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Abstract: Bi(OTf)3 and SiO2-Bi(OTf)3 are found to effectively catalyze the Ferrier 
rearrangement of tri-O-acetyl glycals with different alcohols providing an effective route 
to 2,3-unsaturated O-glycosides with good anomeric selectivity and good to excellent 
yields after short reaction times. 
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Introduction  
 

The Lewis acid catalyzed allylic rearrangement of glycals in the presence of alcohols is known as 
the Ferrier rearrangement [1]. This rearrangement leads to the formation of alkyl and aryl 2,3-
unsaturated-O-glycosides, which are versatile chiral intermediates in the synthesis of several 
biologically active natural products [2]. 2,3-Unsaturated-O-glycosides are also important building 
blocks in the synthesis of some antibiotics [3].  The Ferrier rearrangement involves the intermediacy of 
an allylic oxycarbenium ion to which the nucleophile adds preferentially in a quasi-axial orientation. 
The Lewis acid catalysts used for this rearrangement include BF3·OEt2 [4], SnCl4 [5] and FeCl3 [6].  
Other reagents such as DDQ [7], NIS [8], I2 [9], acidic Montmorillonite K-10 [10], BiCl3 [11] and 
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InCl3 [12] are also known to bring about the Ferrier rearrangement under different conditions. In recent 
years Sc(OTf)3  [13] and Yb(OTf)3 [14] have also been employed for the Ferrier rearrangement. 
However, many of these procedures have limitations in terms of yields, stereoselectivities, reaction 
temperatures, reaction times and amounts of reagent or catalyst used. For example, 1.6 equivalents of 
NIS [8], or varied amounts of BF3·OEt2 [4] are needed to bring about the transformation. Reagents 
such as Sc(OTf)3 and Yb(OTf)3 are relatively expensive and while using Yb(OTf)3 for this 
transformation, the reaction time is somewhat longer in some cases (see Table 2). Therefore, there is a 
need for the introduction of convenient and inexpensive reagents which are cheaper, require shorter 
reaction times and offer good anomeric selectivity. 

To this end bismuth(III) trifluoromethane sufonate (bismuth triflate) [Bi(OTf)3], has drawn our 
attention for use in the Ferrier rearrangement as it is cheap, easy to prepare [15], and has low toxicity. 
Bismuth triflate has been used as a catalyst for the Friedel-Crafts acylation [16], sulfonylation of 
arenes [17], the Diels-Alder reaction [18], aza Diels-Alder reaction [19], acylation of alcohols [20], 
epoxide rearrangements [21] and acylal synthesis [22]. 
 
Results and Discussion 
 

Herein, we wish to report that Bi(OTf)3 acts as a mild and highly efficient reagent for the 
O-glycosylation of 3,4,6-tri-O-acetylglucal (1) with diverse alcohols (Scheme 1).  The glycosylation of 
tri-O-acetyl glucal with primary, secondary, benzyl, allyl and propargyl alcohols proceeded smoothly 
at ambient temperature to afford, after short reaction times, the corresponding alkyl 2,3-unsaturated 
glycosides 2 in good to high yields, with the α-anomer being the major or the exclusive product. Our 
results are summarized in Table 1. As shown there, these glycosylation reactions proceed smoothly in 
the presence of 2 mol % of Bi(OTf)3 or 2 mol% of the catalyst supported on 250 mg of SiO2 in 
dichloromethane per 100 mg of the 3,4,6-tri-O-acetylglucal substrate.  In all the given examples, 
except for entry 12 (β-naphthol), the corresponding O-glycosylation products are obtained. In the case 
of entry 12 the corresponding 1-C-glucoside was obtained, presumably via rearrangement of the 
corresponding O-glucoside. Formation of the C-glucoside was confirmed by its acetylation followed 
by the characterization of the corresponding acetylated product by 1H-NMR, 13C-NMR, IR and mass 
spectral data (cf. Experimental section).  

