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Abstract Entropy has been the main tool in the analysis of the concept of information since 
information theory was conceived in the work of Shannon more than fifty years ago. There 
were some attempts to find more general measure of information, but their outcomes were 
more of formal, theoretical interest, and neither has provided better insight into the nature of 
information. The strengths of entropy seemed so obvious that no much effort has been made to 
find an alternative to entropy which gives different values, but which is consistent with entropy 
in the sense that the results obtained in information theory thus far can be reproduced with the 
new measure. In this article the need for such an alternative measure is demonstrated based on 
historical review of the problems with conceptualization of information. Then, an alternative 
measure is presented in the context of modified definition of information applicable outside of 
the conduit metaphor of Shannon’s approach, and formulated without reference to uncertainty. 
It has several features superior to those of entropy. For instance, unlike entropy it can be easily 
and consistently extended to the continuous probability distributions, and unlike differential 
entropy this extension is always positive and invariant with respect to linear transformations of 
coordinates.   
Keywords: Entropy, Measures of Information, Information Theory, Semantics of Information.  
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Introduction 
 

In this article an alternative to entropy measure of information is presented with the intention to 
contribute to the resolution of several open fundamental problems in the understanding of the concept 
of information. This alternative measure is not likely to provide new solutions to the technical 
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problems in the analysis of communication systems. Its only superiority over entropy is, as I will try to 
demonstrate, in the fact that it actually measures information, while entropy gives account of the 
information deficit, and as such can be only indirectly used in the analysis of information transfer or 
change. For technical calculations of information transmission it does not matter whether the amount 
of information is calculated using entropy or any other compatible measure. For studying information 
outside of this “engineering problem,” especially when we want to establish connection between the 
meaning of information and information amount, what exactly is measured is of great importance.  

It will take many pages to explain why seeking alternative measures of information is justified, in 
what sense entropy does not measure information, and what alternative measure can solve the 
problems which entropy could not. But how to compress it into a form suitable for introduction? The 
following commonly known historical anecdote will provide a short metaphorical description of the 
arguments presented in the article.  

Shannon’s monumental work [1] introducing entropy as a measure of information in the process of 
communication can be compared to the great achievement of Archimedes reported by Vitruvius in “On 
Architecture.”  The goldsmith of the Syracuse ruler Hiero was accused of stealing part of the gold 
given to him for casting a crown and replacing it with silver. If the volume of the crown was known, it 
would have been possible to calculate the density of the metal, and from the known densities of gold 
and silver to find its composition. But the shape of the ornaments was way too complicated to make 
the measurement of volume feasible.  As usual, when problems seemed hopelessly difficult, 
Archimedes was asked by Hiero for advice. The solution came to mind when he entered a barrel full of 
water in the public bath. The amount of spilled water in the overflow could be measured easily, thus 
giving the volume of the bather’s body. The same method could be used to measure the volume of the 
crown. Archimedes, overjoyed by finding the solution, ran naked through the streets of Syracuse 
shouting: Eureka! He put the crown in the vessel full of water and some of the water spilled out. After 
the crown was pulled out of the vessel, the missing amount of water could be added using calibrated 
cups. The volume of the water necessary to refill the vessel gave Archimedes the exact volume of the 
crown. Now, after measuring the weight of the crown, the density and, therefore the composition of the 
metal could be easily determined.  

Well, the analogy between the approach of Archimedes and that of Shannon, and many other 
contributors to information theory actually ends with pulling the crown out of the water, and because 
of that it is not very close. It would have been closer, if Archimedes had tossed the crown aside, 
focused on the space left at the top of the vessel left after the water was spilled, and announced that the 
issues of the weight or density of materials, in particular of gold, are irrelevant to the engineering 
problem.  

In spite of the limitations of the metaphor, the content of the article is probably now quite clear to 
an informed reader, and the remaining sections can be considered just footnotes. However, to do 
justice to the complications within information theory that caused the shift of focus from the crown to 
the spilled water and to the empty space left by it in the vessel, these “footnotes” must fill many pages.     
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1. Scandals and Paradoxes 
 

If this article is intended as a contribution to resolving some fundamental problems in the 
understanding of the concept of information, the first question is whether there are any problems to 
solve, and if so, what are they? I share the belief of many others concerned with the issue, that there 
are several problems, and that they are of a really fundamental nature and of great importance.  

Floridi, in his Philosophy of Information manifesto patterned on the Hilbert Program and consisting 
of a review of the eighteen outstanding problems related to information, lists as Problem 1 - “the 
hardest and most central question”: What is information? [2] His commentary on this question gives 
convincing evidence for the necessity to seek the answer: “Information is still an elusive concept. This 
is a scandal not by itself, but because so much basic theoretical work relies on a clear analysis and 
explanation of information and of its cognate concepts. We know that information ought to be 
quantifiable (at least in terms of partial ordering), additive, storable and transmittable. But apart from 
this, we still do not seem to have a much clearer idea about its specific nature.”  

Twenty years earlier MacKay, in his recollections of the beginnings of information theory described 
similar feelings regarding the separation of the theory from semantic aspects of information: “As early 
as our 1950 Symposium on Information Theory, it was felt to be somewhat scandalous that the theory 
of information seemed to have so little working contact with such concepts as the meaning and 
relevance of information.” [3] 

To avoid the accusations of too much interest in tabloid themes, let’s move from the scandals to 
paradoxes which have a much better reputation in academic circles. And when we talk about the 
paradoxes within information science, we have to remember that information studies have one of their 
main origins in Maxwell’s Demon Paradox. Szillard’s attempts to exorcise this demon involve the first 
significant analysis of information outside of the communication context and one of the earliest in all 
this domain [4]. The inclination to paradoxical, or at least counterintuitive, results in information 
theory cannot be blamed only on the “bad provenience” or “childhood disease” as it continues in the 
adult life of the theory.  

Marijuan started his summary of the 2002 Foundations of Information Science e-conference “The 
Nature of Information: Conceptions, Misconceptions, and Paradoxes” by quoting a sentence from the 
presentation text of the FIS 2002: “Inconsistencies and paradoxes in the conceptualization of 
information can be found through numerous fields of natural, social and computer science.” [5]  

Indeed, there is an abundance of examples from which I will draw only the most relevant ones. One 
of more recent paradoxes (or more accurately, more recently brought to the attention of a wider 
audience) comes out of the study of reversible computing [6,7]. This surprising result, known now as 
Landauer’s Principle, states that the only unavoidable energy dissipation in the physical process of 
computer computation takes place when information is discarded. Thus, physical entropy is increasing 
when the amount of information is decreasing. In the various earlier discussions of Maxwell’s Demon, 
for instance by Szilard [4] or Brillouin [8], it was the acquisition of information in measuring speed of 
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particles approaching the gate operated by the demon that explained the increase of entropy, not the 
forgetting of information. It is definitely a counterintuitive result that resetting the memory of a 
computer to zero is associated with the increase of entropy.    

