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Abstract: In the acquisition process of 3D cultural relics, it is common to encounter noise. To facilitate
the generation of high-quality 3D models, we propose an approach based on graph signal processing
that combines color and geometric features to denoise the point cloud. We divide the 3D point
cloud into patches based on self-similarity theory and create an appropriate underlying graph with
a Markov property. The features of the vertices in the graph are represented using 3D coordinates,
normal vectors, and color. We formulate the point cloud denoising problem as a maximum a posteriori
(MAP) estimation problem and use a graph Laplacian regularization (GLR) prior to identifying the
most probable noise-free point cloud. In the denoising process, we moderately simplify the 3D
point to reduce the running time of the denoising algorithm. The experimental results demonstrate
that our proposed approach outperforms five competing methods in both subjective and objective
assessments. It requires fewer iterations and exhibits strong robustness, effectively removing noise
from the surface of cultural relic point clouds while preserving fine-scale 3D features such as texture
and ornamentation. This results in more realistic 3D representations of cultural relics.

Keywords: 3D point cloud; cultural relics; denoising; graph signal processing; Markov graph model;
prior probability distribution; maximum a posteriori (MAP) estimation

1. Introduction

Three-dimensional laser scanning technology has become increasingly popular in
various fields of society, such as digitization, virtual display, and virtual restoration of
cultural relics. However, the acquisition process of cultural relic point clouds often results
in noise in geometry and color due to the inherent limitations of 3D laser scanners or
depth cameras. This noise can be caused by occlusion resulting from various view angles,
reflective materials, dust on the surface of objects, light intensities, and the operation of
scanning personnel [1]. The cultural relic point cloud surface typically contains significant
fine details, such as ornamentation or textures, which can be intertwined with surface
noise. Effectively removing noise from the surface of the cultural relic point cloud while
preserving the fine-scale 3D features is a significant challenge.

In order to acquire a high-precision 3D model of a cultural relic with realistic texture,
it is essential to remove noise from the raw 3D point cloud. The noise in the point cloud can
be divided into two categories based on their distribution: surface noise and outliers [2].
Each outlier will usually be far away from the surface of the point cloud with a sparse
neighborhood, which means that they are easy to remove using methods such as the
boxplot method or special software. However, eliminating surface noise presents a greater
challenge as it is often closely intertwined with the underlying surface of the 3D point
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cloud. This is especially true when the surface of the 3D point cloud features texture
and ornamentation.

To obtain clean point clouds for further processing, various surface smoothing tech-
niques have been developed in the past two decades. These techniques include filtering-
based methods [3–6], moving least squares (MLS)-based methods [7,8], locally optimal
projection (LOP)-based methods [9,10], non-local methods [11–13], and sparsity-based
methods [14–17]. Although these methods have been successful in achieving excellent
denoising effects for 3D models with smooth surfaces, they have not yielded satisfactory
results for point clouds of cultural relics. This often results in over-smoothing and the loss
of surface details. Striking a balance between preserving fine details and achieving effective
denoising with these methods is challenging.

In recent years, several methods have been proposed for denoising point clouds,
including the graph feature learning method [18–26] and the deep learning method [27–33].

The effectiveness of deep learning in denoising point clouds depends heavily on
factors such as the geometric structure, the scale of the data, and the noise characteristics of
the training set. When faced with an unknown scene or limited data, the method based on
deep learning may not necessarily outperform traditional methods. For instance, a model
trained using commonly available 3D point clouds may experience a significant decrease
in performance when applied to point clouds of cultural relics, which are considered to be
rare samples.

Graph-based denoising methods utilize graph filters to remove noise from point clouds
represented by graphs [34]. Previous methods such as graph Laplacian regularization
(GLR) [20] and the feature graph learning [23] algorithm have shown promising results in
inferring the underlying graph structure of clean point clouds. However, these methods
primarily rely on geometric priors, making it challenging to achieve effective denoising
while preserving fine detail.

We raise an interesting question: if color perception information is added to guide
the graph signal processing, can a balance between denoising effectiveness and detail
preservation be achieved?

To investigate this, we propose a novel 3D point cloud denoising method based on
graph signal processing specifically designed for cultural relic point clouds. Our contri-
butions are twofold. First, we incorporate not only geometric information such as 3D
coordinates and surface normals but also color distribution as a feature. The use of a
multi-modal representation for vertex features leads to superior denoising performance.
Second, we introduce a 3D point cloud simplification module to dynamically adjust the
number of 3D point clouds to reduce the running time of the denoising algorithm.

This paper is organized as follows: In Section 2, we introduce previous point cloud
denoising methods. In Section 3, we describe the basic concepts of graph signal processing.
In Section 4, we provide the details of our proposed method, which mainly focuses on
surface noise removal. In Section 5, we present the experimental results and discussion.
Finally, we present our conclusions.

2. Related Work

Point cloud denoising techniques can be divided into two main types: outlier removal
techniques and surface noise smoothing techniques. Outlier removal is a relatively straight-
forward process, as outliers are usually distinct from other data points and can be easily
identified and removed. On the other hand, surface noise removal can be more challenging,
as surface noise is often random and irregular and requires more sophisticated techniques
to be removed. In this paper, we will primarily focus on surface noise removal methods.

Filtering-based methods: Filtering-based methods were initially used for 2D image
smoothing and were later extended to denoise 3D point clouds [2]. These methods assume
that the noise on the surface of point clouds is high-frequency noise, and they use filters that
target vertices or face normals. Early approaches utilized Laplacian smoothing or improved
Laplacian transform based on vertex positions to denoise triangular meshes. However, this
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often resulted in the excessive smoothing of surface features and was not effective when
dealing with large amounts of noise. In recent years, filtering-based methods have been
significantly improved. Notable examples include guided normal filtering [3,4] and rolling
guidance normal filtering [5], which have demonstrated successful denoising effects in
practical applications [6]. Nevertheless, a major drawback of these methods is that the
normal filtering process tends to blur the small-scale features of the 3D model surface,
resulting in the over-smoothing of 3D models with intricate surface details.

