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Abstract: The randomness of Brownian motion at thermodynamic equilibrium can be spon-
taneously broken by velocity-dependence of fluctuations, i.e., by dependence of values
or probability distributions of fluctuating properties on Brownian-motional velocity. Such
randomness-breaking can spontaneously obtain via interaction between Brownian-motional
Doppler effects — which manifest the required velocity-dependence — and system geo-
metrical asymmetry. A nonrandom walk is thereby spontaneously superposed on Brownian
motion, resulting in a systematic net drift velocity despite thermodynamic equilibrium. The
time evolution of this systematic net drift velocity — and of velocity probability density,
force, and power output — is derived for a velocity-dependent modification of Feynman’s
ratchet. We show that said spontaneous randomness-breaking, and consequent systematic
net drift velocity, imply: bias from the Maxwellian of the system’s velocity probability den-
sity, the force that tends to accelerate it, and its power output. Maximization, especially
of power output, is discussed. Uncompensated decreases in total entropy, challenging the
second law of thermodynamics, are thereby implied.
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1. Velocity-dependent modified Feynman ratchet

The Zhang [1] formulation of the second law of thermodynamics (second law) states that no spon-
taneous momentum flow is possible in an isolated system. By spontaneous, it is meant [1]: not merely
(a) sustaining, i.e., permanent; but also (b) robust, i.e., capable of withstanding dissipation, of surviving
disturbances, and of generating (regenerating) itself if initially nonexistent (if destroyed). The Zhang
[1] formulation of the second law implies that, at thermodynamic equilibrium (TEQ), not even merely
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sustaining momentum flow is possible, i.e., that no systematic motion — most generally, no systematic
process — is possible at TEQ: Systematic processes generated and maintained spontaneously despite
TEQ violate the second law; by contrast, systematicmerely sustaining, i.e., nonrobust and nondissipative
— and hence nonspontaneous— processes do not violate the second law, but merely imply that TEQ has
not been completely realized [1,2]. [Given any irreversibility (e.g., friction), (nonspontaneous) merely
sustaining processes lose even their sustainability — they become nonrobust and dissipative — their
negentropy and free energy are lost, and TEQ is completely realized [1,2].]
Feynman’s classic ratchet and pawl [3] elucidates the Zhang [1] formulation of the second law.

Recently, various formulations of the second law have been challenged, mainly in the quantum regime
[4–7], but also classically [4,8].
In this paper [9], we show that velocity-dependent fluctuations (but not fluctuations in general) chal-

lenge the second law in the classical regime. (Our challenge may also obtain in the quantum regime,
but this aspect is not studied herein.) Our challenge is most self-evident with respect to the Zhang [1]
formulation of the second law, but a challenge to the Zhang [1] formulation of the second law is also
a challenge to all other formulations thereof. Feynman’s ratchet [3] is modified to the minimum extent
necessary to ensure that velocity-dependence of fluctuations can spontaneously break the randomness of
its Brownian motion at TEQ — spontaneously superposing a nonrandom walk on its Brownian motion
and hence challenging the second law. This minimally-modified Feynman ratchet, illustrated in Fig. 1,
will now be described.

Figure 1.Modified Feynman ratchet with velocity-dependent fluctuations.