Even if we stay away from physical entropy and consider only mathematical information theory, we 
will encounter paradoxes at every corner. The very definition of information as a resolution or 
reduction of uncertainty, as it is formulated in the majority of books on the subject, involves a paradox 
(or just simply an error). Some authors [e.g. 9] do not hesitate to write first that uncertainty is a result 
of information deficiency, and then to explain the concept of information as uncertainty reduction. 
Those who claim that such a definition is not circular, meaning that uncertainty is not just the lack or 
shortage of information, try to convince us that it is not a psychological characteristic of one’s state of 
mind, but a legitimate and objective characteristic of any system which can make choices in a way 
which is not pre-determined. This argument would have been convincing if it were possible to 
distinguish clearly uncertainty from randomness and indeterminacy. After all, it seems more rational to 
explain randomness in terms of information, than information in terms of randomness.  

But when somebody talks about “the paradox of information,” without doubt it is about the 
mysterious separation of information theory from the semantic aspects of information. Before the 
publication of Shannon’s paper [1], and definitely until Hartley’s famous paper [10] was published in 
1928, it was natural to think that information is about something. Once the connection between 
information and thermodynamics had been established the meaning of information had to be 
reexamined to eliminate its simplistic identification with the psychological category of knowledge. But 
instead of such reexamination came the tendency to separate completely information theory from the 
semantics of information. First, Hartley declared his disinterest in the meaning carried by information 
and later, in more definite form Shannon made the divorce of information from meaning a 
programmatic principle, as stated in the frequently quoted passage from Shannon’s monumental work 
[1]: “Frequently the messages have meaning; that is they refer to or are correlated according to some 
system with certain physical or conceptual entities. Those semantic aspects of communication are 
irrelevant to the engineering problem.”  

Bar-Hillel [14] has denounced several violations of such declarations, namely those committed by 
Hartley [10] in his paper, by Weaver [12] in the complementary text included in the book reprint of 
Shannon’s paper, and in the very influential paper written by Cherry for the general audience [13].  
Those violations of the declaration that the issues of meaning are strictly outside of the interest of 
information theory showed not only that the divorce from semantics was caused by the inability to 
build a connection between the measure of amount of information and its semantic characteristics 
rather than by actual irrelevance, but also that the apparent irrelevance of meaning was not so obvious 
for its propagators.  

On the other side of the barricade, Carnap and Bar-Hillel [14] attempted to formulate the first fully 
furnished with the formal apparatus, semantic theory of information in terms of logic and in separation 
from entropy which they despised, but were persuaded by von Neumann not to attack [15]. The present 
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author is convinced that the unconscious adaptation of Shannon’s paradigm of measuring information 
hidden in the method has had the major impact on the demise of this theory.  

Carnap and Bar-Hillel started from the concept of the content of a statement (in the original 
notation “Cont”): “[W]e take the content of a statement to be a class of those possible states of the 
universe which are excluded by this statement…” [16] derived from “the scholastic dictum, omnis 
determinatio est negatio” [16]. Then they considered the logical probability of a statement (m(i)) as a 
complement to the value 1 of the measure of content (cont(i)). Up to this point their approach seems 
very promising. But in the next step they could not resist temptation to make their approach consistent 
with Shannon’s entropy, and they defined the semantic measure of information in a statement as the 
logarithm of reciprocal of the logical probability of the statement. This choice directed them towards 
an analogy to entropy, but that has not brought success to their theory. The theory was received 
without much interest and soon fell into oblivion. It seems that once more, the spilled water attracted 
more attention than the gold of the crown, to go back to the metaphor from the introduction to this 
article.  

The efforts to develop an adequate semantic theory of information has been continued, but without 
any spectacular successes. The basic character of the four questions related to semantics of information 
out of the eighteen questions listed by Floridi [2] shows that we are still far from a major breakthrough 
in this domain. Is it because the meaning of information is irrelevant to the concept of information? I 
doubt it, and probably not many information scientists would subscribe to such a view. There must be 
some fundamental obstacle which does not obstruct the rapid development of information theory in the 
context of communication, but which blocks even the simplest attempts to correlate the measure of 
information with its meaning. Later I will try to provide arguments for the view that the fault lies in the 
choice of entropy for the measure of information outside of a communication context.              

 
2. Entropy Triumphant 
 

There is no doubt that the most important moment in the history of information theory was the birth 
of Shannon’s measure of information which he chose to call entropy, apparently on advice from von 
Neumann [17]. Its formula has become an icon for information theory:  
 n 

H = - ∑ pi log2 pi          (2.1) 
 i=1              

Shannon’s entropy had a less influential predecessor in Hartley’s formula for the amount of 
information in the message consisting of d symbols selected from the alphabet of n symbols [10]:   

H= d log2 n            (2.2) 
Frequently the relationship between these two measures is interpreted as a transition from the 
combinatorial to probabilistic analysis of information [18], as the formula (2.1) becomes identical with 
(2.2) for classical probability pi = 1⁄n. However it was Hartley who first introduced a probabilistic 
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accent to the study in his observation that the message can equally well be generated by a chance event 
without influencing the measure of information [19].  

Shannon’s entropy has had three main sources of power giving it dominating position among all its 
contenders. First, it turned out to be an extremely useful and effective tool in the analysis of 
communication. In the United States, in the land where pragmatic trends in philosophy have long been 
dominant, this alone was enough to guarantee its central position. In Europe the fact that so much can 
be done using entropy as a measure of information was not an ultimate argument. However, the 
striking similarity to Boltzmann’s physical entropy gave Shannon’s measure strong support. Probably 
for that reason European critics of Shannon’s approach put forth so much effort to discredit that 
connection. For instance, even in the 1980’s, when Landauer [6, 22], Bennet [20,21], and others were 
preparing to announce the conclusion that “information is inevitably physical” MacKay [3] was still 
trying to ridicule the association of Boltzmann’s and Shannon’s concepts of entropy and insisted on 
the change of the name of Shannon’s measure to “mean unexpectedness or statistical variety.” Today, 
the attempts to dissociate information from physics have become an anachronism and the formal or 
factual association with physical entropy adds legitimacy to the priority of entropy as “the” measure of 
information.  

The strongest support for this legitimacy has come from formal, mathematical analysis. It is a 
common or even universal belief (judging from the repeating statements in almost all introductory 
texts to information theory) that there are many different possible measures of information, but that 
Shannon’s entropy is the only one which satisfies apparently obvious axioms of the measure of 
information. Such a statement is already in Shannon’s paper [1] in which the following “reasonable” 
postulates for any measure I(p1,p2,…,pn) have been listed (originally with the symbol H, which we 
reserve for entropy, and therefore avoid when talking about any measure, and in the slightly more 
elaborate form):  

I. Measure I(p1,p2,…,pn) should be continuous in the pi. 
II. If all pi are equal, pi = 1⁄n , then I should be a monotonic increasing function of n. With 

equally likely events there is more choice, or uncertainty, when there are more possible 
events.  

