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__________________________________________________________________________________ 
 Abstract: The present paper is concerned with an analytical study of entropy generation in 
 viscous, incompressible Couette flow between a stationary plate and a moving plate. The flow 
 induced by the moving plate is assisted by a constant pressure gradient along the flow direction. 
 Four different combinations of thermal boundary conditions are investigated: (a) plates at 
 different temperatures, (b) stationary plate at a fixed temperature and moving plate subjected to 
 a constant heat flux, (c) stationary plate at a fixed temperature and convection at the moving 
 plate, and (d) convection at both plates. 
 Besides the velocity and temperature profiles, dimensionless results are presented for the 
 entropy generated due to heat transfer, the entropy generated due to viscous dissipation, and the 
 total entropy generation. These results illustrate the effect of pressure gradient, temperature 
 asymmetry, heat flux, convection Biot numbers, and ambient temperatures. For certain 
 combinations of thermal variables, the total entropy generated is minimized.  
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__________________________________________________________________________________ 

Introduction 

Since the pioneering work of Bejan [1] on entropy generation in convective heat transfer, it is 
now widely recognized that convective heat transfer problems that were previously studied using the 
first law of thermodynamics be reexamined in the light of the second law of thermodynamics so that  
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thermal systems can be designed with the objective of minimizing thermodynamic irreversibility. This 
design methodology, known as entropy generation minimization (EGM), is comprehensively covered 
in the book by Bejan [2]. The popularity of EGM can be gauged from the number of papers on entropy 
generation in convective flows that continue to appear in the heat transfer literature e.g. [3, 4]. We will 
refer only to the literature that deals with entropy generation for flow between parallel plates which is 
of immediate relevance to the present study. 

The flow of a viscous, incompressible flow induced by a plate moving parallel to a stationary 
plate and assisted by a favorable pressure gradient situation, known as generalized Couette flow,is 
useful in many engineering applications and has been studied extensively both from fluid mechanics 
and heat transfer perspectives. However, studies of entropy generation in such flows have been limited. 
Ibanez et al [5] have studied the entropy generation due to pressure gradient assisted viscous flow 
between two parallel stationary plates when the plates are subjected to convective boundary 
conditions. Their analysis assumes that the convective environment temperature is the same for both 
plates but the heat transfer coefficients and consequently the Biot numbers are different. They 
concluded that a minimum volumetric entropy generation rate can be achieved for certain 
combinations of Biot numbers. This work was later extended to the generalized Couette flow [6].  

The present paper is an analytical study of entropy generation in generalized Couette flow with 
focus on the effect of thermal boundary conditions imposed on the plates. Four different combinations 
of thermal boundary conditions are investigated: (a) both plates at different temperatures, (b) stationary 
plate at a fixed temperature and moving plate subjected to a constant heat flux, (c) stationary plate at a 
fixed temperature and convection at the moving plate, and (d) convection at both plates. The case (d) is 
a refinement of the analysis presented in [6] because it allows both the environment temperatures and 
the convective heat transfer coefficients to be different. Analytical results for the velocity and 
temperature profiles, entropy generation due to heat transfer, entropy generation due to viscous 
dissipation, and the total entropy generation are presented and discussed. 
 

Hydrodynamic and Thermal Analysis 

 Fig. 1 illustrates the Couette flow of a viscous, incompressible fluid confined between two 
parallel plates separated by a distance a. The fluid viscosity, µ, is assumed to be a constant. The bottom 
plate is stationary while the top plate moves with a uniform V. The fluid flow is also assisted by a 
favorable pressure gradient, dp/dx <0.  
 

   

V

a
y

y=a/2

y=-a/2 stationary plate

moving plate

 
    Fig.1. Couette flow between parallel plates 
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 The momentum equation for the velocity u along the x direction may be written in 
dimensionless form as 

    02

2

=+ P
dY

Ud
      (1) 

where U = u / V, Y = y / a, and 
dx
dp

V
aP
μ

2

−=  is the dimensionless pressure gradient.  

The boundary conditions for equation (1) are 
 
    0,2/1 =−= UY      (2a) 
    1,2/1 == UY      (2b) 
 The solution of equations (1-2) is easily obtained as 

    )41(
8
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2
1 2YPYU −++=     (3) 

The derivative of U  with respect to Y which will be needed later in the entropy generation analysis is  

PY
dY
dU

−= 1       (4) 

With the inclusion of heat conduction in the y direction and the viscous dissipation term, the 
energy equation in dimensionless form is expressible as 

    0
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     (5) 

where is the dimensionless temperature and  is the thermal conductivity of the fluid. 
The use of dimensionless temperature in this form eliminates the Eckert number Ec and Prandtl 
number Pr which appear in traditional analyses. The solution of equation (5) depends on the thermal 
boundary conditions imposed at the plates. We consider the solutions for four combinations of 
boundary conditions. 