In the right-handed Cartesian coordinate system of Fig. 1, the+X,+Y , and+Z directions are to the
right, into the page, and upwards, respectively. The Brownian motion of the disk 1 of mass m0 (shown
edge-on in Fig. 1) is constrained to be X-directional by the frictionless guide 2. The pawl 3 of mass
m (whose lower tip protrudes below the disk in Fig. 1) is in a vertical groove within the +X disk face,
wherein — in addition to its X-directional Brownian motion in lockstep with the disk as part of the
combined disk-and-pawl system (DP) — it also has Z-directional Brownian motion relative to the disk
per se. The DP’s total mass is M = m0 + m À m. Each peg 4 is of Z-directional height H, and is
separated from adjacent pegs by X-directional distance L. The pawl’s altitude Z is the vertical distance
of its undersurface above the Z = 0 level at the floor of the peg row 4, and is restricted to Z ≥ Zmin
(0 < Zmin < H) by a stop [10] within the +X disk face. The net peg height is thus Hnet = H − Zmin
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(0 < Hnet < H). The DP, and the entire system, is at TEQ with equilibrium blackbody radiation (EBR)
at temperature T . L can easily be small enough so that changes in the DP’s X-directional Brownian-
motional velocity V occur, essentially, only at pawl-peg bounces, and not via DP-EBR X-directional
momentum exchanges between pawl-peg bounces [11] (see the Appendix); yet (for simplicity) large
compared with the combined pawl-plus-pegX-directional thickness. (The frictionless guide 2, of course,
has no effect on V .) A uniform gravitational field g is attractive downwards (in the −Z direction). The
V = 0 rest frame — wherein (a) the frictionless guide 2 and peg row 4 are fixed and (b) the EBR at
temperature T is isotropic — is (for simplicity) taken as that of g’s source [of mass À M (or even
≫M)].
Corresponding to V , to first order in V/c, Doppler-shifted EBR at temperature [12]

T±(V, α) = T (1± V cosα

c
) (1)

impinges on the ±X disk face at angle α from the ±X direction — at a rate proportional both to the
differential solid angle 2π sinαdα and, by Lambert’s cosine law, to cosα [12]. {The pawl, being in the
+X disk face, “sees” EBR impinging — as per the immediately preceding sentence [including (1)] with
the + signs — only from directions with +X components (except for its lower tip — of negligible size
compared with the entire pawl even at maximum tip protrusion, i.e., even at Z = Zmin—when said tip
protrudes below the disk).} Averaging over the range 0 ≤ α ≤ π/2 [12],

T±(V ) = hT±(V, α)i =
R π/2
0

T
¡
1± V cosα

c

¢
sinα cosαdαR π/2

0
sinα cosαdα

= T (1± 2V
3c
). (2)

The DP’s thermal response time is sufficiently short that T+(V ) [T−(V )] is the temperature, correspond-
ing to V having a given value, of the +X disk face (including the pawl) itself [11] [of the −X disk face
itself [11]], and not merely of Doppler-shifted EBR “seen” thereby [12]. (See the Appendix.)
The stop [10] within the +X disk face — and hence itself [11] at temperature, corresponding to

V having a given value, of T+(V ) [11,12] — restricts the pawl’s altitude to Z ≥ Zmin: this prevents
mechanical thermal contact [although not radiative thermal contact (which is negligible)] between the
floor of the peg row— at elevation Z = 0 and temperature T — and the pawl’s undersurface [11c]. The
pawl’s thermal isolation within the +X disk face is thereby improved — helping to ensure that T+(V )
is the temperature, corresponding to V having a given value, of the pawl itself [11]. (See the Appendix.)
In accordance with the Boltzmann distribution, applying (2) with the + signs, and defining A ≡

mgHnet/kT : the conditional probability [13] P (Z > H|V ) that the pawl, of weight mg, can attain
sufficient altitude Z > H to jump the pegs — and hence not to impede the DP’sX-directional Brownian
motion — given V , is

P (Z > H|V ) = exp[−mgHnet/kT+(V )] = exp{−mgHnet/[kT (1 +
2V

3c
)]}

≡ exp[−A/(1 + 2V
3c
)] = (1 +

2AV

3c
)e−A. (3)

The last step of (3) is correct to first order in V/c, and is justified because |V | ¿ c for all values of |V |
that have nonnegligible probabilities of being equaled or exceeded.
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By (3), P (Z > H|V ) is slightly greater when V > 0 than when V < 0. Hence, despite TEQ, the
velocity-dependence of P (Z > H|V ) spontaneously superposes a nonrandomwalk in the+X (Forward)
direction on the DP’s Brownian motion — challenging the second law.
Note that T±(V, α), T±(V ), Z, and P (Z > H|V ) manifest velocity-dependent fluctuations. By

contrast, T , H, Zmin, Hnet = H − Zmin, L, g, m0, m, M = m0 +m À m, and A ≡ mgHnet/kT are
parameters, fixed in any one given (thought) experiment.