III. If a choice be broken down into two successive choices, the original I should be the 
weighted sum of the individual values of I.  

Then, Theorem 2 in Shannon’s paper asserts that the three postulates determine entropy uniquely.  
Later a simplified system of the postulates given by A. I. Khinchin due to D. K. Fadeev [23,24] 
(quoted here from Renyi [25] with a slight simplification of the symbolic,) has been commonly 
accepted as the ultimate axiomatic characterization of the measure of information:  

I. The information obtained depends only on the probability distribution p=(p1,p2,…,pn), 
consequently, it will be denoted by I(p) or I(p1,p2,…,pn). We suppose further that 
I(p1,p2,…,pn) is a symmetric function of its variables p1,p2,…,pn. 

II. I(p,1-p) is a continuous function of p (0≤p≤1). 
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III. I(1/2,1/2)=1. 
IV. The following relation holds:  
 I(p1,p2,…,pn) = I(p1+p2,…,pn) + (p1+p2) I(p1/( p1+p2), p2/( p1+p2)). 
The last of the axioms usually is called the sub-additivity condition.  

It is true that several other measures have been considered later, for instance by Renyi [25], but not as 
an alternative, rather as a generalization. Some of them were considered inferior on a formal basis, for 
instance because they did not satisfy the fourth axiom [24]. Neither of the generalizations has found 
important applications or provided a significant insight into the nature of information.  

It is often concluded, that since it is difficult to imagine that any reasonable measure of information 
could fail to conform to the requirements described by Fadeev’s axioms, and that it can be 
demonstrated that the only measure that satisfies the axioms is Shannon’s entropy, it must be the 
ultimate measure. Case closed. Or is it?    
 
3. The Case of Two Entropies  
 
 It is interesting that before Shannon developed “a mathematical theory of communication” [1] 
which within one year has changed into “the mathematical theory of communication” [12], in all 
sporadic attempts up to that point to associate information with physical entropy in its statistical form 
developed by Boltzmann, their mutual relationship seemed inversely proportional. Even in the book 
presenting Shannon’s work to the world [12] Weaver referred to this type of relation: “Dr. Shannon’s 
work roots back, as von Neumann has pointed out, to Boltzmann’s observation, in some of his work on 
statistical physics (1894), that entropy is related to ‘missing information,’ inasmuch as it is related to 
the number of alternatives which remain possible to the physical system after all the macroscopically 
observable information concerning it has been recorded.”  Tribus [17] quotes a much stronger 
expression of this inverse relation from the 1930 work of Lewis [26]: “Gain in entropy means loss of 
information – nothing more.” 
 This inverse proportionality suggested the existence of a hypothetical, if possibly only a theoretical, 
entity with the value opposite to that of entropy. Schroedinger, in his small, but very influential book 
“What is Life?” published in 1945 [27], which has been acknowledged by Watson and Crick as a 
source of inspiration in their work on the structure of DNA, did not write explicitly about information, 
but he did write about the orderly structure of the “miniature code” of genetic inheritance, explained 
through the analogy to Morse code. In this context, he introduced the idea of negative entropy 
absorbed from the environment or sunshine by every living organism as a substrate for the order and 
the condition for its stability necessary for life in general, and “aperiodic crystals or solids” carrying 
functions of, at that time hypothetical, genes in particular.  
 The idea of negative entropy leads us straight to “negentropy” and another influential book, written 
by Brillouin, which appeared at a time when Shannon’s approach was already in full blossom. Its 
influence was of a different type, because when it happened to be mentioned as a source of inspiration 
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for great achievements, it was sometimes done as a reaction “there must be better way to think about 
it.” [22]  
 Indeed, it is a book full of inconsistencies and occasional bizarre statements that can cause a 
headache. But, it is also a good evidence for the need to reexamine connections between physical and 
information entropies. Brillouin was an enthusiastic propagator of  Shannon’s approach on the pages 
of this book. It is clear that his loyalty to Shannon was stronger than his loyalty to physics or even 
logic. This can be seen for instance in his proposal on page 3 to measure temperature in energy units to 
make both types of entropy dimensionless. Where physics could not be bent to support Shannon’s 
views, Brillouin did not hesitate to express two contradictory statements almost next to each other.  
 On page 10, Brillouin subscribes to Shannon’s disinterest in the “meaning” of information (using 
words “meaning” and “value” as if they were synonyms): “Our definition of information…corresponds 
exactly to the problem of a communication engineer who must be able to transmit all the information 
contained in a given telegram, without paying any attention to the value of this information for the 
person receiving the telegram.” On page 9 he writes: “… we define ‘information’ as distinct from 
knowledge,’ for which we have no numerical measure…Our statistical definition of information is 
based on scarcity. If a situation is scarce, it contains information.” Also, on page 297 in the concluding 
remarks he writes: “We have also completely ignored another problem: that of meaning.” 
 But on page 159 we find a surprising (for several reasons) sentence: “Acquisition of information 
about a physical system corresponds to a lower state of entropy for this system.” On the next page he 
writes: “…entropy measures the lack of information about the actual structure of the system.” On page 
293 we see: “Entropy is a measure of the lack of information about a physical system. The greater is 
the information, the smaller will be entropy.” 
 In all these statements the word “about” indicates reference to the semantic character of 
information which according to the earlier passages is irrelevant for the measure of the amount of 
information. We can find another puzzle on page 161: “The connection between entropy and 
information was rediscovered by Shannon, but he defined entropy with a sign just opposite to that of 
the standard thermodynamical definition. Hence what Shannon calls entropy of information actually 
represents negentropy. This can be seen clearly in two examples (pages 27 and 61 of Shannon’s book) 
where Shannon proves that in some irreversible processes (an irreversible transducer or a filter) his 
entropy of information is decreased. To obtain agreement with our conventions, reverse the sign and 
read negentropy.” And, we should add, forget about the annoying fact that both the standard 
thermodynamic definition and Shannon’s formula give only positive values.   
 The internal contradictions in the text of Brillouin’s book are frustrating, but there is some 
unexpected value in his lack of consistency. Being free from the bonds of logic he could introduce 
some interesting ideas which others who believed in the ultimate truth of Shannon’s approach could 
not, since they were paralyzed by the apparent inconsistency with the orthodox views of information 
theory. Thus, Brillouin could write in the same book in the spirit of Shannon’s approach, and against 
it. On page 8 we find: “Every type of constraints, every additional condition imposed on the possible 
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freedom of choice immediately results in decrease of information.”  Then on page 152 repeating the 
reasoning from page 3: “We considered a situation in which there were P0 different possible cases or 
events of equal a priori probability. Information I1 is required to reduce the number of possible cases 
to P1, and the logarithm of the ratio P0 /P1 measures I1… 
Initially: I0 = 0, P0 possibilities, 
Finally: I1 > 0, P1 possibilities, 
With I1 = K ln (P0 /P1).” 
Brillouin unfortunately tried to be consistent this time, after all he was a great physicist, and in the next 
paragraphs diluted and lost the outcome in the attempt to restore agreement between the two types of 
entropy by introducing an unnecessary distinction between free and bound information of which only 
one could be compared to entropy. If not the return to orthodoxy, this section would have been the 
most valuable and interesting part of his book. Some more forgiving authors have recognized the value 
in this short passage and recognized it as an introduction of an independent measure of information in 
the process of reducing the number of answers to a problem: K ln (P0 /P1) defined by the comparison 
of the number of possible outcomes before and after information is available [28].     
 In any case, publication of Brillouin’s book was an important event in the history of information 
theory. Many authors criticized him, some made use of his ideas, even if the applications were 
contrary to his intentions. In my opinion what was very important was his recognition of the fact that 
in order to restore agreement between physical entropy and information we have to modify the 
measure of information introduced by Shannon. This recognition of the problem carried a great 
potential. Also, as I will argue later, his measure of information in the form log2(P0 /P1) can be 
considered an analog of Hartley’s measure for the alternative general measure of information.  
However, his firm belief in Shannon’s theory and following from that the adherence to the original 
formulation of information theory diverted his attention from the real meaning of his measure and 
dictated that he made the choice of a minimal modification of Shannon’s entropy, the change of sign. 
Using my metaphor from the introduction to this paper, Brillouin’s modification could be compared to 
the change in measuring the empty space in the barrel after the crown is removed and the level of the 
water lowers beneath the rim of the barrel. He has proposed to measure the amount of the empty space 
above the water considering the height of the surface of water to be given negative value. Then when 
we add water to the barrel we have the negative measure of the empty space above water increasing, 
even if the traditional measure tells us that the empty space is shrinking. This may give us an illusion 
that we have correct measure of the content of the barrel.     

