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Abstract: Complex systems are prevalent in various disciplines encompassing the natural and social
sciences, such as physics, biology, economics, and sociology. Leveraging data science techniques,
particularly those rooted in artificial intelligence and machine learning, offers a promising avenue
for comprehending the intricacies of complex systems without necessitating detailed knowledge
of underlying dynamics. In this paper, we demonstrate that multiscale entropy (MSE) is pivotal
in describing the steady state of complex systems. Introducing the multiscale entropy dynamics
(MED) methodology, we provide a framework for dissecting system dynamics and uncovering
the driving forces behind their evolution. Our investigation reveals that the MED methodology
facilitates the expression of complex system dynamics through a Generalized Nonlinear Schrödinger
Equation (GNSE) that thus demonstrates its potential applicability across diverse complex systems.
By elucidating the entropic underpinnings of complexity, our study paves the way for a deeper
understanding of dynamic phenomena. It offers insights into the behavior of complex systems across
various domains.

Keywords: complex system; multiscale entropy dynamics; generalized nonlinear Schrödinger equation;
data science; quasiparticle

1. Introduction

Probability theory is a common thread that binds the fields of statistical physics,
information theory, and data science in sharing standard mathematical and conceptual
foundations. These are interconnected in several ways [1,2] and deal with the analysis of
complex systems and use similar mathematical and statistical tools to model and analyze
these systems. One of the most critical connections between these fields is the concept of
entropy [3]. In statistical physics, entropy measures disorder or randomness in a physical
system and can be used as a main driving force for the second law of thermodynamics [4].
Entropy measures a dataset’s uncertainty or information content in information theory.
Quantum mechanics is conventionally formulated using two conjugate variables that obey
Heisenberg’s uncertainty principle in the Hilbert space. For instance, the momentum p
and the position coordinate q in the form of ∆q∆p ≥ h̄/2. This formulation of Heisenberg’s
principle describes the statistical nature of these self-adjoint operators q̂ and p̂ in the
Hilbert space. The ED formulation of quantum mechanics was introduced in 2009 and
has been applied to fields such as quantum measurement problems [5,6], uncertainty
relations [7], curved space–time [8], scalar fields [9–11], and finance [12]. The ED approach
is an alternative formulation of QM, in which the dynamics of a probability distribution
are derived from the entropy [13,14]. This approach describes the discord between the
quantities’ dynamics and probabilistic nature more conveniently than other approaches. In
the entropic dynamics (ED) formulation, the quantum nature of these operators is given a
secondary role. In fact, in this approach, the uncertainty in these variables stems from the
diffusion process of the Brownian motion of the particles [7,15]. It is important to note that
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momentum is not real in ED formulation but is an epistemic property of wave functions and
not a property of the particles. In classical mechanics, we assume that the particles’ positions
and their momenta are real. In the ED approach, only the positions are real because ED
does not describe particle dynamics but only their probabilities. Another important fact of
the ED formulation is that no conventional momentum is canonically conjugated to the
generalized coordinates. As we mentioned above, the generalized coordinates represent the
probabilities, not the actual positions. Thus, there is no momentum for the particles in the
ED formulation. Of course, we can always consider translations, and following convention,
we can call the generator of translations “linear momentum”. But this is just a name for
operators that are not properties of the particles.

Understanding complex systems is a multidisciplinary field that extracts valuable
insights and knowledge from structured and unstructured data. The nature of unstructured
data must be understood before applying data science techniques to gain physical insights
from the data. Using diverse techniques, methods, and tools from statistics, mathematics,
computer science, and domain-specific knowledge, data science’s roots trace back to data
collection, which has become a ubiquitous aspect of nearly every human activity over
time. As computer facilities have advanced, the ability to gather relevant data from various
sources has created extensive databases. Consequently, ensuring the quality and quantity
of collected data has become paramount, prompting a detailed analysis to investigate their
impact directly. Exploratory Data Analysis (EDA) plays a crucial role in this process, involv-
ing thorough examination, analysis, and data visualization. Its objective is to understand
the data’s patterns, trends, and relationships, facilitating the construction of predictive
models through algorithms that learn from the data at hand.

One crucial aspect of data science is feature data engineering, which involves predict-
ing the evolution of data flow. This process incorporates big data technologies capable of
handling and processing large volumes of data. The field of data science is rapidly evolv-
ing, which requires practitioners to stay up to date on new techniques and technologies.
In this dynamic and interdisciplinary field, finding and implementing models that can
perform fast and efficient analyses and provide realistic predictions over time is essential.
Considerations such as scalability, real-time processing, and model drift are integral to
the practice of data science. Practitioners often specialize in specific areas based on their
interests and expertise. The application of data science is extensive, spanning various
industries, including healthcare, finance, marketing, and technology. In simple terms, the
application of data science to a database of a complex system demands the organization of
data into numerous sets, with each mathematical set comprising data identified by their
physics-dictated similarities. It is to be noted that the concept of similarity in datasets of
complex systems is broad, encompassing scenarios such as sets containing snapshots of
cars crossing red lights at road intersections or exceeding speed limits in specific locations
of special importance. Consequently, we obtain multiple sets, allowing for the identification
of the probability of traffic rule violations, denoted pi, and the estimation of the information
entropy describing the information content. The first probability (pi) represents the ratio of
elements in a particular set to the total number of elements in all sets.

Using probability functions, the next step involves estimating the Shannon information
entropy, denoted Sp. This marks the initial phase. Subsequently, in the second step, we
need to consider the value of police fines established for each of these traffic rule violations.
The fines for the ith type of violation occur with the probability pi and have the value
Ei. Therefore, these fines can be incorporated into the entropy expression using Lagrange
multipliers, e.g., a constant β. By determining the maximum of the total entropy (or
information content) function equal to Stotal = Sp(p1, . . . , pN)+ β ∑i piEi, we find the initial
entropy or content information in the existing dataset. Here, the function Sp(p1, . . . , pN) is
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expressed as Shannon entropy and measures the uncertainty or information content in a
dataset. It is calculated using the formula:

Sp = −
N

∑
i=1

pi log2(pi) (1)

where pi represents the probability of the occurrence of the ith event described the a certain
set of data. In the context of the provided text, this entropy measure is applied to assess the
information content associated with traffic rule violations.

Here, we may reveal the dependence of each pi on the value of the fine Ei in a manner
very similar to what is used in statistical mechanics at the derivation of the Boltzmann
distribution. With this step, the analysis of the existing datasets is concluded, and the
probability distribution of police fines is derived. In the subsequent second stage, our
objective is to find or predict the evolution of this complex system. Here, we used an
analogy between the cost of the fine and the energy in statistical analysis; see Ref. [16].

It is well established that in any complex system in physics, e.g., classical and quantum
gases, the entropy of any initial equilibrium state increases with time during interactions
between particles. This fundamental observation constitutes the cornerstone of the second
law of thermodynamics, with many confirmations. Naturally, this prompts the assumption
that the evolution of entropy, particularly its growth, extends far beyond the conventional
subject of physics. Thus, in the second stage of our approach, our primary objective is to
derive equations for the time evolution of the entropy in any complex system. The evolution
of entropy begins with the initial entropy calculated from the datasets in the first stage of
our approach. In numerous cases this paper considers, the equations governing entropy
evolution are reduced to various nonlinear Schrödinger equations. This is noteworthy,
especially considering that traditional data science methods have been predominantly
used, such as the multidimensional version of gradient descent. While such methods prove
useful in many cases, they face challenges in realistic systems due to their multidimensional
nature. For instance, introducing the system’s internal energy concept, represented as an
integral function of entropy, reveals a complex energy landscape with numerous minima
and maxima. The multidimensional gradient descent method may lead the system to a false
minimum or maximum. An alternative and more advanced approach involves machine
learning. It improves the situation by training the evolution of entropy on the initial time
steps and then extrapolating it for all subsequent times. However, the approach proposed
in this paper offers a comprehensive formulation that can be applied to any database.

We propose using specific equations to describe the dynamics of entropy, which is
found to depend on the characteristics of the system under consideration. In the context
of the information provided by data science, the entropy evolution may be described by
nonlinear Schrödinger equations (NLSEs). It is a partial differential equation that commonly
appears in various areas of physics, including optics, plasma physics, and condensed matter
physics. Its general form is:

ih̄
∂ψ

∂t
= − h̄2

2m
∂2ψ

∂x2 + V(x)ψ + gn|ψ|2ψ (2)

where ψ represents the wave function, t is time, and x is the coordinate of the generalized
spatial position, as in classical mechanics. h̄ is the reduced Planck constant, m is the particle
mass, V(x) is the potential energy, and the constant gn characterizes the strength of the non-
linearity. This equation describes the evolution of the wave function ψ(t) over time, and its
nonlinearity term gn|ψ|2ψ is a key feature that distinguishes it from the linear Schrödinger
equation. In the context of the provided information, the use of nonlinear Schrödinger
equations suggests that the evolution of entropy in certain complex systems follows a
mathematical framework akin to that of quantum mechanics. The specifics of how these
equations are adapted or derived for entropy evolution in data science applications require
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a more detailed understanding of the particular system and the associated mathematical
modeling choices.

