presented in
Table 5.

Table 5. The sets of input and output vertices in the graph G shown in Figure 3.

Vertex v1 v2 v3 v4 v5 v6 v7 v8

Input set {v2, v3} {v1, v4} {v4} {v3, v5, v6} {v6} {v5} {v1, v2} ∅

Output set {v2, v7, v8} {v1, v7, v8} {v1, v4, v8} {v2, v3, v8} {v4, v6, v8} {v4, v5, v8} {v8} V\{v8}

Following this graph, the clear leader is the agent a4 associated with the vertex v4
and additional leaders are the agents a1 and a2 associated with the vertices v1 and v2.
Together with that, according to the structure of the graph, none of the agents is a dictator
or monarch.

The further application of the majority voting in the group A∗ = {a1, a2, a4} of leading
agents results in the classification that is correct for items x1, x2, x3 and x5, is incorrect for
items x6, x7 and x8, and with probability 1

3 can be correct for each of the items x4 and x9.

7. Conclusions

The paper considered the problem of distinguishing the leaders in the group of
autonomous agents.

In the paper, we suggested a definition of the leading agents, which are the agents that
maximally divide the group. For calculating the distances between the subgroups of the
agents, we use the entropy-based Rokhlin metric, which was extended for measuring the
distances between the covers of the sets.

In the framework of classification problems, the paper considers the relationship
between the competent agents and the leading agents and presents an example of distin-
guishing the leaders based on their expertise in certain fields of knowledge.

The suggested method can be used in programming the division of labor in the swarm
activity dynamics and in the analysis of the data fusion in the records obtained by the
wisdom of the crowd techniques.

Further research will include verification of the method on a wider range of data
and consideration of the relations between the properties of the graphs, the groups of the
distinguished leading agents, and the levels of their expertise.
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