 
4. The Conduit Metaphor  
 
 The last decade has brought the recognition of the degree in which the communication setting of 
information theory, utilized by Shannon and Wiener in their works, has influenced our modern way of 
understanding information (or I would argue, more the way we misunderstand it). However, the 
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critical analyses in this spirit that have been published thus far were focused rather on the linguistic or 
sociological aspects of the phenomenon of information, not on the actual understanding of the concept 
of information as an object of philosophical study. The reflection on the influence of the setting on the 
understanding of information requires first a recollection of what the actual setting was. Then we can 
try to identify the influence.  
 The original diagram in Shannon’s paper [1], used also by Weaver in his part of the book 
presentation of the mathematical theory of communication [12] had several elements which were 
important for the “engineering problem,” but which were not necessary for conceptual analysis. 
Accidentally, the diagram does not include the distinction of the channel of communication out of the 
other parts of the communication system.  

INFORMATION 
TRANSMITTER RECEIVER DESTINATION 

SOURCE 

RECEIVED 
SIGNAL SIGNAL MESSAGE MESSAGE 

NOICE  SOURCE 
 

Now, we can ask about the elements of the communication system on the diagram which are necessary 
to understand Shannon’s explanation of information measure. The diagram can be simplified at least as 
follows.  

INFORMATION 
DESTINATION CHANNEL SOURCE

MESSAGE

 
 In Shannon’s explanation of the concept of information and entropy we have simply the 
information source producing a message, the channel in which message is transmitted towards the 
destination, and the destination where the message arrives. It is worth observing that the word 
“information” is not frequent in Shannon’s text. More frequently Shannon is writing about the 
message, which most likely he understands as a synonym of “information.” Weaver in his part is 
referring to the word information much more frequently and explicitly.  
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 The use of the word “channel” gives automatically an association with the flow of information, and 
Shannon is explicitly writing about such a flow in the first sentence in the first section of Part 1 of his 
paper: “Teletype and telegraphy are two simple examples of a discrete channel for transmitting 
information.“ [1] 
 Shannon described in the introduction to his paper the fundamental problem of communication as 
reproduction in one place of the message selected in another place. But his model is quite specific 
about the fact that this reproduction is based on the flow of information between these two points. 
Therefore, we can assume that information, together with the message or as a message, is somewhere 
between the two places all the time. In other words information is an entity having its own existence, 
or at least that it is a persistent characteristic of the message which is carried between the information 
source and destination. This means that information cannot be considered a collective property of all 
communication system, incomprehensible at the level of the system’s components, nor as the 
momentary characteristic of the system or its parts.  
 Here we can find inconsistency with the popular interpretations of Shannon’s approach which have 
been developed later, namely that information is uncertainty or that information is the reduction of 
uncertainty, with the word “uncertainty” understood in the generic way. It is difficult to accept the idea 
of uncertainty moving within the communication channel in the former case, or in the latter case of 
reduction of uncertainty moving through the system. Certainly, we can consider the reduction of 
uncertainty as a product or effect of information, but any form of identification of uncertainty and 
information, or reduction of uncertainty and information is clearly incompatible with the model.  
 Uncertainty appears in Shannon’s work in Section 6 (p.49) when he is talking about the amount of 
information produced by the source, or rather about the rate at which information is produced.  It is in 
the context of the description of the information amount derived from the analysis of the source of 
information. There is here a hidden assumption that in normal situation the amount of information is 
conserved through the communication process, as otherwise characterizing information in terms of the 
process of information production does not make sense.   
 In the next step, Shannon introduces the measure of information production using his three 
postulates listed in our Section 1. Information source is characterized exclusively by the probability 
distribution of the events within the source (p. 49), with indirect suggestion that each elementary event 
corresponds to selection of a message. Here the word “uncertainty” appears, along with another 
complication. In spite of the formulation of the initial question in terms of production of information 
by the source: “How much information is ‘produced’ by such a process, or better at what rate 
information is produced”, and in spite of the title of the next section “The Entropy of an Information 
Source” we can find the statement: “Quantities of the form  
 n 