The presented methodology of multiscale entropy evolution (MEE) can be applied
to any complex system and is useful in data science. The details of the methodology,
such as the concepts and main framework, are given in the next section. There, the goal
of our approach is to find entropic dynamics, which represent the evolution function of
information contained in data. The paper is organized as follows: In Section 2, the main
concepts and general framework of the multiscale entropy (MSE) and its evolution, i.e.,
multiscale entropy evolution or dynamics (MEE or MED), are presented. Section 3 provides
mathematical concepts of the MED formulation and framework. It also delineates the MED
formulation of QM, which is briefly presented. The approach to complex systems using
MED is discussed in Section 4. We demonstrate how the MED framework can be used to
derive the Generalized Nonlinear Schrödinger Equation (GNSE). In Section 5, the derived
GNSE is applied to quasi-particle dynamics (e.g., plasmons) or solitons and other nonlinear
phenomena. Furthermore, a form for interacting electromagnetic fields with solitons is also
presented. The effect of temperature and pressure on the evolution of the complex system
of quantum particles is presented in Section 6. The ramifications of the presented results
are discussed at length in Section 7. In this section, we present reasons that the relation of
MED-determined quantities can be applied to data science. The overall conclusions drawn
from this study are presented in the last conclusions Section 8.

2. Main Concepts and General Framework

Here, below, we outline the main concepts of multiscale entropy (MSE) and its evolu-
tion, MEE, and the general framework for their broad applications.

2.1. The Concept of Multiscale Entropy (MSE)

We start by defining entropy as a measure of disorder or uncertainty in a system, high-
lighting its importance in various fields such as physics, information theory, and economics.
In information theory, it is a measure of the amount of information. This is usually described
by the Shannon entropy equation, a generalization of the Boltzmann Entropy associated
with the number of microstate configurations. Multiscale entropy is a method to analyze
complexity and irregularity at different scales or levels of a system [17,18]. Entropy is a
fundamental concept in thermodynamics and information theory that quantifies the degree
of disorder or randomness of a system. In thermodynamics, entropy is related to the num-
ber of microstates associated with a macroscopic state of a system, reflecting the system’s
tendency to evolve towards equilibrium. In information theory, entropy measures the
uncertainty or content of a random variable. The entropy of a system is typically indicated
by S and is defined by the Boltzmann formula:

S = k lnW (3)

where:

• k is the Boltzmann constant (1.38 × 10−23 J/K in SI units);
• W is the number of microstates corresponding to the macroscopic state of the system;
• ln represents the natural logarithm.

Entropy increases in a closed system over time, reflecting the trend toward increasing
disorder or randomness. Multiscale entropy (MSE) is an extension of entropy analysis
that considers entropy on different time scales or resolutions [19]. It is particularly useful
for studying complex systems with varying dynamics on multiple temporal scales. The
concept of MSE involves calculating entropy measures at different scales and examining
how entropy changes with scale. The general concept of multiscale entropy (MSE) can be
represented mathematically as follows [17,20]:
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1. Calculate the sample entropy Sm for a time series x(t) at a specific scale m.

Sm = ln Cm(r) (4)

where Cm(r) is the conditional probability that two sequences of length m + 1 with
distance less than r are similar.

2. Calculate the average entropy on all scales from m = 1 to M, where M is the
maximum scale.

MSE =
1
M

M

∑
m=1

Sm (5)

The MSE is a mathematical concept that characterizes the diversity or variability
observed in different scales within a system and offers insight into how emergent properties
influence all subsystems of the system. Emergent properties refer to novel behaviors or
patterns arising from individual components’ interactions within a complex system. In
the context described, strong emergent properties manifest themselves as oscillations
of a multiscale variety, sometimes exhibiting negative values, a distinctive feature of
such phenomena [17]. These emergent properties often have significant implications for
the behavior of the system and have numerous applications [20]. An example of the
relevance of multiscale entropy in social systems lies in understanding various allocation,
optimization, and functional requirements that govern system behavior. These could
include resource allocation strategies, process optimization, or functional requirements
that shape individuals or groups within the system [19]. Multiscale complex system
analysis, particularly multiscale entropy evolution, may improve the effectiveness of
healthcare and public health [21]. Investigation of memory consolidation across different
age groups found that multiscale entropy (MSE) is a sensitive measure to improve memory
mechanisms [22]. The MSE measures can distinguish sleep stages in preterm infants [23,24].
Jelinek et al. applied multiscale Renyi entropy on HRV, highlighting its efficacy in detecting
differences between disease classes [25]. El-Yaagoubi et al. have studied MSE evolution
(MEE) over long periods, revealing significant differences between heart conditions [26].
The MSE concept helped to develop an entropy-based structural health monitoring system,
demonstrating the utility of MSE in assessing structural damage [27]. Furthermore, strong
emergent properties suggest a causal relationship that operates from the global to the
local level. This concept challenges traditional scientific notions that adhere to a strict
local-to-global causality framework. Although this conceptual change may initially be
unsettling, it offers valuable information on the dynamics of biological and social systems.
Understanding and incorporating these global-to-local causal relationships is crucial to
developing more comprehensive models of complex systems, contributing to a deeper
understanding of their behavior and dynamics and making a realistic diagnosis. For
example, using the MSE concept, Ge et al. proposed a bearing failure diagnosis technique
that employs robust local principal component analysis and multiscale permutation [28].
At the same time, Perpetuini et al. utilized fNIRS MSE to diagnose early Alzheimer’s
disease, showing promising diagnostic capabilities [29].

The MSE algorithm involves several steps, such as the following:

1. Divide the time series x(t) into non-overlapping segments of length m.
2. Calculate the sample entropy Sm for each segment at scale m.
3. Average the sample entropy values over all scales to obtain the multiscale entropy.

This approach allows for the analysis of the entropy of complex systems in stationary
states with no temporal resolution; therefore, it cannot reveal patterns and complexities
that may be apparent when considering entropy on a single scale. Therefore, the MSE
can be defined as a composite measure that reflects the overall complexity of a time series
signal across multiple scales. It is obtained by averaging the sample entropy values on all
scales from m = 1 to M.
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2.2. The Concept of Multiscale Entropy Evolution (MEE and MED)

On the other hand, the multiscale entropy evolution (MEE) or MED approach involves
computing sample entropy at various scales and time domains, averaging these entropies
to obtain MSE [17–19]. The importance of MSE and MEE has already been shown in
numerous examples. Thus, Keshmiri et al. examined human activity using MSE, indicating
increased complexity with physical embodiment, reflecting perceived fatigue [30]. Xu et
al. analyzed the complexities of Wikipedia page views with short-time series MSE (sMSE),
providing insights into human website search behaviors [31]. Shang et al. introduced a
novel feature extraction method for partial discharge fault analysis utilizing variational
mode decomposition and multiscale dispersion entropy, showcasing the versatility of
MSE in fault analysis applications [32]. The framework presented here allows researchers
to study how complexity and irregularity change over different time scales, providing
valuable insights into the behavior of complex systems. We show that such evolving system
dynamics can be analyzed using GNSE or similar linear or nonlinear equations in the
general case, which can be written as:

h̄
∂

∂t
ψ = Ĥψ (6)

where:

• ψ represents the system’s wave function.
• Ĥ is the Hamiltonian operator representing the system’s energy operator, which, in

general, may depend on ψ.
• h̄ is the reduced Planck constant.
• t is time.