MLS-based and LOP-based methods: Early in the development of denoising tech-
nology, moving least squares (MLS) and local optimal projection (LOP) methods were
well-known and popular denoising methods. However, their denoising effect is limited,
and they are no longer the mainstream methods. MLS-based methods [7] approximate
the point cloud using a smooth surface and project the points from the input point cloud
onto the fitted surface. These methods are unstable in cases of a low sampling rate or high
curvature and are highly sensitive to outliers [8]. LOP-based methods [9] aim to find the
best possible solution to represent the underlying surface within a local region of the search
space while ensuring an even distribution across the input point cloud. However, these
methods can suffer from over-smoothing [10].

Non-local methods: Non-local methods [11–13] establish self-similarity among sur-
face patches in the point cloud by solving an optimization problem. However, these
methods often suffer from high computational complexity when searching for non-local
similar patches.

Sparsity-based methods: Sparsity-based methods [14–16] transform the denoising
problem of a 3D point cloud into an optimization problem. This is achieved by obtaining
a sparse representation of the surface normal by minimizing the number of non-zero
coefficients with sparsity regularization. To preserve the sharp features of the 3D point
cloud, either the L0 or L1 norm is used. It should be noted that sparsity-based methods
tend to give better denoising results when the noise is small. However, for high noise levels,
these methods can suffer from either over-sharpening or over-smoothing [17].

Graph-based methods: Graph-based denoising methods [18–26] transform the prob-
lem of removing noise into a graph-constrained optimization problem and perform noise
removal through the structure and connectivity of the graph. However, a drawback of these
approaches is that they often misestimate the local surface by relying solely on the geometry
information of the vertices. In addition, the performance of graph-based denoising methods
remains unstable for highly noisy point clouds.

Deep learning methods: Deep learning denoising methods [27–35] train an end-to-end
neural network to remove noise. During the training stage, the model learns the mapping
between noisy points and clean clouds. In the testing stage, the trained model is used
to denoise point clouds with similar noise characteristics and geometric shapes. Deep
learning methods are more effective at denoising and preserving fine features. However,
these methods require a large volume of training data, making them time-consuming and
impractical for unknown scenes. In addition, optimizing and improving the efficiency of
the algorithm is also an important consideration.

Several alternative denoising methods have been proposed by other scholars. For
instance, there is a point cloud denoising algorithm based on a method library [36], as well
as a laser point cloud denoising method that uses principal component analysis (PCA)
and surface fitting [37]. However, these methods often encounter the common issue of
inadequate denoising of sharp edges, resulting in excessive smoothing.

Recently, some scholars have proposed deep-unfolding denoising [38–40] and quantum-
based denoising [41,42], which have achieved competitive results compared to state-of-the-
art image denoising tasks. How to draw on the ideas of these methods to denoise the point
cloud is a very valuable research work in the future.
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3. Preliminaries
3.1. Graph Signal and Graph Laplacian

In this section, we present a brief overview of fundamental concepts in graph signal
processing. We define an undirected weighted graph for a vertex set of cardinality |V| = N,
where the edge set E connects vertices of the form

(
vi, vj

)
∈ V. Each edge is assigned a

non-negative weight wi,j, and the adjacency matrix W is a N × N real matrix with values
ranging from 0 to 1. The combinatorial graph Laplacian is defined as L := D − W, where
D represents the degree matrix of the graph G, with dij = ∑N

j=1 wij denoting the degree of
each vertex.

3.2. Graph Laplacian Prior

Graph signal data reside on the vertices of a graph, which include 3D coordinates,
normal vectors, and color information on a 3D point cloud. A graph signal z is considered
to be smooth with respect to the topology of G if it satisfies the following conditions:

zT Lz =
N

∑
i=1

N

∑
j=1

wi,j
(
zi − zj

)2
< 
, (1)

where 
 is a positive scalar, and the Laplacian matrix L is a symmetric positive semi-definite
matrix. The larger wij is, the more similar zi and zj are and the smaller the value of zT Lz is.

Formula (1) forces signal z to adapt to the topology of G, which is referred to as
graph Laplacian regularization (GLR), also known as graph signal smoothness prior. By
minimizing the graph Laplacian regularization term, the signal can be smoothed. This
prior is used in our paper to remove the surface noise, as discussed in Section 4.

If we consider L(z) as a function for signals z, then reweighted prior is redefined as

zTL(z)z =
N

∑
i=1

N

∑
j=1

wi,j
(
zi, zj

)
·
(
zi − zj

)2, (2)

where wi,j
(
zi, zj

)
= exp

{
−
(
zi − zj

)2/σ2
}

, and wi,j
(
zi, zj

)
is the (i, j)-th element of the

corresponding adjacency matrix W.

4. The Proposed Method

Considering a point cloud contaminated by noise Y ′ with a Gaussian noise distribu-
tion, our basic strategy can be viewed from the theory of graph signal processing; our goal
is to move noisy points to the underlying surface to generate a clean point cloud Y.

Figure 1 illustrates the implementation of our denoising approach, which consists of
the following four modules:

• Simplification of 3D point cloud: reducing the collection of points to a smaller sub-
set that retains its fundamental topology, thereby reducing the running time of the
denoising algorithm;

• Definition of graph signals: interpreting the geometric and color information of the
vertices in the input point clouds as graph signals; the geometric information includes
geometry coordinates and normal vectors;

• Graph construction and feature graph learning: defining local patches within the point
cloud and constructing a graph model with Markovian properties; using a feature
graph learning scheme to determine edge weights and solving a maximum a posteriori
(MAP) estimation problem with GLR as the signal prior;

• Application of an optimization algorithm to enforce smoothness on the graph signal:
we alternately optimize the feature metric matrix M by minimizing the GLR, and
M and noisy point cloud are updated alternately until the algorithm converges, and
finally, we obtain the clean point cloud.
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Figure 1. The proposed denoising approach.