2. Markovian time evolution

By (3), we have, to first order in |V |/c, for the conditional probabilities [13] F and R of Z > H
obtaining given DP Brownian motion in, respectively, the Forward or +X direction at V = +|V | and
Reverse or −X direction at V = −|V |,

F ≡ P (Z > H|V = +|V |) ≡ P (> |+) = (1 + 2A|V |
3c

)e−A (4)

and
R ≡ P (Z > H|V = −|V |) ≡ P (> |−) = (1− 2A|V |

3c
)e−A, (5)

respectively. The states Z > H, Z < H, V = +|V | > 0, and V = −|V | < 0 are denoted as >,
<, +, and −, respectively. (Since Z and V are continuous random variables, the point values Z = H
and V = |V | = 0 each has zero probability measure of occurrence.) Given V = ±|V |, immediately
preceding any pawl-peg interaction, the DP is in one of the four states > +, > −, < +, or < −; the
former two states implying that this interaction will be a pawl-over-peg jump, and the latter two that it
will be a pawl-peg bounce. Immediately following a jump (bounce), sgnV is unchanged (reversed).
We now study our system’s time evolution, given V = ±|V |, in discrete time-steps of ∆t = L/|V |

that separate consecutive pawl-peg interactions, with timeN immediately preceding the (N+1) st pawl-
peg interaction [11d]. If a quantityQ or an average thereof is time-dependent, then its value at timeN is
indicated via a subscript N . Let hQiN (hhQiiN ) denote the expectation value at time N of a quantity Q
over any one given ±|V | pair (hQiN itself averaged over all |V |). [Note: All averages in this paper are,
in this wise, either over any one given±|V | pair or over all |V |, except — with denotation via enclosure
within single angular brackets — (a) the average hT±(V, α)i over α in (2), and (b) two of the averages in
the Appendix.]
TEQ, i.e., maximum initial total entropy, implies that initially, at N = 0,

P (+)0 = P (−)0 = 1

2
⇐⇒ hV i0 = |V |[P (+)0 − P (−)0] = 0 =⇒ hhV ii0 = 0. (6)

The expression in (6) for hV i0 is true for all ±|V | pairs, hence implying that for hhV ii0.
Given V = ±|V | and P (+)N + P (−)N = P (> |+) + P (< |+) = P (> |−) + P (< |−) = 1,

said time evolution is a two-state discrete-time Markov chain [14] with (a) states + and −, and (b) the
following conditional transition probabilities: P [(+)N |(+)N−1] = P (> |+) = F , P [(−)N |(−)N−1] =
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P (> |−) = R, P [(−)N |(+)N−1] = P (< |+) = 1− F , and P [(+)N |(−)N−1] = P (< |−) = 1−R. For
all N ≥ 0, we obtain [14]

P (±)N = {1± (F −R)[1− (F +R− 1)N ]/(2− F −R)}/2
= {1± (2|V |/3c)A[1− (2e−A − 1)N ]/(eA − 1)}/2, (7)

(4) and (5) being applied in the second step of (7). Applying (7), (6), (4), and (5) yields, for all N ≥ 0,

hV iN = |V |[P (+)N − P (−)N ]
= |V |(F −R)[1− (F +R− 1)N ]/(2− F −R)

= (2V 2/3c)A[1− (2e−A − 1)N ]/(eA − 1). (8)

By (8), hV iN is antisymmetric in F and R; hence, taking F ≥ R =⇒ hV iN ≥ 0 as per (4), (5),
(6), and (8) — and throughout this paper — entails no loss of generality. The equality F = R =⇒
hV iN = 0 obtains only given: (a) the point value V = |V | = 0, which has zero probability measure of
occurrence; and/or (b) N = 0. Given |V | > 0 and N ≥ 1, the strict inequality F > R =⇒ hV iN > 0
despite TEQ challenges the second law.
Applying (8) and (6) in the first line of (9), and the paragraph immediately following (8) in the

second, a simpler alternative to (7) is

P (±)N = P (V = ±|V |)N = 1

2
(1± hV iN|V | ) = P (V )0(1± hV iN|V | )