2.3. General Concept of Complex Systems

A complex system can be defined as a system characterized by the presence of multi-
ple interacting components or agents, often exhibiting emergent properties and nonlinear
behavior [33]. Examples of complex systems in various domains include the following.
1. Biological networks: Biological systems such as gene regulatory networks, metabolic
pathways, and neural networks are highly complex. The interactions between genes,
proteins, and other biomolecules give rise to emerging properties, such as robustness,
adaptability, and the ability to evolve. 2. Ecological Systems: Ecosystems are complex
networks of interactions between living organisms and their environment. They involve
intricate food webs, nutrient cycles, predator–prey relationships, and feedback mecha-
nisms. Changes in one part of an ecosystem can have cascading effects throughout the
system. 3. Social Networks: Social systems, including social media networks, organi-
zational structures, and human societies, are complex due to the diverse and dynamic
interactions between individuals, groups, and institutions [34]. These interactions lead
to information diffusion, opinion formation, collective behavior, and social dynamics.
4. Financial Markets: Financial systems are complex networks of interactions between
investors, financial institutions, assets, and economic factors. The behaviors of market par-
ticipants, coupled with factors like risk perception, market sentiment, regulatory changes,
and global events, contribute to the complexity of financial markets. This complexity can
lead to market bubbles, crashes, and systemic risks. Understanding and analyzing complex
systems requires approaches that consider the system as a whole rather than focus solely on
its components. Techniques such as network theory, associated agent-based modeling, and
network system dynamics play crucial roles in studying and modeling complex systems in
diverse disciplines [33].

2.4. The Main Framework of Application of MSE, MEE, and MED

Just like the case of MSE, the application of MEE and MED methodology to ana-
lyze and model complex systems also involves several steps and strategies. Here is a
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general description of how MED can be applied. 1. Data Collection and Preprocess-
ing: The first step is to gather data related to the complex system under study. This
could be time series data, network data, or any other relevant data format. To prepare
for analysis, data may need pre-processing, such as normalization, filtering, or feature
extraction. 2. Scale selection: Determine the appropriate scales or levels of observation for
the analysis. This involves deciding the range of scales (from fine to coarse) to compute
entropy measures. 3. Entropy Calculation: Calculate entropy measures at each selected
scale. This typically involves computing Sample Entropy (S) or other entropy measures
for different window sizes or resolutions across the data. 4. Multiscale Entropy (MSE):
Compute multiscale entropy (MSE) by averaging the entropy values across all selected
scales. MSE provides a comprehensive measure of complexity and irregularity across
multiple temporal scales. 5. Pattern Analysis: Analyze patterns and trends in the MSE
values. Look for changes in complexity over time or across different scales, which can
reveal important dynamics within the complex system. 6. Modeling and Simulation: Use
the insights from MED to develop models or simulations of the complex system. This may
involve creating mathematical models based on the observed entropy dynamics or using
computational simulations to simulate system behavior. 7. Validation and Interpretation:
Validate the models or simulations against real-world data to ensure their accuracy and reli-
ability. Interpret the results in the context of the complex system’s dynamics, patterns, and
interactions. 8. Application to Real-World Problems: Apply the MED approach to real-
world problems or scenarios related to the complex system. This could include predicting
future trends, identifying anomalies or critical events, or optimizing system performance
based on entropy dynamics. The MED method proposed in the paper provides a systematic
framework for analyzing the dynamics, patterns, and interactions within complex systems
by leveraging entropy measures across multiple scales. Combining mathematical analysis,
statistical techniques, and computational modeling allows us to understand the underlying
mechanisms that drive complex system behavior.

2.5. Advantages of MEE Approach

There are several advantages to using MEE and MED to study complex systems
and their importance in data science and interdisciplinary research. For instance, below,
we will show that the MED approach can capture the multiscale nature of complexity,
identify patterns, detect anomalies, and provide insights into system behavior. In this
way, the MED approach offers several advantages when applied to studying complex
systems, making it a valuable tool in data science and interdisciplinary research in the
following areas. 1. Multiscale Nature of Complexity: One of the key advantages of MED
is its ability to capture the multiscale nature of complexity within a system. By analyz-
ing entropy measures across different temporal scales or levels of observation, MED can
reveal how complexity manifests and evolves at various resolutions. This is crucial for
understanding complex systems where phenomena occur at multiple scales simultane-
ously. 2. Pattern Identification: MED enables the identification of patterns and structures
within complex systems. Analyzing entropy dynamics across scales makes it possible to
detect recurring patterns, trends, and regularities that may not be apparent on a single
scale. This helps researchers uncover the underlying dynamics and relationships within
the system. 3. Anomaly Detection: MED’s advantage is its ability to detect anomalies
or deviations from expected behavior within complex systems. Sudden changes in en-
tropy measures on all scales can indicate the presence of anomalies, critical events, or
unexpected changes in system dynamics. This ability is valuable for early warning sys-
tems and anomaly detection algorithms. 4. Insights into System Behavior: By studying
entropy dynamics using MED, researchers gain valuable insights into the behavior of
complex systems. Changes in entropy over time and across scales provide clues about
the stability, resilience, phase transitions, and emergent properties of the system. This
deeper understanding helps to make informed decisions and design control and system
management interventions. 5. Interdisciplinary Research: MED bridges the gap between
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disciplines by providing a common framework for analyzing complex systems. It allows
researchers from diverse fields, such as physics, biology, economics, and social sciences, to
collaborate and gain insight into complex phenomena using a unified approach. This inter-
disciplinary nature of MED fosters the cross-pollination of ideas and accelerates innovation.
6. Data Science Applications: In data science, MED plays a significant role in the analysis
of large-scale datasets and the extraction of meaningful information. Its ability to capture
multiscale complexity makes it suitable for processing complex and high-dimensional
data, such as time series, network, and spatial data. MEE- or MED-based analyses con-
tribute to the advancement of data-driven decision-making and predictive modeling. MED
offers a powerful framework for studying complex systems, providing a holistic view
of system dynamics, uncovering hidden patterns, detecting anomalies, and facilitating
interdisciplinary research and data science collaboration. Its importance lies in its ability to
handle the inherent complexity of real-world systems and extract actionable insights for
various applications.

2.6. The Major Benefits of the Method

Some selected examples that follow show how MED can be applied to different
complex systems, namely biological networks, climate models, financial time series, and
social dynamics. 1. Biological networks are the first example of the analysis of protein–
protein interaction networks. MED can potentially reveal the hierarchical organization and
modularity of these networks, identifying key protein clusters and their roles in cellular
functions. This helps to understand the propagation of signals, resilience to perturbations,
and disease mechanisms. In this way, the challenge of capturing dynamic changes in
network topology, quantifying information flow across scales, and integrating omics data
for comprehensive analysis can be addressed using MED in identifying biomarkers, drug
targets, and regulatory pathways, advancing personalized medicine and system biology.
2. Climate models study climate variability and extreme weather events. The MED ap-
proach can uncover multiscale temperature, precipitation, and atmospheric dynamics
patterns, elucidating the drivers of climate change, El Niño/La Niña phenomena, and
regional climate impacts. MED helps integrate observational data with climate models,
quantify uncertainty, and predict long-term trends and abrupt shifts. Therefore, it improves
climate projections, informs adaptation strategies, and improves risk assessment for climate-
related hazards. 3. Financial time series are used to analyze stock market fluctuations
and risk management. Again, the MED approach can detect temporal correlations, volatil-
ity clusters, and regime changes in financial data, highlighting market trends, investor
behavior, and systemic risk factors. In this application, the MED approach can model
nonlinear dependencies, handle high-frequency data, and mitigate market anomalies and
bubbles. Therefore, MED-driven analyses inform algorithmic trading strategies, portfolio
optimization, and early warning systems for financial crises. 4. Social networks control
social dynamics and information diffusion, which can be handled using the MED approach.
MED can reveal community structures, influence propagation patterns and sentiment
dynamics on online platforms, and facilitate understanding of social trends, polarization
phenomena, and spreading misinformation. In this way, dynamic interactions are modeled,
user engagement patterns are captured, and privacy concerns and ethical considerations are
addressed. MED-based studies can inform digital marketing strategies, policy interventions
for online platforms, and crisis communication strategies. Through these examples, MED
demonstrates its versatility in the analysis of diverse complex systems, providing valuable
information, addressing specific challenges, and contributing to a deeper understanding
of complex phenomena in various domains. By adopting this structured approach, the
paper can provide a clearer and more comprehensive understanding of how multiscale
entropy dynamics is applied to complex systems, avoiding the fragmentation of examples
and ensuring a unified conceptual framework for readers to grasp the methodology and
its implications.
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2.7. Illustrative Applications of the Method Framework

Finally, we would like to describe how to utilize the multiscale entropy (MSE) evolu-
tion method for data science in the context of the Chinese carbon market, which is vital
for the climate change of the Earth [35]. Here, we can follow these steps: First, we must
perform data collection by gathering relevant data on carbon emissions, trading volumes,
prices, and market behavior from the pilot markets in China. Then, we must perform data
preprocessing by cleaning and preprocessing the data to ensure accuracy and reliability.
This may involve handling missing values, removing outliers, and normalizing data if
necessary. In the next step, we must apply MSE to the preprocessed data to assess the
complexity of the Chinese carbon market across different time scales. This analysis will
provide insights into the patterns and dynamics of market behavior. Next, we utilize the
moving average method for scale extraction [35], considering the limited dataset available
for analysis. In the last steps, we perform an interpretation of findings, which is an analysis
of the results of the MEE to understand the level of complexity in China’s pilot carbon
markets and to identify any trends or patterns in complexity levels across different time
scales. In the final step of the framework, we should perform a comparison with the
European market: here, we compare the complexity levels observed in the Chinese carbon
market with those in the European market, as discussed in this paper. This comparison
will help contextualize the findings and identify any differences or similarities between
the two markets and deduce implications for policy and investment. Here, we use the
findings of the MSE and MEE analysis to inform policy decisions and investment strategies
related to the Chinese carbon market. For example, if the analysis reveals low complexity
and market inefficiency, policymakers may consider implementing measures to improve
market transparency and efficiency. Similarly, investors can use this information to make
informed decisions about carbon trading in China. Hence, following these steps, we can
effectively utilize the MSE evolution to gain insight into the complexity and dynamics
of the Chinese carbon market, informing decision-making and policy formulation in the
context of mitigating climate pollution.