4.1. Three-Dimensional Point Cloud Simplification

High-precision 3D artifact point clouds usually have many points, inevitably leading
to high computational complexity and long processing times during denoising. Therefore,
it is necessary to simplify the raw data to a more appropriate size without affecting the
denoising effect. We use the method described in [43] for simplifying point clouds. The
simplification process is divided into the following four steps:

• A bounding box for the point cloud is created. A local kd−tree consisting of 27 cubes
of size 3 × 3 × 3 is constructed. The advantage of using this form to organize the
points in the point cloud is that the neighborhood points and leaf nodes of the given
point can be accurately identified.

• Five feature indexes are calculated to extract features from the point cloud. These
five feature indexes include the curvature feature index, the density feature index, the
edge feature index, the terrain feature index, and the 3D feature index, denoted as a,
b, c, d, and e, respectively. The advantage of this multiple-feature indexing approach
is that it can deal with different types of point clouds and discover more intrinsic
characteristics of the point cloud.

• The weights of the five feature indexes are calculated using the analytic hierarchy
process (AHP) method based on data features. Assuming that wi is the weight
index of feature indexes a, b, c, d, and e, the quantification result of point p is
zp =

[
ap, bp, cp, dp, ep

]
[ωa,ωb,ωc,ω4,ω5]

T.
• Points with larger z-values are identified as feature points, and points with smaller

z-values are identified as non-feature points. All feature points form a simplified point
cloud. According to the kd−tree constructed earlier, if there is no feature point in each
leaf node, the non-feature point closest to the center of gravity of the node is selected
to be added to the simplified point cloud.

4.2. Defining the Graph Signal by Combining Geometry and Color

Color, an important piece of information of a point cloud, has been used for 3D model
retrieval [44] and point cloud segmentation [45,46]. The combination of color and geometry
can positively affect graph construction, which is more semantically meaningful than using
geometry alone [47]. In this paper, we aim to use both the color and geometry attributes of
a vertex in the point cloud to investigate their crucial role in denoising. Figure 2 illustrates
the color and geometry information of the point cloud.
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We constructed a k-NN graph with Markovian properties, where each vertex is con-
nected to its k-nearest neighbors by connecting edges with associated weights. In addition
to using the 3D coordinates and normal vector of the vertices as signals, we added the color
attributes as graph signals. The feature vector of a vertex in the graph is denoted as

si = [Pi Ni Ci] ∈ R9, (3)

where 3D coordinates Pi = [xi, yi, zi] ∈ R3, normal vector Ni =
[
ni

x, ni
y, ni

z

]
∈ R3, and RGB

color information Ci =
[
ci

r, ci
g, ci

b

]
∈ R3 for vertex vi.

The normal vector is one of the important properties of the points in a point cloud.
The normal vector of a point cloud is the orientation of each point in a point cloud. For
example, the direction of the normal vector in Figure 3 points to the outside of the surface
of the point cloud. The normal vector of a point cloud is usually a 3D vector that describes
the normal properties of the point cloud surface, such as the flatness, curvature, and normal
variation in the point cloud surface.
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4.3. Constructing a Graph Based on Self-Similarity Theory

We followed the method described in [26] to define the local patches in a point cloud.
These patches may overlap with each other. We assumed that these patches were self-
similar [48] and established connections between corresponding points, forming a k-NN
graph. We considered each local patch of the point cloud as a matrix, which had a low rank.
Consequently, the problem of denoising the point cloud can be reformulated as a task for
minimizing the rank of the matrix.

In this study, we used a uniform sampling method to select m center points ci ∈ R3

from point cloud Y. For each center point ci, we used the k-nearest-neighbor (k-NN) [49]
algorithm to identify k-nearest-neighbor points in terms of Euclidean distance. A patch
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vi is a set of points that is composed of one center point ci and k nearest neighbors. The
number of nearest neighbors m was determined based on an empirical value, denoted as
m ≤ N, (k + 1)m ≥ N, where N is the number of points in the point cloud Y. As a result,
we obtained m local patches from the point cloud Y, as shown in Figure 3. The collection of
all points within these patches is referred to as a patch set, denoted as V ∈ R(k+1)m×3.

Then, we identified ε adjacent patches for patch vi. We used the k-NN algorithm to
find the ε nearest center point for the center point ci of patch vi in a set of patches. The ε
patches that the ε nearest center points are located in are recognized as adjacent patches
of vi. As shown in Figure 3, ε = 3, and the adjacent patches of v2 are v4, v5, and vm. For a
point pi ∈ vs, there exists a nearest corresponding point pj ∈ vt, and the Euclidean distance
between pi and pj is the smallest.

In the process of constructing the local patches mentioned above, each patch is only
related to its adjacent patches. The vertices in the patch are only connected to the corre-
sponding vertices in the adjacent patch. As a result, these vertices and edges form a graph
model with Markov properties.

4.4. Graph Feature Learning

We aim to calculate an optimal Mahalanobis distance δi,j for the given signals, which
are represented as length-9 vectors of relevant features in a graph. We assumed two sets,
∅k(i) and ∅k(j), which denote the k-nearest neighbors to vertices vi and vj, respectively. If
pj ∈ ∅k(i) or pi ∈ ∅k(j), then

δi,j = −
∥Pi − Pj∥2

θ2
P

−
∥Ni − Nj∥2

θ2
N

−
∥Ci − Cj∥2

θ2
C

, (4)

where Ni and Nj represent the normal vector of vertices vi and vj; Ci and Cj represent the
color information of vertices vi and vj; θP and θN represent the relative contribution of the
3D coordinates and normal vectors in the constructed graph; and θC represents the relative
contribution of color.

Defining si = [pi, Ni, Ci]
T, we express (4) in matrix form as

δi,j =
(
si − sj

)T


1
/
θ2

P
0 0

0 1
/
θ2

N
0

0 0 1
/
θ2

C

(si − sj
)
, (5)

where si − sj is the feature difference between the two connected nodes pi and pj. The
appropriate parameters θP, θN , and θC play an important role in achieving good denoising
performance. How to determine these parameters is the next aspect to consider.