2/ VkT μθ = k

    
Constant Plates Temperatures 
  
 The stationary plate is assumed to be at a constant temperature  and the moving plate at a 

constant temperature . In terms of 
1T

2T θ , the boundary conditions become 

        1,2/1 θθ =−=Y      (6a) 
    2,2/1 θθ ==Y      (6b) 

The solution of equations (5, 6) is 
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The derivative of equation (7) with respect to Y which will be needed later in entropy generation 
analysis is 
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Constant Temperature at Stationary Plate and Constant Heat flux at the Moving Plate 
  
 In this case, the boundary condition (6b) changes to  
     

    Q
dY
dY ==
θ,2/1      (9) 

where is the dimensionless heat flux.2/ VaqQ μ′′= q ′′ is the heat flux at the moving plate.  
 The solution of equation (5) subject to equations (6a) and (9) is 
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Constant Temperature at Stationary Plate and Convection at the Moving Plate 
 
 In this case, the boundary condition at the moving plate may be written as 

    ( ) 0,2/1 =−+= aBi
dY
dY θθθ

    (11) 

where in Biot number , h is the convection heat transfer  coefficient and in khaBi /=
2/ VkTaa μθ = ,  is the convection environment temperature. aT

 The solution of equation (5) subject to equations (6a) and (11) is 
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Convection at both plates 
 
 The boundary conditions for this case are 

    ( ) 0,2/1 1,1 =−+−= aBi
dY
dY θθθ

   (13) 

    ( ) 0,2/1 2,2 =−+= aBi
dY
dY θθθ

   (14) 

where , , ,  and  and  are the 

heat transfer coefficients and convection environment temperatures at the stationary and moving 
plates, respectively.  

kahBi /11 = kahBi /22 =
2

1,1, / VkTaa μθ = 2
2,2, / VkTaa μθ = 1,1 , aTh 2,2 , aTh

 The solution of equation (5) subject to the boundary conditions (13) and 14) is 
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Entropy Generation Rate 
 
 Adapting the general result for the local volumetric entropy generation 
rate  provided by Bejan [1,2] to the present convective flow situation, we have )/( 3KmW
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which may be expressed in dimensionless form as 
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Both in equations (18) and (19), the first term represents the entropy generation due to heat conduction 
(subscript h ) and the second term the entropy generation due to viscous or fluid friction effect 
(subscript f). Using equation (4) for and the appropriate results (depending on the thermal 
boundary conditions) for

dYdU /
dYd /θ , we can integrate equation (19) from 2/1−=Y  to  and obtain 

the entropy generation rate across the gap between the plates. 
2/1=Y

 
Results and Discussion 
  
The dimensionless velocity distribution given by equation (3) is plotted in Fig.2 for P  = 0 (red), 2 
(green), 4 (yellow), 6 (blue), 8(pink), and 10 (aqua blue). For P  = 0 i.e. no axial pressure gradient, the 
velocity distribution is linear giving a constant velocity gradient  across the gap. As a 
consequence, the entropy generation due to fluid friction occurs at all locations across the gap. As the 
pressure gradient 

dYdU /

P increases, the velocity profiles exhibit maxima indicating zero velocity gradients at 
certain locations across the gap and consequently zero entropy generation due to friction at those 
locations. The location of zero entropy generation due to friction moves closer to the center line 0=Y  
as the pressure gradient increases.   
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  Fig.2. Effect of pressure gradient P on velocity profiles 
 
Constant Plates Temperatures 
 

The effect of pressure gradient on the temperature distribution is illustrated in Fig.3 for the case 
of constant plate temperatures ( 201 =θ , 52 =θ ). In the range from P = 0-10, the temperature 
distribution changes only slightly. Since the temperature profiles do not exhibit any maxima, the 
entropy generation due to heat conduction occurs at all locations across the gap. However, a distinct 
maximum in temperature is observed at =50 and indicates zero entropy generation due to heat 
conduction at that location. 