=⇒ P (V )N = P (V )0(1 +
hV iN
V

). (9)

Considering any one given±|V | pair, P (V )0 = P (+)0 = P (−)0 = 1
2
. By contrast, considering all±|V |

pairs, i.e., all V , and hence also all |V |, P (V )0 = P (V )mw = (M/2πkT )1/2 exp(−MV 2/2kT ) =⇒
P (|V |)0 = P (|V |)mw = 2P (V )0 = 2P (V )mw = (2M/πkT )1/2 exp(−MV 2/2kT ), P (V )mw
(P (|V |)mw) being the one-dimensional Maxwellian probability density of V (|V |).
By Newton’s second law, (8), (4), and (5), the force f that tends to accelerate the DP in the +X

direction and DP power output P ∗ (not to be confused with probability P ) at theN −→ N+1 transition,
i.e., at the (N + 1) st pawl-peg interaction, averaged over any one given ±|V | pair, are, respectively,

hfiN+1
2
= M(hV iN+1 − hV iN)/∆t =M(hV iN+1 − hV iN)/(L/|V |)

=
MV 2(F −R)(F +R− 1)N

L
=
4M |V |3Ae−A(2e−A − 1)N

3Lc
(10)

and

hP ∗iN+1
2
= hfV iN+ 1

2
= hfiN+1

2
[(hV iN + hV iN+1)/2]

=
M |V |3(F −R)2(F +R− 1)N [2− (F +R)(F +R− 1)N ]

2L(2− F −R)

=
8M |V |5A2e−A(2e−A − 1)N [1− e−A(2e−A − 1)N ]

9Lc2(eA − 1) . (11)
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The second step of (11) is justified because (hV iN + hV iN+1)/2 is independent of whether the DP
happens to be in state > +, > −, < +, or < − at the N −→ N + 1 transition, i.e., at the (N + 1) st
pawl-peg interaction [15].
Time evolution towards final steady state is monotonic-asymptotic (except for hP ∗iN+ 1

2
) if 0 <

F+R−1 < 1 =⇒ ln 2 > A > 0, diminishing-oscillatory if−1 < F+R−1 < 0 =⇒ ∞ > A > ln 2,
and complete at N = 1 if F +R− 1 = 0 =⇒ A = ln 2 [16].
Maxima are: hV iN,max = hV i∞ |(A −→ 0) = 2V 2/3c, |P (V )N − P (V )0|max = |P (V |A −→

0)∞ − P (V )0| = 2P (V )0|V |/3c, hfiN+ 1
2
,max = hfi 1

2
|(A = 1) = 4M |V |3/3ecL, and hP ∗i 1

2
,max =

hP ∗i 1
2
|(A = 1) = 8M |V |5/[(3ec)2L]. Equal and/or higher maxima — if any exist — of hP ∗iN+1

2
for

N ≥ 1 (corresponding to optima of A in the range 0 < A < ln 2) can be found numerically [16].
hV iN , hfiN+ 1

2
, and hP ∗iN+ 1

2
are defined for a ±|V | pair [17]: hence, considering all |V | and av-

eraging V 2, |V |3, and |V |5 in the respective last terms of (8), (10), and (11) over P (|V |)mw [17,18]
yields hhV 2iimw = kT/M , hh|V |3iimw = [2(kT/M)3]1/2, and hh|V |5iimw = 8[2(kT/M)5]1/2, respec-
tively; thence, the respective expectation values hhV iiN , hhfiiN+1