The 3D coordinates, normal vector, and color information are features of different
scales. In this context, we used the Mahalanobis distance as a measure of the similarity
between the two signals. The Mahalanobis distance δij is written as

δi,j =
(
si − sj

)TM
(
si − sj

)
, (6)

where M ∈ Rk×k is the Mahalanobis distance matrix, which is a measure of the relative
importance of individual features in the calculation of δij.

In the context of a graph, the edge weight wi,j
(
si, sj

)
represents the similarity of the

signals between two samples. We define the edge weight wi,j
(
si, sj

)
using the Gaussian

kernel, a commonly used method, which guarantees that the resulting graph Laplacian
matrix L is positive semi-definite.

wi,j(si, sj) = exp
{
−δij

}
, (7)
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The GLR, expressed in Formula (2), is redefined as

sTL(M)s =
N

∑
i=1

N

∑
j=1

exp
{
−
(
si − sj

)TM
(
si − sj

)}
·
(
si − sj

)2. (8)

4.5. Optimization Algorithm

We considered the solution of a clean point cloud as a feature graph learning problem.
As discussed in [23], we minimized the GLR and determined the appropriate underlying
graph based on signal z.

Additionally, we assumed a point cloud with added noise, namely

Y′ = Y + E, (9)

where Y′ ∈ RN×3 denotes the 3D coordinates of the point cloud with added noise, Y ∈
RN×3 denotes the 3D coordinates of the clean point cloud, and E ∈ RN×3 denotes the white
Gaussian noise (AWGN) [50] that appears near the underlying surface. The AWGN has
zero mean and standard deviation.

E ∼ N
(

0, σ2I
)

. (10)

Given a noisy set V′, the goal is to minimize the noise and obtain a noiseless set V.
This is achieved by applying the maximum a posteriori criterion, which involves finding
the most probable V given the observed V′.

ṼMAP(V′) = argmax
Y

P(V′|V) P(V), (11)

where P(V) is the prior probability distribution of V, and P(V′|V) is the likelihood function.
In the case of additive Gaussian white noise, the likelihood function is defined

as follows:
P(V′∣∣V)

= P(Y′
∣∣∣Y) = exp

{(
−1/

(
2σ2

))
∥Y − Y′∥2

F

}
, (12)

where ∥·∥2
F is the Frobenius norm.

If G is a graph with Markov properties [51], and GLR is taken as the prior probability
distribution of the set V, then the following is evident:

P(V) = exp
{
−βtr(V⊤L(M)V

)}
, (13)

where β = (2π)−
n−1

2
(
|L(M)|∗

) 1
2 and M is the Markov distance matrix.

The denoising formula can be obtained by combining (11)–(13).

min
Y,M

∥Y − Y′∥2
F + (2σ2β)tr

(
V⊤L(M)V

)
,

s.t. M ≻ 0; tr(M) ≤ C∗.
(14)

It should be noted that C∗ is a constraint parameter closely related to the algo-
rithm performance.

Denoising a 3D point cloud is an iterative process. In the first iteration, M is initialized
with the identity matrix. Then, the Laplacian matrix L(M) is computed, and the conjugate
gradient method [52] is used to solve it. In the subsequent iteration, M is updated, and the
optimization problem of M is solved using the near-end gradient method (PG) [53]. The
values of M and Y are updated alternately until they converge.

The optimization algorithm is presented in Algorithm 1.
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Algorithm 1: Optimization algorithm

Input: Noisy point cloud Y′, number of patches m, number of nearest neighbors k,
number of adjacent patches ε, trace constraint C∗.
Output: Denoised point cloud Y.

1 Initialize Y with Y′;
2 for iter = 1, 2,. . . do
3 estimate normal for Y;
4 initialize m empty patches V;
5 find the adjacent ε patches;
6 initialize M with identity matrix;
7 compute the feature distance si − sj for each vertex pair(i,j);
8 solve M;
9 compute adjacency matrix W over all patches;
10 compute Laplacian matrix L;
11 solve Y with (14);
12 end

5. Experiment Results and Analysis
5.1. Experiment Environment and Dataset

Our method was implemented on a desktop computer running MS Windows 10.
The computer was equipped with an Intel® Core™ i9-9900k CPU (3.60 GHz), 64 GB of
RAM, and two GeForce RTX 2070 GPUs. We used MATLAB R2019b programming for
the implementation.

To demonstrate the state of the art of our approach, we performed experiments on 3D
point clouds of terracotta warrior fragments, tiles from the Qin Dynasty, and Tang tri-color
Hu terracotta sculptures, as shown in Figure 4. We achieved the best performance of the
algorithm by selecting the optimal parameters. We repeated the experiments thirty times
and calculated the average results for three metrics: SNR, MSE, and running time.
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Figure 4. Three-dimensional point clouds of cultural relics: (a–f) terracotta warrior fragments
numbered G3-I-b-70, 4#yt, G10-52, G10-46-5, G3-I-C-94, and G10-11-43(47); (g,h) Qin Dynasty tiles
numbered Q002789 and Q003418; (i,j) Tang tri-color Hu terracotta sculptures numbered H73 and H80.