3. Formulation of the General MED Framework

Nelson [36] derived the Schrödinger equation based on three assumptions—the back-
ground field hypothesis (Brownian motion), the requirements that Newton’s law gives the
mean acceleration, and that the current velocity is a gradient. However, in a later work [37],
Nelson avoided Newton’s law and required the diffusion process to be non-dissipative
so that the expected energy is constant over time. However, this is a common feature of
Bayesian or entropic inferences, where the goal is to update the prior probability to the
posterior probability when new information becomes available. The new information could
be in data (Bayesian inference) or constraints (entropic inference). In both cases, the two
methods of inference are atemporal. It does not matter whether the posterior is obtained in
the past or present; one obtains the same result. The ED framework differs from stochastic
mechanics in ways that are delineated next. The ED formulation for a particular quantum
system begins with defining the entropy functional subjected to relevant constraints of
the system and defining the notion of entropic time. Relevant constraints are those that
lead to the desired theory. Since our main concern is to derive quantum theory using ED,
the relevant constraints are the phase and gauge constraints. Once the constraints are
incorporated and the functional entropy is optimized, one obtains the transition probability,
which is timeless. Interestingly, it is possible to introduce time in ED. Consider a particle
that moves from the initial position x to the final position x′. Generally, both positions
are unknown. We deal with the joint probability P(x, x′). Then, using the product rule of
probability, we obtain the following:

P(x, x′) = P(x′|x)P(x) , (7)
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where P(x′|x) is the probability of x′ given x. Since x is also unknown, we marginalize
over x to obtain the following:

P(x′) =
∫

dxP(x, x′) =
∫

dxP(x′|x)P(x) , (8)

where P(x) is the probability of the particle being located at position x.
P(x′) is the particle at position x′. x occurs at an initial instant t, and x′ occurs at a

later instant t′. Therefore, we finally set the probabilities in the following manner:

P(x) = ρ(x, t) and P(x′) = ρ(x′, t′) . (9)

Time is introduced as a bookkeeping device in the ED formulation that keeps track of
changes. The notion of time is further elaborated in Section 4, where the duration of time is
also obtained.

The emergence of new information technologies has led to the rise of data science,
which involves the analysis of large and complex datasets to make predictions about the
evolution of systems. Data science has become essential for companies and organizations
to gain insight into their customers and operations and make data-driven decisions. To
perform a data analysis, one must first take a dataset and break it down into subsets. By
analyzing the diversity of these subsets, one can determine the probabilities of realizing
different outcomes. This approach is based on the principles of probability theory, which
involves quantifying uncertainty and measuring the likelihood of other events. Using
data analysis, one can use statistical mechanics to make predictions, which Boltzmann first
introduced. This method is based on entropy, which measures the amount of disorder or
randomness and the information in a system. By applying statistical mechanics to a dataset,
one can determine the most likely outcomes and predict the system’s future evolution.
We propose the following. Take a dataset and analyze it to decompose it into an arbitrary
number of subsets. Then, using the diversity of those subsets, determine the probabilities for
realizing the different subsets. Probabilities can be determined using statistical mechanics
methods completely compatible with the presented MED methodology.

As we deal with the multiscale methodology, the additional ingredient is to sum over
all scales representing the hierarchal system of particles or entities. The Q(x′, s′|x, s) is
called the prior probability distribution, which we obtain from our dataset, as mentioned
above. The unknown function is the transition probability P(x′, s′|x, s), which is analogous
to the transition probability distribution for a single particle when it moves from position x
to a neighboring point x′, where s, s′ are scaling indices or arbitrary variables of the dataset
being considered. Our goal is to find the transition probability. But first, we have to find
the prior, which we obtain from analyzing the information dataset under consideration.

The main idea of our approach is that in any system, with time, the entropy rises.
The same happens in the case of the second law of thermodynamics, which deals with
a complex system and many particles. So, we consider the dynamics of entropy in the
MED methodology in the same way as it is done in the second law of thermodynamics.
Therefore, our goal in this paper is to extend the application of ED [14] to a complex system
that can be described using some complex dataset. The mathematical tools needed for a
system of such directly non-interacting particles go beyond the usual statistics and calculus.
Since a system of particles or a complex system can involve several constraints, one needs
to adopt a multifaceted and multiscale approach to formulate the equations that describe
the system accurately [38] (see the references therein). The proposed MED methodology
has applications in both the natural and social sciences. For instance, the brain is a complex
system of neurons, and in the same way, society is a complex system of communication
networks. The universe itself is a complex system too, as it is comprised of planets, stars,
and ultimately galaxies.

In this paper, we consider a complex system as an example of how to extend the ED
method to the MED method, with the eventual goal of applying the MED method to the
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field of data science. As an illustration, we apply MED to complex systems under special
constraints, and it results in a well-known form of the Generalized Schrödinger Equation
(GSE). The set of equations obtained is identical to the nonlinear Schrödinger equations
(NLSEs) that have been applied to various systems, including superconductivity. In other
words, the equations derived under the MED approach describe the dynamics of nonlinear
systems in physics consisting of plasmons, deformons, polarons, condensons, and optical
or matter solitons. The dynamics of solitons are of great interest in describing the properties
of new emerging fields of materials science, e.g., nonlinear optics, two-dimensional (2D)
materials, cold and hot plasma physics, and crystal lattice dynamics. As an example, the
matter solitons are considered non-relativistic quanta of matter waves and represent Bose–
Einstein condensates (BECs) of atoms and electrons [39–44]. The first form of the NLSEs
likely appeared in Landau’s phase transition theory, where he first introduced the cubic
term in the Schrodinger equation that describes the order parameter [45]. Later, in 1950,
this equation was applied by Ginzburg and Landau to superconductors, and the NLSE
gained a new meaning, the famous Ginzburg–Landau equation [46]. Later, in the 1960s, the
idea was applied to BECs, and the NLSE was named the Gross–Pitaevskii equation. On
the other hand, an electron trapping by a crystal lattice was first described by Lev Landau
in 1933 [39]. Solomon Pekar proposed the concept of the polaron in 1946 [47], which was
further developed by Landau and Pekar in a 1948 paper [48]. This theory suggested that
polarons, not free electrons, were the charge carriers in ionic crystals. Unlike quantum
electrodynamics, the polaron theory is free from divergences, and the electron energy and
mass remain finite. Today, research on polarons continues to expand into new areas of 2D
materials, where new forms of NLSEs have been obtained [49]. In general, it would also be
interesting to consider these new phenomena from the principle of MED and compare them
with conventional approaches. In particular, for a description of nonlinear waves, the NSLE
was originally derived by Zabusky and Kruskal [40], but using MED, one may include the
physics of many non-equilibrium phenomena, dissipation, and scattering, and it can be
used to describe the dynamics of solitons in 2D materials or many-body soliton physics.

4. Application of MED Methodology to a Complex System

As stated above, our eventual goal is to introduce the MED methodology to the field of
data science. As an illustration, we apply it to describe the dynamics of quantum particles,
namely solitons. However, a complex data science system may also have particles such as
fractals, which are self-similar structures. Fractals are found in nature, in addition to being
constructed experimentally and mathematically. Clouds, lightning, and coastlines are natural
fractals, and the Sierpinski triangle is an example of geometrical fractals [50]. Moreover,
geometrical objects are also fractals and can be found in Benoit B. Mandelbrot’s foundational
book on fractals [51]. The creation of fractal solitons has been discussed in [52].