H = - ∑ pi log2 pi    … play a central role in information theory as measures of information,   
 i=1              
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choice and uncertainty.” (p. 50) Shannon suddenly jumps from the description of information 
production to information itself, choice, and uncertainty. Assuming consistency of his reasoning and 
the context, we can interpret it as follows. H measures the amount of information transmitted in the 
communication process as a product of the selection of one out of several possible messages, reflecting 
the occurrence of one event out of several events in the information source. The process of selection 
(choice) is characterized subjectively by our uncertainty regarding the outcome of selection. It is clear 
from the text on page 49 that he means subjective, psychological uncertainty: “Can we find a measure 
of how much ‘choice’ is involved in the selection of the event or how uncertain we are of the 
outcome?” 
 There is only one more concept involved in the general, non-technical considerations in his paper, 
the concept of redundancy.  He writes: “The ratio of the entropy of the source to the maximum value it 
could have while still restricted to the same symbols will be called its relative entropy. This is the 
maximum compression possible when we encode into the same alphabet. One minus the relative 
entropy is the redundancy.”  
 Now, we can try to identify these specific characteristics of Shannon’s conduit metaphor that have 
determined our thinking about information. In the text written by Shannon there is one prominent 
element, the process of production of information, or of the message which carries it. This process 
cannot be eliminated from the consideration of information without eliminating that which gives us the 
measure of information. Shannon does not write anything about this production, except that it takes 
place in the information source and is described by the probability distribution.  
 At this point one critical remark is necessary. Shannon is talking about the probability distribution 
without much care for mathematical subtleties. Thus, for him the probability distribution is simply a 
sequence of nonnegative numbers adding to 1, nothing more. He doesn’t make any clear distinction 
between the case when we have n positive numbers, and another case of n+k numbers where n of them 
are positive and k are equal zero.  It is easy to notice that in the expression for H only probabilities 
different from zero contribute non zero terms (he assumed, as it is always done in the context of 
information theory that the function x log2(x) is extended by the right side continuity to the argument 
x=0 by assigning for this argument the value of 0). We cannot be sure, but when he writes about n 
possible events, it looks like he means n events with non-zero probability. The difference is not purely 
academic. Entropy for the distribution of n “possible” events H(p1,p2,…,pn) is equal to 
H(p1,p2,…,pn,0,0,0,0,0), but the distributions are not identical, neither are the probability spaces in 
which they are defined. Is information for the two information sources identical?  
 It is clear that for Shannon the process of information transmission is crucial. For our analysis of 
information it was important to realize that, because due to the focus on information flow, we can 
assume that information is an entity, or at least persisting property of the message. Now, in order to 
measure information using entropy, we have to assume that there is some process with the initial and 
final stage (production of information extended or not to include the actual process of transmission). 
There is no way to talk about production without having “before” and “after.” And the essence of the 
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conduit metaphor consists in this involvement of the two stages. We can find it in the works of 
Shannon, but also in works of probably all information theorists, including Brillouin. From this point 
of view, we can see that the conduit metaphor has in itself a seed of incompleteness. On one hand we 
have information as an entity, as something has to flow in the system, on the other hand we have its 
main characteristic given only in the relative form, in the comparison of “before” and “after.”   
 Coming back to the metaphor from the introduction to present paper, there is an inherent 
characteristic of Shannon’s approach which limits his analysis to the flow of water (adding or moving 
it to another vessel). In this approach it doesn’t matter whether we measure volume of water, or 
volume of the empty space above water. Additionally and more importantly, his approach does not 
allow for the absolute measurement of the volume of water, as it focuses on the empty space.   
     
5. So, What is Wrong with Entropy?  
 

The answer is obviously, that there is nothing wrong with entropy as long as we analyze 
communication systems and are interested in the “engineering problem.” It would be insane to try to 
question the value of entropy for measuring information in communication. The question is whether 
we can use entropy equally successfully for measuring information in different contexts. Here I believe 
the answer is in the negative. Actually, Shannon all his life has had doubts about the attempts to 
generalize his theory beyond the communication context.   

So what is wrong with entropy when we want to use it for measuring information outside of the 
conduit metaphor. Before I talk about the objections, a few words are necessary about eliminating the 
conduit metaphor from our considerations.  

Why should we eliminate the conduit metaphor? We want to find an appropriate methodology to 
study information as it is, not as it flows. We could see that the conduit metaphor required the 
continuing existence of information through all process of communication. But that was all about 
information as an entity. There was nothing about its nature. We could, and Shannon actually did, 
consider it equivalent to a message. When we want to study information without any reference to the 
specific context, such as a model of communication system, we have to provide means to identify the 
meaning of the term “information,” i.e. we have to define information using in the definiens only these 
concepts which have known meaning. Preferably, the concepts used in the explanation should have 
well established philosophical legitimacy. Any reference to the intuitive but vague terms such as 
“uncertainty” should be avoided, as they bring more confusion than insight into the meaning of 
definiendum.  

I will provide my own definition without elaborate explanation or justification, which can be found 
elsewhere [30].  Thus, information is the identification of variety. The identification is understood in 
terms of the one-many opposition studied for centuries in philosophy. The word “variety” can be 
considered as synonymous with the words “many, plurality, multiplicity, set”, etc. Identification of a 
variety means either the characteristic, or characteristics of the elements of the variety which select 
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one out of many, or alternatively an internal structure that gives the variety its unity. The first is 
selective information, the second structural information. We are concerned here only with the first 
type, or rather with the first manifestation of information.  

Now we are ready to look for the deficiencies of entropy as a measure of such a general concept of 
information. Our “bill of indictment” is as follows. 

I. Entropy has its maximum value for the probability distribution in which all events are equi-
probable, i.e. which does not provide any distinction of one outcome out of the others. 
Information understood in the general way should be minimal in such a case.  

II. The value of entropy does not depend on the number of all elements in the variety, but only 
on the number of the elements which cannot be completely eliminated (those with the 
probability different from zero.)  Thus, we do not have any increase of information when 
additional impossible outcomes are eliminated.  

III. Entropy does not allow for a natural extension of the measure of information to the varieties 
of continuous character even in the case when the range of the variety is finite (i.e. the 
support of the random variable is bounded) [31]. This would have been a death sentence for 
entropy in the context of continuous random variable, if not the conduit metaphor in which 
use of two random variables makes sense, and therefore information theory of continuous 
channels can be developed using mutual information between two random variables. Thus, 
those who prefer mathematical consistency do not consider any counterpart for discrete 
entropy in the continuous case [32]. Others sacrifice consistency and introduce so called 
“differential entropy,” but after warning about the problem with the divergence and following 
from that dissociation of differential entropy from information, and after providing suitable 
interpretation, such as given by Reza [31] “…in the limit when an infinite number of 
infinitesimal subintervals are considered, the entropy becomes infinitely large. The 
interpretation is that the continuous distribution can potentially convey infinitely large 
amounts of information. We have used the word ‘potentially’ since the information must be 
received by a receiver or an observer. The observer can receive information with a bounded 
accuracy….If the observer had an infinitely great level of accuracy, he could detect an 
infinitely large amount of information from a random signal assuming a continuum of 
values.” Finally, some (more recent) authors just jump without warning from the discrete 
entropy to differential entropy forgetting about the infinity separating them [33].  

 
IV. Differential entropy  

  

      b 

 H(X) =  - ∫ f(x) log2(f(x)) dx      (5.1) 
a 
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 has several properties that make it a questionable candidate for the measure of information 
 no matter how it is related to discrete entropy. Reza [31] summarizes these difficulties as 
 follows: “There are at least three basic points to be discussed:    

1. The entropy of a random variable with continuous distribution may be negative.  
2. The entropy of a random variable with continuous distribution may become infinitely 

large. Furthermore, if the probability scheme under consideration is ‘approximated’ by a 
discrete scheme, it can be shown that the entropy of the discrete scheme will always tend 
to infinity as the quantization is made finer and finer.  

3. In contrast to the discrete case, the entropy of a continuous system does not remain 
invariant under the transformation of the coordinate systems.” 