5.2. Evaluation Metrics

The evaluation of the denoising results was performed using visual effects, SNR,
and MSE, following recent point cloud denoising research. Let us assume that the real
point cloud and the predicted point cloud are denoted as U =

{
ui}N1

i=1 and V =
{

vi}N2
i=1,

respectively. ui, vi ∈ R3, and N1 and N2 may not be equal here.
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To measure the fidelity of the denoising result, we used MSE, which is the minimum
absolute error sum of the normal direction difference between the noisy point cloud and
the denoised point cloud. A lower MSE value indicates a better denoising effect. The
calculation of the MSE is as follows:

MSE =
1

2N1
∑

ui∈U
min
vj∈V

∥ui − vj∥2
2 +

1
2N2

∑
vi∈V

min
uj∈U

∥vi − uj∥2
2 (15)

The SNR is a measure of the signal-to-noise ratio in a 3D point cloud, usually expressed
in decibels. A higher signal-to-noise ratio indicates better denoising reliability of the
algorithm. The SNR can be calculated using the following formula:

SNR= 10 log
1/N2∑vi∈V ∥vi∥2

2

MSE
(16)

5.3. Algorithm Performance Analysis
5.3.1. The Effect of Parameters on Algorithm Performance

Our algorithm has four main parameters: the number of patches m, the number of
points in each patch k, the number of nearest neighboring patches ε, and the constraint
parameter C∗. Among these parameters, C∗ has a significant impact on the denoising effect.
Therefore, it is important to determine the optimal value for C. To do so, we can first choose
an initial value based on experience and then explore values around this initial value with
a certain step size to determine the optimal value.

In this study, we analyzed the effect of parameter values on the MSE and SNR under
Gaussian white noise with standard deviations σ = 0.02, σ = 0.05, and σ = 0.1. To illustrate
this, we chose the 3D fragment numbered G3-I-b-70 as our experimental data source.

As illustrated in Figure 5, the blue line represents the MSE value for noise with a σ of
0.02. The red trend line represents the MSE value for noise with a σ of 0.05, while the green
trend line represents the MSE value for noise with a σ of 0.1. When the value of C∗ is 0, the
minimum MSE value on the blue line is 0.442, indicating the algorithm’s optimal denoising
effect of the algorithm at this point. Similarly, when the value of C∗ is 0.1, the minimum
MSE on the red line is 0.795, signifying the best denoising effect. Lastly, with a C∗ value of
0.3, the minimum MSE on the green line is 0.899, denoting the optimal denoising effect of
the algorithm at this particular point.
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Figure 5. Effect of C∗ on MSE for G3−Ib−70.

As shown in Figure 6, as the noise levels vary, and the C∗ value changes, the denoising
effect of the algorithm, as indicated by the SNR value, remains consistent with the MSE
value. When the value of C∗ is 0.3, the maximum SNR on the green line is 57.884, indicating
the best denoising effect. Similarly, when the value of C∗ is 0.1, the maximum SNR value
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on the red line is 59.119, indicating the optimal denoising effect of the algorithm at this
point. Finally, with a C∗ value of 0, the maximum SNR on the blue line is 64.998, indicating
the optimal denoising effect of the algorithm at this particular point.
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5.3.2. Ablation Experiment

In this study, we present the experimental results for two proposed methods: one
using only geometry and the other using both geometry and color. We identified four main
parameters that gave the best results for the proposed approach, as shown in Table 1.

Table 1. Parameter setting.

Parameter Down Sampling Rate The Number of Points
in the Patches

The Number of Nearest
Neighbors of a Patch C*

Value 0.3 9 10 3

The algorithm was evaluated based on four quantitative indicators: SNR, MSE, itera-
tions, and running time. For the sake of clarity, the subjective results of the comparison
between the proposed algorithm using only geometry and combined geometry and color
are presented in Table 2. To illustrate this, we chose the 3D fragment numbered 4#yt as our
experimental data source.

Table 2. Comparison of the proposed approach using only geometry and combined geometry and
color on 4#yt.

Method σ Points SNR (DB) MSE Iterations Running Time (s)

Only geometry 0.02 58,380 60.66 0.61 4 172
Geometry + color 63.98 0.50 4 171

Only geometry 0.05 58,380 61.91 0.84 10 864
Geometry + color 62.14 0.72 11 870

Only geometry 0.1 58,380 59.50 1.07 46 3985
Geometry + color 62.03 0.81 49 4011

Only geometry 0.2 58,380 52.98 2.05 100 8884
Geometry + color 54.02 1.90 106 9003

Table 2 shows that the SNR and MSE of the denoising algorithm with the combined
geometry and color serving as graph signals outperform the geometry-only approach.
Furthermore, the inclusion of color information does not result in a significant increase in
iterations or running time.



Entropy 2024, 26, 319 12 of 21

As shown in Table 3, the 3D point cloud is simplified by reducing the number of points
from 58,380 to 30,000. When σ = 0.02, the number of iterations of the denoising algorithm is
reduced by 3, and the running time of the algorithm is reduced by 129 s. Similarly, when σ
= 0.05, the number of iterations of the denoising algorithm is reduced by 9, and the running
time is reduced by 731 s. These results show that when σ is less than 0.1, the value of
SNR and MSE is almost unchanged. Therefore, in low-noise scenarios, it is advisable to
first simplify the high-precision 3D cultural relic model obtained using scanning and then
proceed with denoising.

Table 3. Comparison of experimental results before and after point cloud simplification on 4#yt.

Method σ Points SNR(DB) MSE Iterations Running Time (s)

Geometry + color 0.02 58,380 63.98 0.50 4 171
Geometry + color + simplification 30,000 64.12 0.55 1 42

Geometry + color 0.05 58,380 62.14 0.72 11 870
Geometry + color + simplification 30,000 61.98 0.76 2 139

Geometry + color 0.1 58,380 62.03 0.81 49 4011
Geometry + color + simplification 30,000 59.96 0.96 8 293

Geometry + color 0.2 58,380 54.02 1.90 106 9003
Geometry + color + simplification 30,000 51.99 1.89 29 1104

When σ = 0.1, the number of iterations of the denoising algorithm is reduced by 41,
and the running time of the algorithm is reduced by 3718 s. Similarly, when σ = 0.2, the
number of iterations of the denoising algorithm is reduced by 77, and the running time is
reduced by 7899 s. It can be seen that the running time of the algorithm is greatly reduced,
and the denoising effect is not significantly weakened when the point cloud is simplified
to a reasonable size. Therefore, for some real-time application scenarios, it is necessary to
simplify the point cloud before denoising.