Scheme 1 
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Further, we have also found that bismuth triflate supported on silica gel also acts as an efficient 
reagent for the above transformation. The use of SiO2-supported Bi(OTf)3 reagent had in some cases 
interesting effects in terms of yield (entries 9,10,14), reaction time (entries 1, 3, 13) and selectivity 
(entries 1, 2, 5), as can be seen in Table 1. Therefore it appears that increasing the surface of the 
catalyst is advantageous in certain cases, although it reduces the reactivity. It is therefore clear that 
either of the reagents could be more useful, depending on the glycosyl acceptor.   
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Table 1. Bi(OTf)3  catalyzed glycosylation of alcohols. 
 

Bi(OTf)3 Bi(OTf)3 – SiO2 S. 
No. 

Alcohol 
Reaction 

time 
Yield 
(%)a 

Anomeric 
ratio(a:b)b 

Reaction 
time 

Yield 
(%)a 

Anomeric 
ratio(a:b)b

1. CH3CH2OH 1 h 78 5.5 : 1 40 min 72 12 : 1 

2. CH3(CH2)2OH 45 min 72 6 : 1 1 h 70 10 : 1 

3. CH3OH 6 h 56 6.6 : 1 75 min 81 6.9 : 1 

4. H3C
H3C

OH
 

20 min 70 5.5 : 1 45 min 60 5.3 : 1 

5. CH3(CH2)7OH 50 min 84 4.5 : 1 1 h 83 8.9 :1 

6. OH
 

3 min 75 α 2 h 51 α 

7. OH
 

5 min 73 α 2.5 h 76 7.8 : 1 

8. OH

 

30 min 82 α 2 h 80 3 : 1 

9. Ph OH  25 min 53 6 : 1 40 min 81 8.7 : 1 

10. Ph OH  3 min 69 4 : 1 15 min 90 2.2 : 1 

11. Cholesterol 2 h 70 α 3 h 74 15 : 1c 

12. OH

 
10 min 66 6 : 1 20 min 58 3.2 : 1d 

13. 
O OH

 
12 min 73 16 : 1 5 min 61 12 : 1 

14. BnO OH

 

5 min 79 6 : 1 20 min 83 6 : 1 

       (a) Isolated yields 
       (b) Anomeric ratio is determined by 1H-NMR (400MHz) spectroscopy. 
       (c) 4 mol % of the catalyst was used and reaction warmed to 40oC. 
       (d) Only C-Ferrier product is observed. 
 

A comparison of the literature methods with the new Bi(OTf)3 and Bi(OTf)3-SiO2 reagents is 
presented in Table 2. Although BiCl3 is known [11] to bring about the Ferrier rearrangement (cf. 
entries 1, 3, 4 and 7, Table 2), it is clear from the data that with alcohols such as benzyl alcohol (entry 
1), propargyl alcohol (entry 3), and allyl alcohol (entry 4) the time required using bismuth chloride is 
between 1 to 1.5 h, in comparison to 3 min required using Bi(OTf)3.  
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Table 2. Comparison of results of Bi(OTf)3 with other catalysts 

S.No. Alcohol Catalyst Time Yield (%) (α :β) 
ratio 

Amount 
of catalyst 

used 
CAN 3 h 90 7 : 1 10 mol % 

Sc(OTf)3 3.5 h 85 5 : 1 5 mol % 
Yb(OTf)3 3 h 94 9 : 1 10 mol% 

BiCl3 1 h 94 10 : 1 5 mol% 
InCl3 10 min 86 6.3 : 1 20 mol % 

Bi(OTf)3-SiO2 15 min 90 2.2 : 1 2 mol % 

1. 

 OH
 

Bi(OTf)3 3 min 69 4 : 1 2 mol % 
CAN 2.5 h 89 9 : 1 10 mol % 

Sc(OTf)3 2.5 h 92 9 : 1 5 mol % 
Bi(OTf)3-SiO2 40 min 81 8.7 : 1 2 mol % 

2. 
 

Ph OH  
Bi(OTf)3 25 min 53 6 : 1 2 mol % 

CAN 6 h 80 4 : 1 10 mol % 
Sc(OTf)3 1.5 h 93 10 : 1 5 mol % 
Yb(OTf)3 4 h 91 10 : 1 10 mol % 

BiCl3 1.5 h 95 10 : 1 5 mol % 
Bi(OTf)3-SiO2 2.5 h 76 7.8 : 1 2 mol % 

3. 