For a quantum statistical system, one must first specify the microstates, the prior
probability distributions, and the constraints at the stage. Similarly, in a data science
application, the prior probability distributions originated directly from the existing dataset
which is the subject of the main complex system analysis. The most important part of this
analysis is to find which constraints have been used in collecting the existing data. The
correct evolution of entropy strongly depends on these constraints. In the next step, we
must incorporate these limitations in the entropy function. With these taken into account,
we arrive at a traditional generalized Boltzmann-like expression of entropy. To derive the
linear Schrödinger equation (LSE), one considers N non-interacting particles living in a flat
Euclidean space. It is assumed that particles have definite initial positions (and indefinite
values of momenta) and yet-unknown values that are desired to be inferred. The different
definite initial positions of the particles form a dataset. Such a dataset can be very large
depending on how many initial positions for a single particle we will consider. The dataset
can also be split into subsets associated with different scales, e.g., the fractal. Note that the
microstates at each scale are different. The devised MED methodology is given below in
the following steps.
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4.1. MED Functional

At each scale, the particle is assumed to reside in a Euclidean space Xs with metric
δab, with a = 1, 2, 3 for spatial coordinates. And for all particles at that scale, we have
XNs = Xs × . . . ×Xs, which is 3Ns-dimensional configuration space. The positions of the
particles are given by xa

i ∈ XNs , where the index i = 1, 2, . . . Ns. We represent xa
i collectively

by x. The multiscale entropic functional for a system can be written as (see a review on ED
in [14]):

S[P, Q] = −∑
s′

∫
dnx′P(x′, s′|x, s) log

P(x′, s′|x, s)
Q(x′, s′|x, s)

, (10)

which is the extension of the functional entropy in [14]. As we are dealing with multiscale,
the additional ingredient is to sum over all scales. Here, Q(x′, s′|x, s) is the prior probability
distribution, and P(x′, s′|x, s) is the transition probability distribution as the particle moves
from x to a neighboring point x′, where s, s′ are scaling indices. Our goal is to find the
transition probability. But first, we have to determine the prior probability distribution.
Any specific dataset can be obtained directly by classifying different snapshots. For the
particular case of our many-particle system, as the ideal gas is to be determined prior, we
will follow the original Boltzmann approach.

4.2. Prior Multiscale Probability Distribution Functional

The prior multiscale probability distribution functional Q(x′, s′|x, s) codifies the rela-
tion between x and x′ before the information contained in constraints has been processed,
where all particle positions are equally probable. In other words, we seek to find an invari-
ant prior distribution under translation and rotation. It can be obtained by maximizing the
following relative entropy:

S(Q) = −∑
s′

∫
dnx′Q(∆x) log

Q(∆x)
µ(∆x)

, (11)

where ∆x = x′ − x is relative to the uniform measure µ(∆x), subject to normalization and
a constraint that concerns short steps,

∑
s′

∫
dnx′Q(x′, s′|x, s)δab∆xa

i ∆xb
i = ⟨∆ℓ2

i ⟩ , (i = 1, 2, . . . , Ns′) (12)

where ⟨∆ℓ2
i ⟩ are constants equal to the square of the average displacement between the

points x and x′. The index i indicates that Ns′ constraints at each scale are rotational
invariant, as given below.

Q(x′, s′|x, s) ∝ exp

[
−1

2 ∑
s′

Ns′

∑
i

1
σ2

s′ ,i
δab∆xa

i ∆xb
i

]
(13)

where σ2
s′ ,i is a Lagrange multiplier, which will be determined later (see Equation (20).

To ensure small steps, this Lagrange multiplier must be very small. The right-hand side
is the product of the Gaussian function, meaning that the short steps are independent.
Equation (13) is a prior probability distribution that only takes into account the original
positions of a particle before the actual constraints or information are incorporated, such as
the influence of the EM field. It only describes motion in short steps as the particle moves
from x to x′. We want to write down a form of Equation (10) that works for describing the
dynamics of particles and quasiparticles in solids, considering the case when the isotropic
symmetry of the space is broken, e.g., by applying an external electric field. This symmetry
breaking requires the inclusion of extra constraints listed below. In this way, the transition
probability distribution P(x′, s′|x, s) will be determined. The isotropic symmetry breaking
of the probability distribution can be achieved by introducing an external force per unit
charge that depends on space. Consequently, it results in space-dependent symmetry
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breaking as well. In any complex system of data science, it is caused by the gradient of a
scalar external potential. In this case of the complex system, it is the electric field generated
by the gradient of electric ”potential” ϕs(xa) that satisfies the following constraint:

∑
s′

∫
dnx′P(x′, s′|x, s)∆xa ∂ϕs

∂xa = κ1,s (14)

This constraint is called the drift potential constraint in the context of a complex
system. The κ1,s are constants related to equipotential lines. These equipotential lines are
related to the cross-section perpendicular to the applied field.

The time-dependent symmetry breaking of the probability distribution can also be
achieved by external force per unit charge that depends upon the time. This implies that
a time-varying potential and a vector must generate the time-dependent component of
the external force. For example, in the case of a complex system, the external electric
field can also be generated by the rate change of the vector magnetic potential. This
symmetry-breaking constraint can be imposed in the following form:

∑
s′

∫
dnx′P(x′, s′|x, s)∆xa Aa = κs

2 (15)

where Aa is the vector potential, which is a function of space and time, and the κs
2 are con-

stants that represent the average displacement in the direction of the vector potential. Note
that an arbitrary form of the vector potential can be selected, resulting in the meaningless
form of symmetry breaking. Therefore, its gauge-invariant form must be selected. The
gauge-invariant form of vector potential implies that it causes the symmetry breaking of
the probability distribution functional simultaneously in time and space. This is why the
symmetry breaking of the probability distributional functional in space due to the vector
potential must be included, and it has been performed in the following way:

∑
s′

∫
dnx′P(x′, s′|x, s)∆xaϵabc ∂Ac

∂xb = κ1,s (16)

Here, ϵabc is an anti-symmetric Levi–Civita symbol. This constraint is also called the
drift potential constraint in the context of a complex system because of the drift of the vector
potential. Therefore, in this case, κ1,s are the same constants related to equipotential lines.

4.3. Optimization of MED Functional

The maximized multiscale MED functional of the equation is subject to the constraints
Equations (14) and (15). We obtain the following result for the transition probability by
combining both constraints.

P(x′, s′|x, s) ∝ exp

[
−1

2 ∑
s′

Ns′
∑
i

(
1

σ2
s,i

δab∆xa
i ∆xb

i − α′s,i∆xa
i

∂ϕs

∂xa
i
+ βs′ ,i∆xa

i Aa

)]
, (17)

where σ2
s,i, α′s,i, and βs′ ,i are Lagrange multipliers, which will be expressed in the form

of Planck’s constant h̄, the speed of light, and the charge of an electron. For the sake of
completeness, we should note that the gauge invariance of Equation (17) can be achieved
and may be written in the following way:

P(x′, s′|x, s) ∝ exp

[
−1

2 ∑
s′

Ns′
∑
i

(
1

σ2
s,i

δab∆xa
i ∆xb

i − α′s,i∆xa
i

∂ϕs

∂xa
i
+ βs′ ,i∆xaϵabc ∂Ac

∂xb

)]
. (18)

In the MED formulation, we derive below the transition probability in the Gaussian
form with time evolution. This formulation explicitly applies to Brownian motion in the
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general form of transition probability and entropic time. The entropic time is explained
and derived next.

Any notion of time must involve motion and change [53]. In MED, motion or change is
described by the transition probability given by (17). It is desired to obtain a small change.
Large changes can be obtained by accumulating small or short steps. It should be noted that
any notion of time must have (a) something one might identify as an instant, (b) a sense in
which these instants can be ordered, and (c) a convenient concept of duration measuring the
separation between instants [54]. In ED, an instant is defined by the information required
to generate the next instant. The point x occurs at time t, and x′ occurs at t′. Therefore,
probability distribution evolves according to

ρ(x′, s′, t′) = ∑
s

∫
dtdxP(x′, s′|x, s)ρ(x, s, t). (19)

We write ρ(x, s, t) = ρs(x, t). Having introduced the notion of time, the next step is
defining a time duration. Since our goal is to derive GSE, constructing a Newtonian interval
independent of the position x and time t suffices. This can be achieved by the Lagrange
multiplier σ2

s,i being constant such that

1
σ2

s,i
=

mi,s

ηs∆t
(20)

where mi,s are the particle masses, and ηs is a constant, which will be shown later to be h̄.
Furthermore

Mab = ms,iδab , (21)

where Mab is effective mass matrix. We have

P(x′, s′|x, s) ∝ exp
[
− 1

2ηs∆t
Mab(∆xa − ⟨∆xa⟩)(∆xb − ⟨∆xb⟩)

]
. (22)

Here,
∆xa = ⟨∆xa⟩+ ∆wa , (23)

with

⟨∆xa⟩ = ηs∆tMab
(

α′s,i
∂ϕs

∂xb − βs Ab

)
, (24)

⟨∆wa⟩ = 0 and ⟨∆wa∆wb⟩ = ηs∆tMab . (25)

This is Brownian motion because of the drift ⟨∆xa⟩ ∼ O(∆t) and the fluctuation
∆wa ∼ O(∆t1/2). The trajectory is continuous but not differentiable.