5.3.3. Iterations

This section presents the subjective results of the proposed combined color and geom-
etry denoising approach. Figure 7a shows the presence of numerous noise points on the
surface of 4#yt, resulting in an uneven surface. Subsequently, in Figure 7b, after the third
iteration, the sharp noise points on the surface of the 3D model appear smoother. Further-
more, Figure 7c shows that as the number of iterations increases to 6, the rough areas on the
surface of the 3D model gradually become smoother. Finally, Figure 7d shows that when
the number of iterations reaches 10, the surface noise points are effectively eliminated.
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noisy input; (b) description of the third iteration; (c) description of the sixth iteration; (d) description
of the tenth iteration.

The experimental results in Table 2 show that the number of iterations of the algorithm
is influenced by the noise level. For σ = 0.02, the denoising algorithm needs 4 iterations; for
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σ = 0.05, the denoising algorithm needs 11 iterations. It can be observed that as the noise
level increases, more iterations are required. Conversely, when the noise level is low, the
proposed method shows the advantages of fewer iterations and a faster convergence speed.

5.3.4. Robustness

The robustness of the proposed method was tested under different noise levels. Gaus-
sian white noise was added to the clean 3D model in reverse, and the denoising effect of the
proposed method was verified. In the experiment, the standard deviation σ of the white
Gaussian noise was set to 0.02, 0.05, 0.1, and 0.2.

Figures 8 and 9 show the denoising effects of the proposed method after adding Gaus-
sian white noise with σ = 0.02 and σ = 0.05, respectively. The experimental results indicate
that at a low noise level, the surface smoothness of this method is almost indistinguishable
from that of clean point clouds.
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Figures 10 and 11 show the denoising effects of the proposed method after adding
Gaussian white noise with σ = 0.1 and σ = 0.2, respectively. Clearly, the proposed method
exhibits excellent denoising performance even at high noise levels, effectively removing
a significant amount of noise from the 3D point cloud surface, with only a few outliers
remaining. These results demonstrate the strong robustness of the proposed method.
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Figure 12. Denoising effect of several methods on G10-11-43(47)4: (a) description of ground truth; 
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the surface decoration of cultural relics, as shown in Figure 12h. In particular, our de-
noising method ensures the clear visibility of the rivets on the armor and achieves a 

Figure 11. The denoising effect of 4#yt with Gaussian white noise with σ = 0.2 added: (a) description
of clean point cloud; (b) description of the noisy input; (c) description of the denoising effect.

5.4. Comparison with Competing Methods

This section focuses on analyzing the experimental results by comparing them with
other methods, both subjective and objective, using a dataset of cultural relics obtained
using a 3D scanner and three public 3D point clouds. To validate the superiority of the
proposed method, we compared it with MRPCA [16], LR [11], the method proposed in [31],
the method proposed in [19], and the method proposed in [24] in our experiments.

5.4.1. Subjective Assessment

Figure 12 shows the denoising results using different methods on the 3D fragment
numbered G10-11-43(47)4. It can be seen from Figure 12f,g that both LR [11] and the method
described in [19] effectively remove surface noise from the armor of the terracotta warriors.
However, these methods also result in the smoothing of sharp features such as the rivets
on the armor. Figure 12d,e show that the methods mentioned in [16,31] manage to better
preserve the fine features of the rivets, but the surface of the armor still remains rough and
uneven, and the noise is not completely removed.
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Figure 12. Denoising effect of several methods on G10-11-43(47)4: (a) description of ground truth;
(b) description of noisy input; (c) description of our method; (d) description of MRPCA method;
(e) description of the method in [31]; (f) description of LR method; (g) description of the method
in [19]; (h) description of the method in [24].

The method proposed in [24] successfully eliminates surface noise while preserving
the surface decoration of cultural relics, as shown in Figure 12h. In particular, our denoising
method ensures the clear visibility of the rivets on the armor and achieves a satisfactory
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smoothing effect on the model surface, as shown in Figure 12c. The resulting 3D model,
after noise removal, closely resembles the real cultural relic.

The denoising effects of different methods on Q002789 are shown in Figure 13. Al-
though the methods in Figure 13d,e can remove most of the noise on the surface of the
3D point cloud, there is still a small amount of noise attached to the surface that has not
been removed. The denoising effect of the methods in Figure 13f–h is better than that of
the methods in Figure 13d,e, but the pattern in the blue dotted circle is very blurred. In
Figure 13c, the denoising effect of the proposed method is the most ideal and most similar
to the real cultural relics, especially the area enclosed by the blue dotted circle, whose fine
details are completely preserved.
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Hu terracotta army is uneven; in particular, the denoising of the face is insufficient, result-
ing in blurred facial contours and features. Evidently, the smoothing effect of the method 
in Figure 14f is better than that in Figure 14d,e. The methods described in Figure 14c,g,h 
overall show better performance compared to the methods in Figure 14d–f. These meth-
ods effectively enhance the clarity of facial contours and features in the Hu terracotta 
sculpture. For example, the details of the eyes and beards are well preserved. The method 
in Figure 14g is the worst of the three methods because there is still a small amount of 
noise on the surface that has not been completely removed. Both our method shown in 
Figure 14c and the method shown in Figure 14h demonstrate advanced denoising effects. 
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and several other competing methods produce unsatisfactory denoising results for this 
specific area, whereas our method successfully preserves the fine details of this dress. 

Figure 13. Denoising effect of several methods on Q002789: (a) description of the ground truth;
(b) description of the noisy input; (c) description of our method; (d) description of MRPCA method;
(e) description of the method in [31]; (f) description of LR method; (g) description of the method
in [19]; (h) description of the method in [24].