Our objective is to find a measure alternative to entropy, free from the deficiencies listed above.  
Does such alternative exist?    

 
6. Eureka! An Alternative Measure for Information  
 

Yes, there is an alternative measure of information that escapes all objections listed above, at least if 
we limit our considerations to linear transformations of the coordinate systems. But let’s start from 
heuristic considerations that demonstrate how natural its choice is. The conduit metaphor approach can 
be generalized to the form that does require all three elements of the communication system: 
information source, channel, and destination. If we disregard the issue of continuing existence of 
information in the process of transmission, it is enough to have just opposition of the type: source-
destination, before-after, etc.  

An example of such a generalization can be found in the famous article of Miller on the limitations 
of human information processing given by “the magical number seven” [34]. He writes there: “The 
‘amount of information’ is exactly the same concept that we have talked about for years under the 
name of ‘variance.’ The equations are different, but if we hold tight to the idea that anything that 
increases the variance also increases the amount of information we cannot go far astray…. The 
similarity of variance and amount of information might be explained this way: When we have a large 
variance, we are very ignorant about what is going to happen. If we are very ignorant, then when we 
make the observation it gives us a lot of information. On the other hand, if the variance is very small, 
we know in advance how our observation must come out, so we get little from making observation.”  

Clearly, Miller’s approach is still within the conduit metaphor, as he refers implicitly to the 
probability distribution a priori, and an observation which changes information from that before the 
experiment to that after. Why is “before” in terms of probability distribution, but not “after”? Since the 
XIXth century, and in particular after the development of quantum mechanics in the first quarter of the 
XXth century the description of a physical systems in terms of probability distributions has become a 
standard method. Why don’t we apply this approach to our study of information?  
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Suppose our information source is a classical gambling “tool,” a die with the six equiprobable 
outcomes. The outcomes of casting a die are communicated to destination by the means whose nature 
is irrelevant. The probability distribution describing the die is uniform, all pi are equal, pi = 1⁄6 , so 
 n 

Hin = - ∑ pi log2 pi  = log2 6.   
 i=1   

 Now, what is the probability distribution that describes the destination, or if somebody 
prefers, that describes the die after it is cast? It is the other extreme: if the outcome is j, pj  = 1 and   
pi  = 0, for every i≠j. In this case Hfin = 0. It is a strange result. When we do not know anything about 
the outcome, we have maximum amount of information, when we know exactly the outcome, the 
amount of information is minimum 0. Miller, and before and after him all defenders of Shannon’s 
measure of information would answer: It is because before the die is cast our ignorance is greatest, so 
we “can” learn a lot from the cast. After the die is cast we “cannot” learn anything more.  
 I was always extremely uncomfortable with this explanation. There must be a better way to think 
about it! We have to find different measure (let’s use for it the symbol “Inf,”) but of course, we have to 
make sure that the amount of information transmitted is the same as in Shannon’s calculations. What 
can we change in our analysis of the die’s cast? Maybe we should exchange the values of information 
measure, Infin = 0 and Inffin = log2 6, and assume that information transmitted is the difference between 
amount of information before and after transmission. We have the amount of information transmitted 
exactly the same as in Shannon’s calculations. But also we have much more intuitive interpretation. 
Before the die is cast our information about the outcome is nill due to symmetry of the die. After cast 
we know exactly what the outcome is. How to get Inf(p), for arbitrary probability distribution 
p=(p1,p2,…,pn)?  
 
 It is simple,  Inf(p) = Hmax – H(p).        (6.1) 
Then, we get desired values. But we wanted to have a measure of information free from the conduit 
metaphor, without any “before” or “after,” without any reference to arbitrarily selected level of 
reference such as maximum, minimum, or else. We want to have measure for information about 
selecting one element out of many in the variety of elements of known size provided by probability 
distribution. Even this is not a problem. We have two such measures, the second of them with the 
range of values between 0 an 1 is a result of normalization of the first. 
 
 n 

Inf(n,p) =  ∑ pi log2(npi ).         (6.2) 
 i=1   

 n 

Inf*(n,p) =  ∑ pi logn(npi ).         (6.3) 
 i=1  
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The second measure (6.3), after closer look can be recognized as an old friend from Shannon’s paper, 
where, under its “maiden name” it was known as redundancy. It has several interesting properties, but 
it is the first measure (6.2) which is the object of our primary interest. This is the alternative measure 
announced before, free of many (if not all) blemishes of entropy.    

This alternative measure has made some occasional public appearances in the last forty years, but 
never as contender for the priority over entropy, at most as an impoverished cousin whose very 
existence depended on entropy. Its formula appeared for the first (and probably last) time in Renyi’s 
exposition of information theory [25] as an example of “information gain” in the transition from the 
uniform to an unspecified probability distribution. Renyi, who was writing his lecture in the 
convention of the conduit metaphor, considered the concept of information gain only in the context of 
the differences between different probability distributions. Therefore, he never considered the 
possibility to use the information gain, with the focus on transitions from the uniform distribution, as a 
measure for arbitrary single distribution.  

 To my best knowledge there were only two authors who, in their work in applications of 
information theory, explicitly considered the idea of using the difference between entropies as a 
measure of information within one system, Lewis [35] and Gatlin [36]. It is a mystery for me, why 
they have never went beyond the analog of the equality (6.1) in their conceptual analyses to establish 
an independent measure of information, and based on that measure, to consider entropy as a secondary 
concept describing the difference between information measures for different distributions:  

H(p) = Inf (n)max – Inf(n,p).        (6.4)  
The power of the conduit metaphor must have been paralyzing.   
 In Section 3 above, I mentioned that Brillouin’s measure can be considered an analog of Hartley’s 
measure for the alternative measure of information presented here. Indeed, let’s consider the 
probability distribution p=(p1,p2,…,pkpk+1,p2,…,pk+m), where k+m = n and pi = 1/k for I = 1,…,k, pi=0 
for i>k. Then  
 n k 

Inf(n,p) =  ∑ pi log2(npi ) = ∑ 1/k log2(n/k ) = log2(n/k ).  
 i=1 i=1 

Thus, for the special case of probability distribution with n elementary events, such that n-k 
elementary events have vanishing probability, and the distribution is uniform for the remaining k 
events, we get Brillouin’s measure.  
 Let’s go back for the last time to the metaphor from the introduction to this paper. Based on the 
fact that entropy can be considered the difference between the maximum value of the alternative 
measure of information for the variety of n elements and the value of this measure for any probability 
distribution as described in (6.4) H(p) = Infmax – Inf(p), we can think about entropy as a difference 
between the volume of all barrel and the volume of water in the barrel,  or simply as a  measure of the 
volume of empty space above the water. It is the alternative measure which gives the direct measure of 
the volume of water.  
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7. Properties of the Alternative Measure for Information 

   
We still have long way to go to demonstrate superiority of the alternative measure of information 

over entropy. After all, it may be considered irrelevant whether we say that the barrel is half empty, or 
that it is half full, which, as a popular anecdote has it, just helps to qualify the speaker as a pessimist or 
optimist. But, there are several reasons beyond intuitiveness and natural character of the alternative 
measure that make it superior. Unlike entropy, the alternative measure can be easily extended to the 
continuous distributions on the bound support, and such extension is (again, unlike differential 
entropy) always nonnegative and invariant with respect to transformations of the coordinate system.  