4.4. Dynamic Representation of MED Functional

The probability ρs(x, t) evolves according to the Fokker–Planck (FP) equation given below.

∂ρs

∂t
= −∂a(va

s ρs) . (26)

Note that s is the scaling index, and a = 1, 2, 3 are spatial indices. A summation over
repeated indices should be understood. Here, va is the current velocity given by

va
s = Mab(α′s,i∂aΦs − βs Aa) (27)

where Φs = α′s,iηsϕs − ηs log ρ1/2
s So far, we only have one dynamical variable, ρs, which

evolves according to Fokker–Planck (FP) equation. To derive the Schrödinger equation,
we need two dynamical variables, the probability ρs and phase Φs. To promote Φs to a
dynamical variable, we need another constraint H = H(ρs, Φs), where H is an energy
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functional. By requiring that the energy is conserved, we also obtain the second dynamical
variable. The functional H(ρs, Φs) can be constructed by writing the FP equation as

∂ρs

∂t
=

δH
δΦs

. (28)

It can easily be checked that the appropriate energy function is given by

H(ρs, Φs) = ∑
s

∫
dxρs

(
1
2

Mab(∂aΦs − βs Aa)(∂bΦs − βs Ab) + Vs(x)
)
+ ∑

ss′
gss′ F(ρs, ρs′) , (29)

where V(x) is a scalar potential, F(ρs, ρs′) is an integration to be determined below, and
gss′ is the complexity coefficient. This term leads to the nonlinear Schrödinger equation.
We have

δH
δρs

=
1
2

Mab(∂aΦs − βs Aa)(∂bΦs − βs Ab) + Vs(x) + ∑
s′

gss′
δF(ρs, ρs′)

δρs
(30)

Taking total time derivative of Equation (29) and require it to be conserved and also
incorporate Equation (28),

dH
dt

= ∑
s

∫
dx
[

δH
δΦs

∂tΦs +
δH
δρs

∂tρs

]
= ∑

s

∫
dx
[

∂tΦs +
δH
δρs

]
∂tρs = 0 (31)

It holds for all ∂tρs, which means that

∂Φs

∂t
= − δH

∂ρs
. (32)

We obtain

∂Φs

∂t
= −1

2
Mab(∂aΦs − βs Aa)(∂bΦs − βs Ab)− Vs − ∑

s′
gss′

δF(ρs, ρs′)

δρs
. (33)

This is the quantum Hamilton–Jacobi equation. Equations (26) and (33) can be
combined using

ψs = ρ1/2
s exp[ikΦs/ηs] . (34)

The result is

iηs

k
∂ψs

∂t
=

η2
s

2k2 Mab(i∂a − βs Aa)(i∂b − βs Aa)ψs + Vsψs +
η2

s
2k2

Mab∂a∂b
√

ρs√
ρs

ψs

+ ∑
s′

gss′
δF(ρs, ρs′)

δρs
ψs , (35)

4.5. Gauge Invariance of MED Derived Relations

The physical meaning of the ψs in Equation (34) is that it represents the wavefunction
of the particle of the generalized Schrödinger equation. Its modulus is the probability
of finding the particle in space and time. In most general situations, for example, in
data science, ψs will be the parameter controlling the transition probabilities. Note that
Equation (35) is invariant under the gauge transformation given below [55].

ψs → ψ′
s = eiβχ(x,t)ψs and Aa → A′

a = Aa + ∂aχ. (36)

In Equation (35), the third term on the right is called the quantum potential. Normally,
this term is present in the Hamilton–Jacobi Equation (33). By combining this equation with
the Fokker–Planck equation, Equation (26), one obtains a linear Schrödinger equation (LSE)
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that obeys the superposition principle. The quantum potential is implicit in F(ρs, ρs′). Since
we have freedom in the choice of F, we choose it such that

∑
s′

gss′
δF(ρs, ρs′)

δρs
+

η2
s

2k2

Mab∂a∂b
√

ρs√
ρs

= ∑
s′

gss′ f (ρs′) . (37)

Note that the function f on the right is only a function of one variable. If the goal is to
obtain an LSE, one can set f = 0. However, we are interested in nonzero f for the reasons
given below.

ih̄
∂ψs

∂t
=

h̄2

2
Mab(i∂a −

e
h̄c

Aa)(i∂b −
e

h̄c
Aa)ψs + Vsψs + ∑

s′
gss′ f (ρs′)ψs . (38)

Here, we used ηs/k = h̄ and βs = e/h̄c, where e is the charge of an electron, and c is
the speed of light. Equation (38) is the sought Generalized Nonlinear Schrödinger Equation
(GNSE), which takes into account the interaction of the electromagnetic field with matter
waves. The last term indicates nonlinearity. A similar last term is also reported in [52]. But
here, we naturally derived the general NLSE using entropic dynamics. For solitons, we can
take f (ρs′) = ρs′ = |ψs′ |2. So,

ih̄
∂ψs

∂t
=

h̄2

2
Mab(i∂a −

e
h̄c

Aa)(i∂b −
e

h̄c
Ab)ψs + Vsψs + ∑

s′
gss′ |ψs′ |2ψs . (39)

The existence of the nonlinear terms [56–58] and, in particular, the cubic term [59]
is characteristic of the solitons and other nonlinear waves (see the seminal paper by Za-
kharov [60] about the nonlinear stability of periodic waves in deep water). The existence of
such waves and stable solitons depends on the boundary conditions, and their dynamical
stability depends on the spatial dimension of the system [59,61]. In addition to solitons,
there is a large variety of nonlinear phenomena, including shape waves [58], periodic
waves in deep and shallow water [60], plasma cavitons [61], Urbach and Lifshiz density of
state tails [62], the collapse of the plasmon, Langmuir waves [63], and many other related
phenomena [64]. It is very interesting if the NSE equations describing these or associated
phenomena can be obtained with the principle of the maximum entropy and entropic
dynamics described above.

5. Reduction of GNSE to a Few Relevant Representations

One can note that Equation (39) is a complex system of equations. It has some general
form, which covers numerous physical phenomena. It may have scalar or vector (tensor)
forms [63,65]. Below, we will discuss those forms of the NLSEs that found direct applica-
tions in different areas of physics, and it covers not only solitons but other quasiparticles,
too [65,66], including the phenomena such as self-trapping and polarons [67] as well as
plasma caviton formation [68,69]. Here, we consider the simplest example where two soli-
tons coupled to each other may be created [70]. In one case, we obtain the vector nonlinear
Schrödinger equation (VNSE). In the other case, the scalar nonlinear Schrödinger equation
(SNSE) is obtained. The difference between the VNSE and SNSE is that the former involves
coupled solitons and decoupled solitons and many different physical phenomena.

5.1. Scalar Form of GSE for Decoupled Solitons

The solitons usually exist in a one-dimensional chain or system with reduced dimen-
sions [59]. The illustrative example is Davydov solitons [70], created in protein chains.
They are associated with electron self-trapping or localization of protein Amide-I (or CO
stretching) vibrational energy. Such localization, as well as electron self-trapping, arises
through the interaction of the Amide-I mode with lattice distortion and plays an essential
role in the charge transport vital for all biological systems. Our starting point is the sys-
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tem (39). For illustration, the EM field is set to zero (A⃗ = 0). The SNSE can be obtained
by setting

gss′ = 0, when s ̸= s′ (40)

where g11 and g22 survive. Further set ηs/k = h̄. We obtain two decoupled SNSEs
as follows:

ih̄
∂ψ1

∂t
= − h̄2

2m
∇2ψ1 + V1ψ1 + g11|ψ1|2ψ1 . (41)

ih̄
∂ψ2

∂t
= − h̄2

2m
∇2ψ2 + V2ψ2 + g22|ψ2|2ψ2 , (42)

which is the desired system of two decoupled solitons. The last two equations are the
Gross–Pitaevski equation (GPE) [52,71]. In Bose–Einstein condensates (BECs), g < 0 is
referred to as the bright solitons, and g > 0 is called the dark solitons [71].