P

    

    

θ  

    Fig.3. Effect of pressure gradient P on temperature profile 
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hS  fS  

 Fig.4a. Local entropy generation  Fig.4b.Local entropy generation 
           due to heat conduction   due to fluid friction 
 
 
For fixed values of 201 =θ and P =2, the effect of varying 2θ on the entropy generation rate is depicted 

in Fig.4. Fig. 4a shows the entropy generated due to heat conduction i.e. (denoted by ) 

while Fig. 4b shows that due to fluid friction i.e.  (denoted by ). The temperature is 

varied from 

kaS hgen /2
,′′′& hS

kaS fgen /2
,′′′& fS

2θ =20 (red curve) in increment of 10 to 70 (aqua curve). For 2θ = 20, the local entropy 
generation due to heat conduction (Fig 4a) is negligible. However, the entropy generation due heat 
conduction increases sharply as 2θ is increased particularly at the stationary plate where the largest 

temperature gradients occur. The effect of 2θ on the local entropy generation at the moving plate is 

rather small because the changes in 2θ  result in comparatively smaller changes in the temperature 
gradients at the moving plate.  The local entropy generation due to fluid friction (Fig. 4b) is maximum 
at the stationary plate and minimum at the moving plate. The highest entropy generation due to fluid 
friction occurs at the lowest value of 2θ (red curve). This is due to the presence of θ  in the denominator 
of the fluid friction term in equation (19). A comparison of the results in Fig. 4a and 4b and the 
corresponding results for other pressure gradients reveals that the entropy generation due to fluid 
friction is much smaller than that due to heat conduction for the range of investigated i.e. from 0 to 
50.  

P

 Fig.5 shows the integrated (across the gap) total entropy generation rate, denoted in the figure 
by  for convenience, as a function of the pressure gradientfh SSS += P  for 2θ = 20, 40, 60, and 80 

with 1θ  fixed at a value of 20. The contribution of is much smaller than . The total entropy 

generation rate increases as increases and/or 
fS hS

P 2θ increases. This is a consequence of the higher 

velocity and temperature gradients caused by the increase in P and 2θ , respectively. From a system 
design perspective, the total entropy generation is minimized only when the plates are held at identical 
temperatures and the pressure gradient is zero, that is, when the flow is driven solely by the motion of 
the upper plate. 
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Fig.5. Effect of pressure gradient P and 2θ on total entropy generation. 
 

Constant Temperature at Stationary Plate and Constant Heat flux at the Moving Plate 
 
For this case, the temperature at the stationary plate i.e. 1θ  was fixed at a value of 20. The effect 

of varying the pressure gradient P and the heat flux Q at the moving plate is illustrated in Fig. 6. The 
total entropy generation rate increases significantly with increase in pressure gradient but is 
comparatively less affected by the changes in heat flux at the moving plate. The increase in entropy 
generation rate is due to the increase in velocity and temperature gradients that accompany the increase 
in andQ . It may be noted that in this case the moving plate is colder than the stationary plate and 
extracts energy from the fluid. The entropy generation is minimized only when the moving plate is 
insulated,  the pressure gradient is zero and the flow is induced solely by the motion of the plate.  A 
comparison of Figs.5 and 6 shows that by extracting heat at a constant rate from the moving plate, the 
entropy generation in the process can be significantly reduced. 

P

 
For the case where the moving plate is hotter than the stationary plate, the moving plate 

delivers energy to the fluid. Fig.7 shows the results for this scenario. For low values of pressure 
gradient P , the entropy generation rate increases rapidly as the heat flux increases beyond Q ≈8. It is 

interesting to observe that at high values of the heat flux, the entropy curves for low values of P  cross 
over the curves for high values of P  . Thus, within the examined intervals of P  andQ , the highest 

entropy generation is encountered at P = 6 and Q =16. However, at higher pressure gradients, the 

increase in Q affects the entropy generation rate moderately. Furthermore, at P  = 18 and 20, both 
curves exhibit a minimum in the neighborhood of  = 8 (discernible with numerical results). This 
result is important in flows driven by high pressure gradients in which the moving plate supplies heat 
to the fluid. If a system is to be designed under these operating conditions, the maximum energy input 
from the moving plate should be close to  = 8 to ensure minimum entropy generation. 

Q

Q
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Fig.6. Effect of pressure gradient P and heat flux Q on total entropy generation when the 
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 moving plate delivers heat to the fluid. 
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Fig.7. Effect of pressure gradient P and heat flux on total entropy  

luid.    
 

onstant Temperature at the Stationary Plate and Convection at the Moving Plate 

se

Q
 generation rate when the moving plate extracts heat from the f

C
  
 We choo  1θ = 20 and aθ = 5 and illustrate in Fig.8 the effect of Biot number on the total 

entropy generation rate for selected values of the pressure gradient. For each value of P , the total 
entropy generation rate increases as Bi increases i.e. the convection at the moving plat  gets strong
The increase in heat removal from the fluid by the moving plate results in enhanced entropy generation
rate. For a fixed Bi, the higher the pressure gradient and hence the larger the velocity gradients, the  
higher the entropy generation rate.  