The denoising effect of different methods on H73 is shown in Figure 14. It can be seen
that, when using the denoising methods in Figure 14d,e, the surface of the sculpture of Hu
terracotta army is uneven; in particular, the denoising of the face is insufficient, resulting
in blurred facial contours and features. Evidently, the smoothing effect of the method in
Figure 14f is better than that in Figure 14d,e. The methods described in Figure 14c,g,h
overall show better performance compared to the methods in Figure 14d–f. These methods
effectively enhance the clarity of facial contours and features in the Hu terracotta sculpture.
For example, the details of the eyes and beards are well preserved. The method in Figure 14g
is the worst of the three methods because there is still a small amount of noise on the surface
that has not been completely removed. Both our method shown in Figure 14c and the
method shown in Figure 14h demonstrate advanced denoising effects. It is important to
highlight that the area encircled by the blue box is the hem of the dress, and several other
competing methods produce unsatisfactory denoising results for this specific area, whereas
our method successfully preserves the fine details of this dress.
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The denoising results of different methods on the 3D fragment numbered G3-I-C-94 
are shown in Figure 15. From Figure 15e,f, it can be seen that the finger part is too smooth 
after applying the denoising techniques proposed in [11,31]. Figure 15h shows that the 
method in [24] successfully preserves the intricate features of the palm and finger joint 
after noise removal. In Figure 15d,g, MRPCA [16] and the method in [19] effectively re-
move most of the noise, albeit with a slightly coarse denoising effect. Figure 15c shows 
that our proposed method is able to remove the noise substantially while still preserving 
the fine features of the finger cracks. 
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Figure 14. Denoising effect of several methods on H73: (a) description of the ground truth; (b) de-
scription of the noisy input; (c) description of our method; (d) description of MRPCA method;
(e) description of the method in [31]; (f) description of LR method; (g) description of the method
in [19]; (h) description of the method in [24].

The denoising results of different methods on the 3D fragment numbered G3-I-C-94
are shown in Figure 15. From Figure 15e,f, it can be seen that the finger part is too smooth
after applying the denoising techniques proposed in [11,31]. Figure 15h shows that the
method in [24] successfully preserves the intricate features of the palm and finger joint after
noise removal. In Figure 15d,g, MRPCA [16] and the method in [19] effectively remove
most of the noise, albeit with a slightly coarse denoising effect. Figure 15c shows that our
proposed method is able to remove the noise substantially while still preserving the fine
features of the finger cracks.
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Figure 15. Denoising effect of several methods on G3-I-C-94: (a) description of ground truth;
(b) description of noisy input; (c) description of our method; (d) description of MRPCA method;
(e) description of the method in [31]; (f) description of LR method; (g) description of the method
in [19]; (h) description of the method in [24].

5.4.2. Objective Assessment

We evaluated the proposed approach on cultural relic point clouds. To evaluate the
denoising results, we introduced noise of different intensities into the clean 3D point cloud
and quantitatively analyzed the results using the MSE and SNR. The experimental results in
Tables 4 and 5 show that as the noise intensity increases, the mean square error between the
denoised point cloud and the clean point cloud also increases. When considering the EMS
or SNR, our proposed method outperforms other competing denoising methods in terms of
denoising effectiveness. Furthermore, even in the presence of high-level noise, our method
maintains a small deviation between the two metrics, indicating its strong robustness.

Table 4. MSE metric comparison of six methods using cultural relic data.

Data σ MRPCA LR [19] [31] [24] Our Method

G10-52 0.02 0.697 0.760 0.684 0.704 0.650 0.630
G10-46-5 0.02 0.885 0.955 0.879 0.906 0.827 0.801
G3-I-C-94 0.02 0.797 0.842 0.774 0.801 0.746 0.769

G10-11-43(47) 0.02 0.658 0.678 0.633 0.659 0.613 0.573
Q002789 0.02 0.251 0.247 0.297 0.231 0.223 0.198
Q003418 0.02 0.503 0.515 0.472 0.497 0.421 0.432

H73 0.02 0.390 0.387 0.350 0.356 0.335 0.305
H80 0.02 0.567 0.581 0.549 0.545 0.534 0.521

Average 0.594 0.621 0.580 0.587 0.544 0.529

G10-52 0.03 0.801 0.826 0.799 0.819 0.759 0.733
G10-46-5 0.03 1.000 1.031 0.964 1.001 0.939 0.909
G3-I-C-94 0.03 0.940 0.948 0.899 0.921 0.873 0.826

G10-11-43(47) 0.03 0.719 0.730 0.687 0.713 0.659 0.642
Q002789 0.03 0.304 0.315 0.279 0.281 0.274 0.270
Q003418 0.03 0.579 0.576 0.561 0.570 0.554 0.542

H73 0.03 0.375 0.386 0.368 0.360 0.354 0.346
H80 0.03 0.634 0.641 0.639 0.619 0.624 0.620

Average 0.658 0.670 0.638 0.648 0.619 0.601

G10-52 0.04 0.948 0.945 0.915 0.930 0.872 0.820
G10-46-5 0.04 1.034 1.079 1.027 1.014 1.042 0.961
G3-I-C-94 0.04 1.032 1.045 0.984 1.023 0.987 0.992

G10-11-43(47) 0.04 0.741 0.734 0.717 0.722 0.699 0.641
Q002789 0.04 0.324 0.310 0.298 0.291 0.283 0.279
Q003418 0.04 0.649 0.655 0.634 0.627 0.618 0.609

H73 0.04 0.412 0.420 0.421 0.428 0.431 0.447
H80 0.04 0.749 0.740 0.759 0.733 0.711 0.723

Average 0.736 0.741 0.719 0.721 0.705 0.684
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Table 4. Cont.