5.2. A Vector Form of the GSE for Coupled Solitons

For illustration, we again recall the system (39) with A⃗ = 0. Set gss′ such that

gss′ = 0, when s = s′ , (43)

where s, s′ = 1, 2. Equation (39) simplifies to

ih̄
∂ψ1

∂t
= − h̄2

2m
∇2ψ1 + V1ψ1 + g12|ψ2|2ψ1 , (44)

ih̄
∂ψ2

∂t
= − h̄2

2m
∇2ψ2 + V2ψ2 + g21|ψ1|2ψ2 , (45)

which is the desired system of two solitons. Generally, we have

ih̄
∂ψ1

∂t
= − h̄2

2m
∇2ψ1 + V1ψ1 + h̄g11|ψ1|2ψ1 + g12|ψ2|2ψ1 , (46)

ih̄
∂ψ2

∂t
= − h̄2

2m
∇2ψ2 + V2ψ2 + h̄g21|ψ1|2ψ2 + g22|ψ2|2ψ2 . (47)

5.3. The Interaction of Electromagnetic Fields with Coupled and Decoupled Solitons

We can also write the full equation for solitons with EM fields. Recall Equation (39)

ih̄
∂ψs

∂t
=

h̄2

2
Mab(i∂a −

e
h̄c

Aa)(i∂b −
e

h̄c
Aa)ψs + Vsψs + ∑

s′
gss′ |ψs′ |2ψs . (48)

where Mab = δab/mi is the the inverse of mass matrix. For coupled solitons, we have

ih̄
∂ψ1

∂t
=

h̄2

2m
δab(i∂a −

e
h̄c

Aa)(i∂b −
e

h̄c
Aa)ψ1 + V1ψ1 + g12|ψ2|2ψ1 . (49)

ih̄
∂ψ2

∂t
=

h̄2

2m
δab(i∂a −

e
h̄c

Aa)(i∂b −
e

h̄c
Aa)ψ2 + V2ψ2 + g21|ψ1|2ψ2 . (50)

Similarly, for decoupled solitons, we have

ih̄
∂ψ1

∂t
=

h̄2

2m
δab(i∂a −

e
h̄c

Aa)(i∂b −
e

h̄c
Aa)ψ1 + V1ψ1 + g11|ψ1|2ψ1 . (51)

ih̄
∂ψ2

∂t
=

h̄2

2m
δab(i∂a −

e
h̄c

Aa)(i∂b −
e

h̄c
Aa)ψ2 + V2ψ2 + g22|ψ2|2ψ2 . (52)
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In summary, Equations (41)–(52) are special cases of Equation (39). Generally, the
scaling indices s, s′ may vary as 1, 2, . . . n that describe a system of n coupled equations
or quasiparticles. It is also worth noting that the coupling enters through the complex
coefficient gss′ . If it is set to zero, Equation (39) reduces to the linear SE that obeys the usual
superposition principle for the particle system n.

6. Temperature Dependent Dynamics of Complex Systems

It was shown in Section 4 that the dynamics of a complex system evolve according to
the GNSE. The GNSE does not address the description of the properties of such a complex
system in the form of temperature and pressure. This can be achieved by connecting
the entities of a complex system with temperature and pressure using the Gibbs–Duhem
equation, which relates the chemical potential µ to entropy and molar volume. It is given
in [72], and it can be noticed from there that the chemical potential (µ) of a complex system
can be expressed in the following form:

µ = µ(T, P) (53)

In differential form, we have

dµ = −SdT + VdP (54)

which is the Gibbs–Duhem equation. Here,

S = −
(

∂µ

∂T

)
P

and V =

(
∂µ

∂P

)
T

(55)

In our case, the entropy is given by (10), which can be computed by plugging in
Equations (13) and (22) and integrate. The result is

S =
m

2h̄∆t ∑
s

(
3π1/2h̄3/2(∆t)3/2

m3/2

)3Ns

= constant = C1 (56)

One observes that the MED entropy is constant. This makes sense because the goal
of MED is to maximize entropy, subject to constraints. Since S is a constant, this gives the
chemical potential given by Equation (55),

µ = −C1T + α(P) (57)

where α(P) is another constant that depends on pressure. Equation (57) can be consid-
ered the solution of the Gibbs–Duhem equation in the MED formalism. It should be
noted that data science techniques can be applied to quantities such as those given in
the above equation to determine the temperature- and pressure-dependent dynamics of
complex systems.

7. Discussion

The burgeoning field of data science has been significantly influenced by insights
drawn from statistical mechanics and physics, leading to the development of numerous
innovative methods for analyzing complex datasets. Central to this integration is the
foundational concept of statistical mechanics entropy, employed in data science to quantify
uncertainty and information content. In particular, Shannon entropy, cross-entropy, and
Kullback–Leibler divergence have found valuable applications in information theory and
machine learning [73]. Furthermore, principles and models originating from statistical
mechanics, such as the Ising model for magnetic systems and spin glasses for disordered
magnetic systems, have been seamlessly adapted to address challenges in data science,
particularly in the realms of clustering, pattern recognition, and optimization problem solv-
ing [74–76]. Utilizing Monte Carlo methods, renowned in statistical physics for numerical
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simulations, has proven instrumental in data science in addressing optimization, integra-
tion, and sampling problems. Markov chain Monte Carlo (MCMC) techniques, a subset of
these methods, excel in exploring high-dimensional spaces and estimating probabilistic
distributions [77–79]. Percolation theory, initially conceived in physics to study connected
clusters in random networks, has practical applications in data science, especially in analyz-
ing connectivity and network structures. This is particularly relevant in fields such as social
network analysis and transportation network modeling [80]. Moreover, adapting renormal-
ization group methods, essential to studying phase transitions in physics, has facilitated
feature extraction and dimensionality reduction in data science. These methods play a vital
role in identifying relevant scales and simplifying complex datasets [81,82]. The infusion of
concepts from quantum mechanics has spurred the development of quantum computing
algorithms, showcasing the potential to improve the efficiency of solving specific problems
in data science. Quantum machine learning algorithms actively explore using quantum
properties for improved computational performance [83]. Additionally, techniques derived
from dynamical systems and chaos theory, commonly applied in physics, have found
applications in data science for time series analysis and forecasting. Nonlinear dynamics
methods are particularly adept at revealing hidden patterns and structures in temporal
data [84–86]. The extension of principles from statistical mechanics to model learning
processes, known as the statistical mechanics of learning, offers valuable insights into
the generalization capabilities of machine learning models. This understanding helps to
understand these models’ behavior regarding the data’s size and complexity [87]. Incorpo-
rating these concepts from statistical mechanics and physics into data science consistently
enriches the field with powerful tools, empowering researchers to explore and understand
the intricate underlying principles governing complex systems and datasets. The presented
work can potentially impact the solution of more complex, challenging data science systems
in various ways, including those from physics, cosmology, and statistical mechanics. Their
short description is discussed next, along with results from the work presented in the
manuscript and the literature.

In the 1950s, Ginsburg and Landau proposed the Ginsburg–Landau (GL) functional
for free energy to describe the superconducting state in solids [46]. The GL functional
was developed to introduce a nonlinear term in the Schrödinger equation (SE) to describe
the superconductivity property of conductors by presenting the conduction electrons as
superfluids. The minimization of this GL functional gives rise to the nonlinear Schrödinger
equation (NLSE). The NLSE describes a new state of quasiparticles, the superconducting
condensate, similar to Bose–Einstein condensation [40]. Gross and Pitaevskii derived the
NLSE by applying the minimum energy principle to the free energy of condensed paired
electrons and atoms in the Bose–Einstein condensation state. The use of NLSE enabled the
description of the quantum dynamics of other systems in the form of solitary matter waves,
solitons, or polarons. It can also be applied to a system consisting of coupled solitons
containing multi-solitons or having optically interacting solitons.