Let’s start from more systematic review of the properties of the alternative measure.  
In the following we will use an elementary inequality: 
log2(x) ≤  (x-1) log2(e) for every x>0.        (7.1) 
From this inequality follows directly that:  log2(t) ≥  (1-1/t) log2(e) for every t>0,  (7.2) 
or that: t log2(t) ≥  (t-1) log2(e) for every t>0,       (7.3) 
 
Therefore, n n 

Inf(n,p) =  ∑ pi log2(npi ) ≥ ∑ ( pi -1/n) log2(e) = 0, i.e. Inf(n,p) ≥ 0.    (7.4) 
 i=1 i=1 

Now, let’s consider the alternative measure for a continuous distribution on interval [a,b] given by the 
density function f(x) integrable on [a,b].  
 

 
For each partition into n sub-intervals we can consider a discrete probability distribution q with  
qi = pi ∆αi, where:  
 xi 

pi =  (1/∆αi) ∫ f(x) dx =  (1/∆αi) (F(xi)-F(xi-1))  (average of f(x) on (xi-1, xi]).  
 xi-1  
Now, since f(x) is integrable function on [a,b], we don’t lose generality assuming that each partition is 
into subintervals of equal length ∆α. Then we have:  

 f(x)
Let { xi : i=1,…,n; x0 = a, xn = b }, 
Be a partition of [a,b] into n subintervals,  
each subinterval (xi-1, xi] of size ∆αi. 
 

a xi b
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 n n 

Infn(n,q) =  ∑pi∆α log2(npi ∆α) =  ∑pi∆αlog2((b-a)pi ).  
 i=1 i=1 

Now, in the limit when n → +∞, Infn(n,q) converges to:  

                 b 

 Inf([a,b],f(x)) = ∫ f(x) log2((b-a)f(x)) dx      (7.5) 
a  

 Thus, the alternative measure defined for the discrete probability distributions has a natural 
extension to the measure (7.5) for continuous distributions. Unlike for entropy, the sequence of partial 
sums for the alternative measure is convergent.  
 The interval of integration in (7.5) can be extended to the entire real line as the support for the 
density function is limited to finite interval. We have assumed that the support of the density function 
is interval [a,b]. Actually, in the formula (7.5) for the alternative measure the relationship between 
interval [a,b] and the support of density function is more general. We have to assume only that the 
support of f(x) is included in the interval [a,b]. Each choice of [a,b] is a choice of the range of the 
variety which is reduced to unity by information. Therefore, the expression (b-a) in the argument of the 
logarithmic function follows from the definition of the measure Inf([a,b],f(x)) not  from the support of 
f(x). Thus, the two measures for the same density function f(x):  Inf([a,b],f(x)) and Inf([c,d],f(x)) may 
be different, even if the support of f(x) is included in both intervals. The presence of the expression  
(b-a) which is the measure of length of the interval representing the range of values for all variety, is 
an analog of the presence of n in the formula for the discrete case.  
 Now when we have identified the continuous analog of alternative measure, it is easy to show that 
it is always nonnegative.  
Since  t log2(t) ≥  (t-1) log2(e) for every t>0,  

 

  b b 

 Inf([a,b],f(x)) = 1/(b-a) ∫ [(b-a)f(x)]log2((b-a)f(x))dx ≥1/(b-a)∫ [(b-a)f(x) -1] dx = 0 (7.6) 
a a

 Finally, we can show that the alternative measure for continuous distributions on the finite interval 
is invariant with respect to linear transformations of coordinate systems.  
 Let the random variable X is transformed into new variable Y by a differentiable one-to-one 
transformation Y = ϕ(X) = mX + c, m ≠ 0 The density function changes as follows g(y) = ⎮1/m⎮f(x).  
Then we have [31,33]: H(Y) = H(X) + log2⎮m⎮. Let’s assume that ϕ(a) ≤ ϕ (b).  

 ϕ(b) ϕ(b) 

 Inf([ϕ(a), ϕ (b)],g(y)) = ∫ g(y) log2((ϕ(b)-ϕ(a))g(y)) dy =  ∫ g(y) log2(m(b-a))g(y)) dy =   
 ϕ (a) ϕ (a) 
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ϕ(b) ϕ(b) 

 ∫ g(y) log2 (g(y)) dy +  ∫ g(y) log2m(b-a) dy = - H(X) - log2⎮m⎮+ log2m(b-a). 
ϕ (a) ϕ (a) 

 
Now, a < b if and only if m > 0, so for a < b we have - H(X) - log2⎮m⎮+ log2m(b-a) =  
log2(b-a) – H(X) =  

 

 b   

 ∫ f(x)log2((b-a)f(x)) dx  = Inf([a,b],f).  
a  

If b<a, then m < 0, and - H(X) - log2⎮m⎮+ log2m(b-a) = log2(a-b) – H(X) =  

 

 a   

 ∫ f(x)log2((a-b)f(x)) dx  = Inf([b,a],f).  
b  

From this we can conclude that, if a < b, then Inf([ϕ(a), ϕ (b)],g(y)) = Inf([a,b], f(x)), and if b < a, then  
Inf([ϕ(a), ϕ (b)],g(y)) = Inf([b,a], f(x)) for a linear transformation of coordinates ϕ.  
 Thus, the three major objections to entropy, the fact that differential entropy is different from 
entropy for discrete random variables (i.e. de facto that differential entropy is not an extension of the 
concept of entropy to the continuous probability distributions), that differential entropy can be 
negative, and that entropy is not invariant with respect to linear transformations of coordinates, do not 
apply to the alternative measure of information. The invariance with respect to linear transformations 
does not restore the property of invariance with respect to all bijective transformations shared by 
entropy [33] and the alternative measure in the discrete case, but at least the alternative measure 
matches invariance properties of mutual information in the continuous case.  

 Actually, it is only through the alternative measure of information that the connection 
between entropy and differential entropy can be established. As we could see (6.4), entropy can be 
defined as the difference between the values of the alternative measure H(p) = Inf(n)max– Inf(n,p). 
Similarly, differential entropy for the random variable X with density function f(x) with the support on 
interval [a,b] can be defined as follows H(X) = log2(b-a) – Inf([a,b],f(x)), although in this case the role 
of the expression log2(b-a) is not so clear, as there is no maximum information on an interval [a,b]. 
The arbitrary value of log2(b-a) may be interpreted as a reflection of the arbitrary choice of differential 
entropy as a continuous counterpart of discrete entropy. It is an interesting open question whether the 
choice of log2(b-a) has any interpretation other than convenience.  