Data σ MRPCA LR [19] [31] [24] Our Method

G10-52 0.05 0.943 1.157 0.911 0.921 0.907 0.857
G10-46-5 0.05 1.167 1.370 1.143 1.110 1.177 1.009
G3-I-C-94 0.05 1.097 1.265 1.024 1.057 1.103 0.983

G10-11-43(47) 0.05 0.867 0.948 0.833 0.802 0.756 0.709
Q002789 0.05 0.331 0.333 0.321 0.325 0.312 0.301
Q003418 0.05 0.729 0.733 0.702 0.711 0.697 0.687

H73 0.05 0.533 0.557 0.519 0.524 0.505 0.495
H80 0.05 0.802 0.823 0.785 0.799 0.791 0.779

Average 0.809 0.898 0.780 0.781 0.781 0.728

G10-52 0.1 1.158 1.188 1.199 1.149 1.045 0.941
G10-46-5 0.1 1.786 1.797 1.667 1.736 1.594 1.494
G3-I-C-94 0.1 1.433 1.453 1.338 1.421 1.281 1.105

G10-11-43(47) 0.1 1.185 1.195 1.164 1.177 1.152 0.912
Q002789 0.1 0.425 0.439 0.415 0.411 0.409 0.401
Q003418 0.1 0.749 0.750 0.736 0.741 0.730 0.724

H73 0.1 0.551 0.536 0.534 0.540 0.528 0.526
H80 0.1 1.103 1.101 1.098 1.067 1.076 0.997

Average 1.049 1.057 1.019 1.030 0.977 0.888

Table 5. SNR metric comparison of six methods using cultural relic data.

Data σ MRPCA LR [19] [31] [24] Our Method

G10-52 0.02 60.10 59.53 59.86 60.99 61.29 62.33
G10-46-5 0.02 66.84 65.79 66.12 64.82 67.73 67.95
G3-I-C-94 0.02 61.03 58.55 61.85 61.42 62.28 62.24

G10-11-43(47) 0.02 66.02 65.88 66.57 65.81 67.21 67.23
Q002789 0.02 57.49 57.43 58.02 57.87 58.26 61.23
Q003418 0.02 62.68 62.70 63.74 66.34 64.54 66.21

H73 0.02 67.86 68.15 70.23 69.31 70.70 72.23
H80 0.02 71.01 69.43 71.26 71.85 73.22 73.22

Average 64.13 63.43 64.71 64.80 65.65 66.58

G10-52 0.03 58.90 58.47 59.03 58.48 59.68 59.78
G10-46-5 0.03 65.57 64.59 65.55 64.95 66.34 66.45
G3-I-C-94 0.03 59.85 59.41 59.88 59.52 61.65 61.49

G10-11-43(47) 0.03 65.54 65.46 66.02 65.83 66.51 66.99
Q002789 0.03 54.23 53.12 56.89 56.12 57.59 59.31
Q003418 0.03 60.43 60.95 61.98 62.35 62.13 62.87

H73 0.03 67.85 68.15 69.85 69.87 70.12 73.01
H80 0.03 69.27 68.99 70.56 70.04 71.23 72.01

Average 62.71 62.39 63.72 63.40 64.41 65.24

G10-52 0.04 57.79 57.37 57.64 57.93 58.25 58.41
G10-46-5 0.04 64.87 64.19 64.60 64.77 65.40 65.51
G3-I-C-94 0.04 58.80 58.77 58.95 59.01 59.37 59.32

G10-11-43(47) 0.04 65.60 64.92 65.22 65.08 66.03 66.13
Q002789 0.04 55.46 56.12 56.13 56.98 57.26 58.72
Q003418 0.04 58.57 58.66 59.02 59.54 60.03 61.23

H73 0.04 66.72 66.39 67.98 67.55 68.31 69.84
H80 0.04 66.54 66.23 66.75 67.12 67.00 67.88

Average 61.79 61.58 62.04 62.25 62.71 63.38



Entropy 2024, 26, 319 19 of 21

Table 5. Cont.

Data σ MRPCA LR [19] [31] [24] Our Method

G10-52 0.05 57.14 56.87 56.75 57.08 57.82 57.96
G10-46-5 0.05 63.78 63.34 63.46 63.57 63.70 63.77
G3-I-C-94 0.05 58.45 57.67 58.25 58.13 59.05 59.11

G10-11-43(47) 0.05 64.27 63.33 64.36 64.56 65.07 65.11
Q002789 0.05 54.64 55.03 56.01 55.46 56.87 56.99
Q003418 0.05 56.44 55.85 56.77 57.03 57.98 58.34

H73 0.05 66.75 66.23 67.41 67.06 66.58 67.56
H80 0.05 63.96 63.18 64.85 64.86 64.23 65.01

Average 60.68 60.19 60.98 60.97 61.41 61.73

G10-52 0.1 54.85 54.93 54.85 54.93 55.00 55.09
G10-46-5 0.1 59.16 59.33 59.15 59.22 59.22 59.30
G3-I-C-94 0.1 55.52 55.29 55.50 55.51 55.52 55.60

G10-11-43(47) 0.1 59.55 59.43 59.54 59.48 59.57 59.66
Q002789 0.1 52.45 52.32 54.51 53.56 53.77 54.90
Q003418 0.1 53.54 53.85 53.67 53.30 53.82 53.14

H73 0.1 63.57 63.33 63.47 63.06 63.83 62.62
H80 0.1 60.86 60.23 61.77 61.66 61.29 62.34

Average 57.44 57.34 57.81 57.59 57.75 57.83

6. Conclusions

The acquisition of cultural relic point clouds can be achieved directly using 3D scan-
ning equipment. However, this process is often imperfect, resulting in noise corruption in
the point clouds. Removing noise from the surface of the cultural relic point cloud while
preserving sharp details is a challenging task. To address this problem, we proposed an
approach that combines color and geometric features to denoise the cultural relic point
cloud. Our approach is based on graph signal processing, in which we formulated the
denoising process as a minimization of graph Laplacian regularization. Utilizing color
and geometric characteristics as signals, we approached the elimination of surface noise
as an optimization dilemma with a graph signal smoothness prior. To evaluate the effec-
tiveness of our denoising approach, we applied it to 3D cultural relic point clouds. It is
important to highlight that the proposed approach is versatile and can be used in different
applications where data are limited. The experimental results show that our approach out-
performs five competing methods, effectively removing noise from the surface of cultural
relic point clouds while preserving important details such as texture and ornamentation to
a great extent.
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