The NLSE has been widely used in many fields of physics, including condensed matter
physics, nonlinear optics, and fluid dynamics. Solitons, which are localized wave packets
that maintain their shape during propagation, have been described by the NLSE. These
solitons can exist in many systems, such as optical fibers, plasmas, and superfluids. The
maximization of the MED functional not only resulted in an extension of GPE but also pro-
vided a natural way to include other interactions, such as the interaction of electromagnetic
fields with quasiparticles in solids. Further, it provides the tools to deal with the scalar’s
dynamics and vector solitons in decoupled and coupled forms. However, it should be
noted that the GPE deals with scalar solitons. The implications of the GNSE may be quite
far-reaching, in our opinion. Its application to 2D materials may lead to opportunities for
discovering the quantized energies of solitons at the defect sites of those materials. Such
quantized states may turn out to be suitable for future applications in electronics, including
quantum computing.
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In addition, the presented MED methodology is envisioned as complementary to
statistical methods currently applied to existing datasets to forecast the future behavior
of complex systems. The entire temporal evolution is intricately linked with a complex
dataset and is delineated by a system of interconnected nonlinear Schrödinger equations.
This methodology draws inspiration from entropy evolution, analogous to the second law
of thermodynamics, considered one of the most elegant laws in physics. Naturally, any
complex system tends to evolve towards equilibrium and stability. However, over short
durations, the system might become trapped by false minima, leading to potential discrep-
ancies in the predictions of the developed theory. Hence, in the short term, the theory’s
predictions may falter. Nonetheless, machine learning can yield favorable outcomes in
such instances. Conversely, machine learning predictions may prove less reliable in the
long term, while the approach grounded in the second law remains robust. This resilience
is attributed to its foundation in the core principles of statistical mechanics.

In our research effort, we provide the underlying principles that can be used to perform
advanced statistical analyses on existing datasets to gain insight into and forecast the future
behavior of complex systems. This predictive modeling will comprehensively explore the
entire temporal evolution intricately linked with a complex dataset. The dynamic behavior
of the system is delineated by a set of interconnected nonlinear Schrödinger equations,
where time may be a complex variable reflecting the intricate interplay of various factors
such as stochastic and diffusion processes [88–92]. The innovative methodology draws
inspiration from entropy evolution, a concept analogous to the revered second law of
thermodynamics, considered one of the most elegant principles in physics. According to the
second law, any complex system naturally tends to evolve towards a state of equilibrium
and stability. However, over shorter durations, the system may encounter challenges
and become ensnared by false minima. Such instances can lead to discrepancies in the
predictions of our developed theory, particularly in the short term, where the theory’s
predictive accuracy may falter. Despite these short-term challenges, we recognize the
potential of machine learning algorithms to yield favorable outcomes in instances where
our theoretical predictions may be less reliable. Conversely, in the long term, our approach
grounded in the second law remains robust due to its foundation in the core principles
of statistical mechanics. Minimization of free energy, which encompasses both internal
energy and entropy, provides a more comprehensive perspective on the thermodynamic
behavior of systems [88–92]. While our approach draws inspiration from the elegance of the
second law of thermodynamics and its connection to entropy evolution, we acknowledge
the importance of considering the broader context of free-energy minimization, especially
in environments where temperature plays a significant role. It should be noted that
new methods are emerging to study economic uncertainty using physics-based stochastic
differential equations [93]. Future developments in our research will incorporate these
insights to provide a more nuanced understanding of complex systems and their evolution.
In a recent article based on an analysis of a huge database, the relationship between DNA
methylation and mutability, specifically how methylation can affect the emergence of new
genetic variations in eukaryotes (organisms with cells containing a nucleus), has been
identified [94]. Further analysis of somatic mutation data, particularly from cancers where
specific repair pathways are compromised, is necessary to understand the underlying
mechanisms of this process and the involvement of particular DNA repair pathways as
well as how the impact of methylation on mutability extends beyond the methylated
cytosine itself. DNA methylation, a common epigenetic modification in eukaryotes, can
affect genetic variation in ways that are not fully understood and imply that the precise
mechanisms involved are complex and require further investigation [94]. Their findings
suggest that methylation significantly impacts the emergence of new genetic variants in
eukaryotes, which may have important implications for understanding genetic diversity
and disease. We hope that applying the proposed MED methodology to huge databases
can further shed light on their evolutionary mechanisms [94]. In addition, all three fields
are concerned with extracting meaningful information from noisy and complex datasets.
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Statistical physics seeks to identify and understand the underlying patterns and structures
that govern the behavior of physical systems. Information theory seeks to extract and
transmit useful information from noisy or uncertain datasets. Data science seeks to extract
insights and knowledge from large, complex datasets.

Our research paves the way for applying sophisticated statistical analyses of existing
datasets to gain insight and forecast the future behavior of complex systems. This involves a
comprehensive exploration of temporal evolution intricately linked with a complex dataset,
represented by a system of interconnected nonlinear Schrödinger equations [88,89]. Several
factors are present in this formulation. First, the two crucial aspects of our entropy evolu-
tion method, entropy maximization and Gibbs energy minimization, are discussed in recent
references [88,89]. Entropy maximization determines the equilibrium state of mixtures with
specified total internal energy and total volume, while Gibbs energy minimization corre-
sponds to mixtures with a specified pressure and temperature. Our findings show promise
in addressing both problems, and the particle swarm optimization method performs well,
particularly in Gibbs energy minimization [89]. Second, the computational scheme for
temporal evolution under MED formulation outlines a method to depict the temporal
evolution of thermodynamic functions in stochastic non-equilibrium processes of arbitrary
classical systems. This scheme is particularly suited for representing the dynamic behaviors
of non-equilibrium molecular systems, such as the conformational changes observed in
protein folding and ligand docking [90]. Third, the diffusion Monte Carlo method can
relax the dynamics determined under MED formulation. For instance, Tanaka’s use of the
diffusion Monte Carlo method to simulate relaxation dynamics in classical systems, consid-
ering various model potentials, reveals intriguing results. Depending on initial conditions
and potential landscapes, either an increase in entropy dominates the relaxation dynamics
toward equilibrium or the dynamics are driven by the decrease in enthalpy, leading to
a decrease in entropy associated with spatial localization [91,92]. Fourth, the role of the
MED methodology in data science can be established by noting that MED methodology
is applicable at the primary level. In contrast, data science applies to secondary-level
quantities of complex systems. The multiscale entropy dynamics (MED) methodology
emerges as a powerful tool in data science, offering a unique lens to analyze the intricate in-
terplay of physical agents in dynamic systems [91]. Applying MED to data science involves
viewing physical agents as entities driven by causal entropic forces, akin to a Darwinian
perspective where they compete to consume future histories [91]. Fifth, the presented MED
methodology also applies to biology. The free energy principle (FEP) serves as a theoretical
framework, emphasizing the minimization of free energy in living systems [92]. MED, like
FEP, introduces the concept of Markov blankets and emphasizes the relationship between
action and perception in biological systems [91]. These frameworks provide insights into
neural processes, learning, and decision-making, offering a unifying perspective on the
behavior of living systems.

8. Conclusions

The MED formulation nicely describes the microscale dynamics of complex systems
and paves the way for the subsequent application of data science tools. For example,
it was shown that using the MED formulation, the dynamics of a complex system of
particles can be expressed as a GNSE. Furthermore, the GNSE is adept at describing the
motion of single particles or many noninteracting quasiparticles, such as polarons and
solitons. There is an aspiration to apply the MED methodology to elucidate the dynamics
of polarons and solitons in two-dimensional materials. Furthermore, the particles or
quasiparticle system can be treated as a quantum gas. Therefore, applying the Gibbs–
Duhem formulation to quantum gas can allow the MED-determined quantities to be
related to temperature and pressure. Additionally, the intertwining of machine learning
and artificial intelligence techniques has further solidified the connection between complex
systems and data science. These techniques, extensively employed in data science, rely
on statistical and probabilistic models that resemble those employed in statistical physics
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and information theory. For instance, deep learning models are constructed upon neural
networks akin to those used in statistical physics to model the behavior of physical systems.
This convergence of methodologies holds promise for advancing our understanding in
diverse scientific domains.

In summary, the multiscale entropy (MSE) formulation serves as a powerful tool for
characterizing the steady-state complexity of a diverse array of systems. However, the
multiscale entropy evolution (MEE) framework and multiscale entropy dynamics (MED)
methodology enable the investigation of the dynamic nature of complexity within these
systems. This is how our research contributes to developing accurate and efficient methods
for performing phase-equilibrium computations and understanding the nature of data in
complex systems. The MED methodology showcases its versatility in various scientific and
industrial domains, providing a unifying perspective on the behavior of living systems
and complex processes. The statistical physics, information theory, and data science fields
are connected by using similar mathematical and statistical tools to model and analyze
complex systems. These connections have become stronger with machine learning and
artificial intelligence techniques heavily based on the probabilistic and statistical models
developed in these fields. The MED method can be adopted to improve the accuracy of
data analysis, which involves optimizing the subset selection process to minimize the error
in predicting the system’s evolution. We expect this method will be effective in various
applications, including finance, healthcare, and social media analysis.
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