 
OH  

Bi(OTf)3 5 min 73 α 2 mol % 
CAN 3 h 90 4 : 1 10 mol % 

Sc(OTf)3 1.5 h 95 7 : 1 5 mol % 
BiCl3 1.5 h 95 11 : 1 5 mol % 

Bi(OTf)3-SiO2 2 h 51 α 2 mol % 
Bi(OTf)3 3 min 75 α 2 mol % 

4.  
OH  

I2 1 h 88 7 : 1 20 mol % 
CAN 4.5 h 80 14 : 1 10 mol% 

Sc(OTf)3 3 h 83 7 : 1 5 mol% 
Yb(OTf)3 18 h 89 11 : 1 10 mol % 

InCl3 30 min 90 9 : 1 20 mol % 
Bi(OTf)3 30 min 82 α 2 mol % 

5.  

OH

 

Bi(OTf)3-SiO2 2 h 80 3 : 1 2 mol % 
CAN 4 h 87 7 : 1 10 mol % 

Sc(OTf)3 2 h 92 9 : 1 5 mol % 
Bi(OTf)3 5 min 79 6 : 1 2 mol % 

6.  BnO OH
 

Bi(OTf)3-SiO2 20 min 83 6 : 1 2 mol % 
7. Cholesterol CAN 5 h 78 10 : 1 10 mol % 
  BiCl3 2 h 90 4 : 1 5 mol % 
  Bi(OTf)3 2 h 70 α 2 mol % 
  Bi(OTf)3-SiO2 3 h 74 15:1 2 mol% 
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Likewise, with allyl alcohol, propargyl alcohol and cholesterol (entry 7) the Ferrier product is a 
mixture of α and β anomers using bismuth chloride whereas with Bi(OTf)3 only the α anomer is 
obtained.  In general, the amount of the BiCl3 uesd is 5 mol%, whereas Bi(OTf)3 is used in only 2 
mol% indicating that it is more reactive than BiCl3.  Thus, overall it appears that Bi(OTf)3 has distinct 
advantages over BiCl3 in terms of reaction time, selectivity, and amount of the catalyst required. 

Furanoid skeletons (Scheme 2) are important components [23] of many biologically important 
natural products. Certain monosaccharides under acidic conditions lead to furans [24].  An optically 
active furandiol such as 2-(D-glycero-1,2-dihydroxyethyl)furan (4) is a potential chiral building block 
in organic synthesis [25]. The transformation of D-glucal 3 to furandiol 4 with the HgSO4-dioxane 
system was first reported by Gonzalez et al. [26]. Following this report, Hayashi et al. [27] screened 
several catalysts such as Pd(OAc)2, RuCl2(PPh)3, Sm(OTf)3 and Yb(OTf)3 for the transformation of 3 
into 4, reporting yields ranging from 44% to 70% and requiring 30-165 minutes at 80-100oC, but some 
of these reagents are expensive and HgSO4 is toxic. Some improved procedures for this transformation 
can be found in the literature. Recently, Balasubramanian et al. [28] used InCl3·3H2O for this purpose. 
The reaction requires 10 mol % of the catalyst and is completed in 2.5 h to give 4 in 82% yield.  More 
recently, in our laboratory [29], HClO4-SiO2 has been found to be an efficient acidic catalyst for the 
formation of 4 in 89% yield. It therefore seemed logical to focus our attention on the use of the present 
reagent system for the formation of 4.  Thus, use of 1 mol% of Bi(OTf)3 transformed D-glucal into 4 in 
after 1 h, albeit in only 59% yield. Increasing the amount of the catalyst from 1 mol% to 3 mol% 
reduced the reaction time to 15 minutes, but the yield also dropped to 47%. Reaction of galactal, on the 
other hand, required 2 mol% of Bi(OTf)3 and it took 5 minutes for the reaction to complete, resulting 
in a 47% yield of the diol 4. 