2
, and hhP ∗iiN+ 1

2
over all |V | [17] —

and, via the immediately preceding paragraph, the respective maxima thereof hhV iiN,max, hhfiiN+ 1
2
,max,

and hhP ∗iiN+ 1
2
,max. [By (8), the paragraph immediately following (8), and the paragraph containing (9),

considering all |V |, to first order in |V |/c, P (|V |)N = P (+|V |)N+P (−|V |)N = P (|V |)0 = P (|V |)mw;
hence, to first order in |V |/c, any average hhQiiN [17] over P (|V |)mw equals that over P (|V |)N itself
[19].]
Letting S be total entropy, the second law is challenged by

hhP ∗iiN+ 1
2
> 0 =⇒ dS/dt = − hhP ∗iiN+ 1

2
/T < 0, (12)

with maximum challenge if hhP ∗iiN+ 1
2
= hhP ∗iiN+ 1

2
,max (given optimized A).

Perhaps, DP performance may be improved if a nonrelativistic nonzero rest-mass thermal back-
ground medium is preponderant over the EBR [20].
In a longer paper [11b], more thorough analyses are given.
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Appendix: DP — especially pawl — (re)thermalization

It has been shown [11] that, for any given V , the ratio of (a) the time ∆t0 typically required for
DP-EBR (as opposed to pawl-peg-bounce) X-directional momentum exchanges to effect significant
|∆V |/ hh|V |iimw = |∆V |(πM/2kT )1/2, to (b) the time ∆t00, beginning immediately following a pawl-
peg bounce and consequent reversal of sgnV , typically required for the±X disk faces to (re)thermalize



Entropy 2004, 6 82

(i.e., for reversal of sgn[T±(V )−T ]) via DP-EBRX-directional thermal-energy exchanges, is∆t0/∆t00 ≈
(DP rest-mass energy=Mc2)/(DP thermal energy≈MC∗T = CT ), whereC∗ (C =MC∗) is the DP’s
specific heat per unit mass (total heat capacity) [11,21]. Hence [letting hh∆tiibounce be the average (over
all |V |) time interval separating consecutive pawl-peg bounces], ∆t00 ¿ hh∆tii = L/ hh|V |iimw =
L(πM/2kT )1/2 < hh∆tiibounce = hh∆tii /(1− e−A)¿ ∆t0 can easily obtain [11].
Fluctuations of the pawl’s altitude Z obtain mainly via its intermolecular Z-directional momentum

exchanges with the +X disk face, which is a “local heat bath” [22] at temperature T+(V ) [11,12,22]
for the pawl when the DP’s X-directional Brownian-motional velocity happens to be V ; by compari-
son, pawl-EBR Z-directional momentum exchanges are negligible [22]. For simplicity, let pawl/+X-
disk-face Z-directional momentum exchanges — and hence the pawl’s “sampling” of its Boltzmann
distribution corresponding to T+(V ) as per (3), (4), and (5) — occur mainly at pawl-stop bounces when
Z = Zmin: the stop [10] is within the +X disk face and hence part of said “local heat bath” [22] at
temperature T+(V ) [11,12,22]. A ≡ mgHnet/kT can easily be large enough so that hh∆tiibounce =
hh∆tii /(1 − e−A) ¿ ∆t0 =⇒ hh∆tii ¿ (1 − e−A)∆t0 ≈ ∆t0, yet small enough so that Hnet ¿ L
[11]. Let v be the pawl’s (nonrelativistic) Z-directional Brownian-motional velocity. Averaging over
v’s one-dimensional Maxwellian probability density P (v)mw = (m/2πkT )1/2 exp(−mv2/2kT ) yields
h|v|imw = (2kT/πm)1/2 [23] — which, of course, exceeds hh|V |iimw = (2kT/πM)1/2 by the ratio
(M/m)1/2. Let ∆t000 = Hnet/|v|: its average is h∆t000i = Hnet/ h|v|imw = Hnet(πm/2kT )1/2 [23].
Hence, h∆t000i / hh∆tii = (Hnet/L)(m/M)1/2, which is¿ 1 given Hnet ¿ L andm¿M .
Hence, the pawl is a one-Brownian-particle “isothermal atmosphere” in local TEQ [11,22] at tem-

perature T+(V ) [11,12,22] when the DP’sX-directional Brownian-motional velocity happens to be V .
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