 
 8. Examples 
 
 We have had some examples of the alternative measures for very simple probability distributions 
in Section 6. Thus, for the distribution with n elementary events with one value of probability 1 and all 
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other 0, Inf(n,p) = 0. Then, we considered Brillouin’s measure as the measure for the probability 
distribution p=(p1,p2,…,pkpk+1,p2,…,pk+m), where k+m=n and pi=1/k for i=1,…,k, pi=0 for i>k.   
 n k 

Inf(n,p) =  ∑ pi log2(npi ) = ∑ 1/k log2(n/k ) = log2(n/k ).  
 i=1 i=1 

Now, little bit more complicated example. Suppose {ai: i=1,…,n} be a finite sequence of nonnegative 
real numbers. Then, when we define sn as a sum of elements of the sequence 
 n  

sn =  ∑ ai  , and the sequence pi= ai / sn defines probability distribution p for which 
 i=1  

 n  

Inf(n,p) = log2(n/ sn) +  (1/ sn)∑ ai log2(ai ).  
 i=1  

Then, the measure for the geometric probability distribution pi= ari, for i=1,…,n, where the constant  
a = (1-r)/(1-rn) to give the sum of probabilities equal 0, is  
Inf(n,p) =  log2(na) + [nrn/(rn -1)-r/(r-1)] log2(r). 
 
It can be seen easily that with increase of n to infinity, Inf(n,p) for the geometric distribution is 
divergent to infinity. It can be shown, that Inf(n,p) is divergent to infinity with n, no matter what 
sequence of probability distributions we choose [37]. 
 Now let’s consider some examples of continuous probability distributions. Obviously, for the 
uniform distribution f(x) on interval [a,b], Inf([a,b],f) = 0. For the distribution f(x) on interval [a,b] 
uniform on the subinterval [c,d] (a < c < d <b), Inf([a,b],f) = log2((b-a)/(d-c)), a continuous analog of 
Brillouin’s measure.  
 Now, let’s consider Simpson’s distribution, i.e. the convolution of identical uniform distributions 
on the interval [-a,a]. The density function f(x) is given by: f(x) = 0, for x<-a or x>a; f(x) = (x+a)/a2 for 
–a ≤ x < 0; f(x) = (-x+a)/a2 for 0 ≤ x ≤ a.  
Its graph is as follows.  

  Then, Inf([-b,b],f) = log2((2b)/(a√e)), where b≥a. 

 
1/a 

f(x)

-a a

From this value of the measure for Simpson distribution we get the infinite value of the measure for 
the probability distribution given by Dirac’s delta δ(x).  
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Lemma [38]: Let f(x) be a piecewise continuous density function, fa(x) = af(ax). Then fa(x) is 
convergent to δ(x) as a → +∞, in a sense of distribution convergence.  
 
 Now, since any Simpson’s distribution on [-a,a] can be considered f1/a(x) for f(x) defined by f(x) = 
0, for x<-1 or x>1; f(x) = x+1 for –1 ≤ x < 0; f(x) = -x+1 for 0 ≤ x ≤ 1, we can conclude  a → 0, 
Simpson’s density functions approach δ(x). When we consider Inf([-b,b], f1/a) for constant b and  
a → 0, it is diverging to infinity. It is not a surprise, as differential entropy in this case is divergent to 
minus infinity.  
 Obviously, the alternative measure is not defined for the normal distribution, or any other 
distribution with unbounded support. It could be considered a great disadvantage in comparison to 
differential entropy which is defined for many such distributions, if we knew what exactly differential 
entropy measures. In any case, it is an interesting problem to clarify the mutual relationship between 
differential entropy and the alternative measure in the limit when the support of distribution increases 
to infinity. From the result for infinite discrete distributions mentioned above, it follows directly that 
we cannot expect that for any sequence of distributions with increasing size of support the alternative 
measure could be convergent.  
 
  9. More About Properties of the Alternative Measure  
 
 To complete this introductory study of the alternative measure for the discrete probability 
distributions, two more properties should be mentioned. The first, quite obvious, is that the measure on 
the direct product of probability spaces is the sum of measures. 
 
Theorem 9.1 
Let S = S1×S2 with the probability distribution given by p×q ik= pipk. Let S1 consists of n elements, 
S2 consists of m elements. Then Inf(nm,p×q) = Inf(n,p) + Inf(m,q). 
Proof:  
 n m  n m 

Inf(nm,p×q) =  ∑∑ p×q ik log2(nm p×q ik ) =  ∑∑ pipk log2(nmpipk ) = Inf(n,p) + Inf(m,q).  
 i=1 k=1  i=1 k=1 

 
 The second property is much less obvious.  
 
Theorem 9.2 
Let S be a disjoint union of the family of probability spaces {Ai: i = 1,…,m; Ai∩Ak=∅, if i≠k}, each 
with probability distribution p(i). Let n indicates the number of elements in S, and ni of elements in Ai. 
We can define a probability distribution p(x) on S the following way.   
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For every x in S, p(x) = ai p(i)(x), where i is selected by the fact that x belongs to Ai and a1+…+am = 1. 
Of course, ai = p(Ai) and we can write p(x) = p(Ai) p(i)(x).  
Then,  
 m m 

Inf(n,p) =  ∑  p(Ai)Inf(ni,p(i)) + ∑  p(Ai) log2[(n/ni ) p(Ai)].  
 i=1 i=1 

Proof:  
 m m 

 ∑  p(Ai)Inf(ni,p(i)) + ∑  p(Ai) log2[(n/ni ) p(Ai)] =  
 i=1 i=1 

 m ni m 

 ∑  p(Ai) ∑p(i)(xji
) log2[nip(i) (xji

)]+ ∑  p(Ai) log2[(n/ni ) p(Ai)] =  
 i=1 ji=1 i=1 

 m ni ni m 

 ∑⎨∑p(xji
) log2[nip(xji

)] - ∑p(xji
) log2[(n/ni)p(Ai)]⎬+ ∑  p(Ai) log2[(n/ni ) p(Ai)] = Inf(n,p).  

 i=1 ji=1 ji=1 i=1 

 If all sets Ai have the same size k, then the formula for Inf(n,p) becomes much simpler: 
 m m 

Inf(n,p) =  ∑ p(Ai)Inf(k,p(i)) + ∑ p(Ai) log2[m p(Ai)].  
 i=1 i=1 

 We can interpret this theorem as an assertion that the total information amount Inf(n,p) can be 
separated into information identifying the element of the partition Ai, plus the average information 
identifying an element within subsets of the partition.  
 
  10. Conclusion  
 
 The alternative measure of information has a potential to provide a sound basis for the semantic 
theory of information. One of the possible approaches is to go back to the point where Carnap and Bar-
Hillel, guided (or misguided) by the analogy with entropy made their choice of measure, and to look 
for the measure consistent with that presented above.  
 It is my belief, that even if the alternative measure presented here does not solve all conceptual 
problems in the study of information, it can help in finding solutions.     
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