Scheme 2 
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Conclusions 
 

We have developed a highly stereoselective, Bi(OTf)3 and SiO2-Bi(OTf)3 catalyzed Ferrier 
glycosylation to produce 2,3-unsaturated glycosides. Compared to other methods, our method appears 
to have advantages such as easy preparation of the inexpensive catalyst, shorter reaction times, good 
yields, high anomeric selectivity, mild reaction conditions and low catalyst loadings.  We believe that 
it should find use in organic synthesis.  
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Experimental: 
 
General 
 

All the alcohols used for the reactions are commercially available and were purchased from 
different chemical companies. All liquid alcohols were freshly distilled before use and solid alcohols 
were recrystallized. CH3CN was dried over P2O5 followed by over CaH2. After distillation it was 
stored over 4Å molecular sieves and used directly for the reactions. Dichloromethane was dried over 
anhydrous CaCl2 and freshly distilled over CaH2 prior to use.  All reactions were carried out under an 
inert nitrogen atmosphere. All products were purified by silica gel column chromatography (100-200 
mesh) using pet. ether and ethyl acetate as the eluents. Proton NMR spectra were recorded on a Jeol 
400 MHz NMR spectrometer using CDCl3 as the solvent. The yields reported are after purification. All 
compounds are known and the structures were confirmed by 1H-NMR and 13C-NMR spectra and 
comparison of physical properties with the available literature data. 
 
Preparation of the silica gel supported catalyst 
 

Bismuth triflate (40 mg) was dissolved in dry CH3CN (4 mL). To this solution was added activated 
silica gel (2g, 100-200 mesh) and a slurry was prepared by evaporating the solvent under vacuum. The 
slurry is kept under a nitrogen atmosphere and 250 mg of this reagent, which contains 2 mol % (5mg ) 
of bismuth triflate, is used for each reaction . 
  
General synthetic procedure 
 

To a stirred mixture of tri-O-acetyl D-glucal (100 mg, 0.3676 mmol) and alcohol (1.1 eq) in 
dichloromethane (3 mL) under nitrogen was added 2 mol% of Bi(OTf)3 (5 mg) at ambient temperature 
and the reaction was monitored by TLC. After the reaction was over, the reaction mixture was 
quenched with 20% aqueous NaHCO3 solution and the crude product was extracted with 
dichloromethane (3 x 10 mL). The combined organic layers were washed with water, brine, and finally 
dried over anhydrous Na2SO4. Pure compound was obtained by column chromatography on SiO2 (100-
200 mesh).  
 
Spectral data for the 1-C-glucoside corresponding to entry 12:   
 
 
 
1H-NMR (400 MHz, CDCl3) (α-anomer) δ: 2.13 (s, 3H), 2.15 (s, 3H), 4.08-4.11 (dt, J = 2.92, 5.84, 
9.28 Hz, 1H), 4.32-4.39 (m, 2H), 5.65 (dd, J = 1.96, 9.28 Hz, 1H), 5.87-5.90 (m, 1H), 5.97-6.00 (dd, 
1H, J = 4.4, 11.84 Hz), 6.31 (brs, 1H), 7.09-7.79 (m, 6H), 8.53 (s, 1H).  (β-anomer) δ: 8.34 (s, 1H), 
6.11(brs, 1H);  13C-NMR (100 MHz, CDCl3) (α-anomer) δ: 20.7, 20.9, 62.4, 64.2, 75.3, 75.3, 119.9, 
120.6, 112.6-154.0 (10 aromatic carbons), 170.1, 170.8; IR(CH2Cl2) ν: 3362, 1742, 1622 1264, 1230 
cm-1; MSES+: 379 [M + Na]+, 295 [(M+2)-86+Na]+, 237 [M-143+Na] +. Acetate of 1-C-glucoside: 1H-
NMR (400 MHz, CDCl3) (α-anomer) δ: 2.06 (s, 3H), 2.14 (s, 3H), 2.38 (s, 3H), 4.06-4.12 (m, 1H), 

O
OAc

AcO

HO  
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4.21-4.34 (m, 2H), 5.67-5.69 (m, 1H), 5.89-6.02 (m, 3H); 13C-NMR (100 MHz, CDCl3) (α-anomer) δ: 
20.8, 21.0, 21.1, 63.5, 65.2, 71.6, 75.4, 121.4-146.7 (10 aromatic and 2 olefinic carbons), 169.6, 170.4, 
171.0.  IR (CH2Cl2) ν: 3055, 1740, 1232, 739 cm-1. MSES+: 819 [2M+Na]+, 421 [M+Na]+. 
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