e er. 
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The effect of varying the convection environment temperatur

  Fig. 8.Variation of entropy generation rate with Biot number Bi  
   and pressure gradient P. 
 
 e aθ on the entropy generation rate 

is depicted in Fig. 9 for selected values of the pressure gradient P . This figure was generated by fixing 

1θ = 20 and Bi = 2. As aθ increases, the convective heat remova from the moving plate decreases 

hich leads to a reducti  in entropy generation rate.  
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generation rate as a function of 
 

ig.9. Entropy F aθ and P  with 1θ = 20 and Bi=2.    
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Convection at both plates 

 
case are

 
P , 1,aθ , 2,aθ , 1Bi and . We fix the first three at = 2,2Bi P  1,aθ The variables in this = 20,  

2,aθ = 10 and study the effect of vary g 1 Bi ration tted as in Bi and . In Fig. 10, the entropy gene  rate is plo

a function of 

    

with 

 2

2Bi for parametric values of 1 . At 1 =1, the entropy generation increases sharply as  

2 increases. However at 1Bi = 2, 3, 4 and 5, the increase in entropy generation with 2Bi is moderate. 

Also the effect of Bi is significantly attenuated beyond Bi =3.  

Bi Bi
Bi

1 1

     2Bi  
  Fig.10. Entropy generation rate as a function of 2Bi and 1Bi P = 2,    

   1,aθ = 20, 2,aθ = .  10  

ted ne 6] that for certain combinations of and the entropy 
eneration attains a minimum. A close examination of their Fig. 3 for G=2 (P = 2 in present work) 

the 

 
 It has been poin  by Iba z et al [  1Bi 2Bi , 
g
indicates the variation in entropy generation as 1Bi ( 2Bi in present work) increases from 0 to 6 is only 

about 0.2 percent for the three values of 2Bi ( 1Bi  in present work ) used namely 20, 25 and 30 with 

minimum entropy generation occurring at 1Bi ( 2Bi in present work) = 0.5. Because of the variation of 
0.2 percent, the minimum could not be identified graphically without a large magnification of S axis.  
We use the values of P , 1,aθ , 2,aθ , 1Bi  and 2 o hich their Fig. 3 is based and present our results in

Fig.11. It can be observed that in the range of 2Bi from 0.5-3.0 and 1Bi ≥  2, the entropy generation rate
is virtually a minimum. A distinct minimum can be identified by magnifying the S axis or examining 
the numerical results but the exact determination of the minimum would appear to be of little practical 
use.  The same conclusion was reached with the results for other values of P , 1,a

Bi n w  

 

θ , and 2,aθ .  

 The results of asymmetric convective cooling of the plates provide opportunity for minimum 
entropy design of Couette flow systems. For minimum entropy generation design, the cooling of the 
moving plate must provide a minimum Biot number of 2 for the operating condition of P = 2,  
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1,aθ = 20, 2,aθ = 10.The designer then has the flexibility of providing cooling at the stationary plate 

ithin Biot numbers in the range 0.5-3.  
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 Fig.11. Entropy ith P = 2Bi  1Bi
  1,aθ = 10, 2,aθ = 10.  

   
Conclusions  
  
 An analytical study of entropy generation in a plane Couette flow with favorable pressure 

ous dissipation has been presented for four thermal boundary conditions: (a) constant 
 both stationary and moving plates, (b) constant temperature at the stationary plate and 

tion 

izes 
ameters 

e 

gradient and visc
temperatures at
a constant heat flux at the moving plate, (c) constant temperature at the stationary plate and convec
at the moving plate, and (d) convection at both plates. The effect of pressure gradient and thermal 
parameters on the entropy generation rate has been presented and discussed in detail. For case (a), 
minimum entropy design can be realized only when the plates are maintained at identical temperatures 
and the pressure gradient is zero i.e. the flow is driven solely by the motion of the top plate. For 
case(b), it is found that significant reduction in entropy generation compared with the case of 
isothermal plates  can be achieved by extracting heat through the moving plate at constant rate. If the 
moving plate is to supply heat to the fluid, then there is an optimum value of heat flux that minim
the entropy generation. For cases (c) and (d) there exists optimum combinations of thermal par
that result in minimum entropy generation. These optimum combinations have been identified.  For th
case of convection at both plates, i.e. case (d), the present analysis extends the work of Ibanez et al [6] 
by allowing the coolant temperature at the moving plate to be different from the coolant temperature at 
the stationary plate. For identical coolant temperatures as assumed by Ibanez et al [6], the present  
results validate their conclusions that minimum entropy generation can be realized with asymmetric 
convective cooling of the plates. 
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