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Abstract: Cyclophellitol and its C3-epimer have been synthesized from 
5-enoglucopyranoside and 5-enomannopyranoside, respectively. The carbocyclic skeleton 
was constructed through a Ferrier-II reaction meditated by PdCl2.  
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Introduction 

Since Ferrier developed a cyclization of saccharides using mercurate [Ferrier-II reaction] in 1979 [1], 
the ring conversion of 6-membered rings using saccharides has been intensively studied [2, 3]. Because 
naturally occurring and biologically active compounds often contain a ring structure with 
multi-functional groups, stereochemical control of chiral centers on these rings becomes crucial in the 
total synthesis of these compounds. The Ferrier-II reaction is remarkably useful for the total synthesis of 
compounds with a complicated conformation such as cyclitols. Cyclophellitol is a β-D-glucosidase 
inhibitor first isolated by Umezawa in 1990 [4]. It is known to have high activity, and its application has 
been expected to range from an anti-virus and anti-HIV agent to an inhibitor of cancer metastasis. The 
structure of cyclophellitol, an epoxy ring in the β-position on a multi-substituted cyclitol in the 
glucose-conformation, resembles that of β-D-glucoside. We investigated synthetic methods of not only 
cyclophellitol but also its epimers, ultimately aiming at the study of structure activity relationship [5]. 
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Results and Discussion  

Figure 1 shows the strategy for the synthesis of cyclophellitol. Commercially available D-glucoside 
is converted into a cyclohexane ring through Ferrier-II reaction, and then an epoxy ring is formed 
stereoselectively. 

Figure 1 
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For the introduction of a hydroxymethyl group as a C1 unit, regio- and stereoselective nucleophilic 
addition to the epoxy ring is examined. Finally, an elimination reaction forms a β-epoxy ring to complete 
the total synthesis of cyclophellitol.  

 
Figure 2 
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In the beginning, 5-enoglucopyranoside 1 [6] was used in Ferrier-II reaction mediated by a catalytic 

amount of palladium chloride. We have recently reported on the Ferrier-II reaction using palladium 
chloride instead of mercury salt [7]. This reaction is more advantageous than the conventional methods 
because it proceeds under very mild conditions, which especially suit the reaction of multi-substituted 
carbohydrates [8]. In this case, the ring conversion was completed by using 0.05 equivalent of palladium 
chloride and the obtained cyclohexanone was converted to an enone 2 [6] via an elimination reaction. 
The enone 2 was reduced under Luche’s conditions [9] to provide a β-alcohol 3 [10]. Then β-form 
epoxide was formed stereoselectively on the cyclohexane ring, and the hydroxyl group was protected by 
an MPM group to provide an intermediate, the epoxide 4 (Figure 2).  
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Figure 3 
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The key reaction in this total synthetic pathway is the regioselective and nucleophilic attack of 

hydroxymethyl group to the epoxide 4. Generally, a nucleophile predominantly attacks at the axial 
position of epoxide in the ring opening reaction of cyclohexane. Therefore, we expected that the 
nucleophilic substitution to this epoxide would occur at the axial position C5, and would not show the 
desired regioselectivity (Figure 3) We then thought that if the conformation of the epoxide could be 
changed, we would be able to introduce a hydroxymehyl group from the desired C6 position. As shown 
in Figure 3, chelation between metals and oxygen atoms of the epoxide and an ether oxygen may 
drastically change the conformation of the cyclohexane ring, resulting in the axial nucleophilic attack at 
the C6 position. For induce such chelation, we used a boron reagent Mes2BCH2Li [11] and studied the 
regio-selectivity of ring opening of the epoxide using substrates that are protected at the C1, a 
coordinative position of chelation, with variation of the protecting groups (Table 1). 
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Entry 

R                 Epoxide Yield (%) Regioselectivity 

1         MPM c        4 78   9a : 9b > 99 : 1  
2          Bn              5 [12] 60 10a : 10b > 99 : 1 
3 BOM 6 65 11a : 11b = 94 : 6 
4 TBDMS c 7 83 12a : 12b < 1 : 99 
5 Ac              8 0        – 

Reagents and Conditions: a) Mes2BCH2Li (10.0 eq), THF, rt, 6h; b) NaOH, H2O2, 
THF-MeOH, rt; c) oxidation conditions: mCPBA (9.0 eq), Na2HPO4 (10.0 eq), rt, 
30h. 

 
Unfortunately, because acyl protective groups react with the boron reagent, we did not obtain the 

hydroxymethylated products (entry 5). Hydroxymethyl addition, however, occurred smoothly in the 
substrate with an ether protective group. Interestingly, the substrate protected with MPM, benzyl, and 
BOM groups produced the hydroxymethyl products 9a~11a in which the nucleophile attacked at the 
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opposite C6 position due to the chelation, but protection by a TBDMS groups resulted in only 12b in 
which nucloephile attacked at the originally axial C5 position. Thus, a significant difference in the 
selectivity was observed depending on the nature of the protecting group. Presumably, this change in 
selectivity originated from differences in the coordinative power by the oxygen of the protected OH 
group. As shown in Figure 3, chelation of the metal to the oxygens of both the oxirane and C1 alkoxy 
group might change the conformation of the substrates to cause unusual regioselectivity. On the other 
hand, the oxygen of the siloxy group might not coordinate to the metal because of bulkiness of the silyl 
group. In this case, the usual selectivity was observed. Based on these results, we selected the MPM 
group as the most appropriate protective group, and carried out the synthesis illustrated in Figure 4.  

 
Figure 4 
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Reagents and Conditions: f) Mes2BCH2Li, THF, r.t., 6 h; NaOH, H2O2, THF – 
MeOH, r.t., 1 day, 78%; g) NaH BnBr, DMF-THF, r.t., 4 days, 93%; h) DDQ, 
CH2Cl2 – H2O, 0ºC, 1.5 h, 96%; 1) MsCl, Et3N, CH2Cl2, r.t., 12 h, 91%; j) 
Pd(OH)2/C, MeOH, r.t., 1 day, 77%; k) 1.0M NaOH, 1 h, 82%. 

 
Two hydroxy groups of the diol 9a obtained through the hydroxymethylation process were protected 

by benzyl groups and the MPM group was converted to a mesyl group. Then, all the benzyl groups were 
simultaneously deprotected by catalytic hydrogenation to obtain the pentaol 16. The pentaol readily 
underwent epoxide cyclization under alkaline conditions, and cyclophellitol was thus synthesized from 
1 in 14% total yield. 

In this synthetic method, the initial D-glycosides readily give rise to various epimers depending on 
the conformation of glycosides and types of protective groups. The same method could be successfully 
applied to the synthesis of the epimer of cyclophellitol with a different configuration at C3 (Figure 5). 

The Ferrier-II reaction of the 5-enomannoside 19 promoted by a catalytic amount of PdCl2 provided 
the corresponding cyclohexanone, which was subjected to a dehydration with MsCl-pyridine to give 
enone 20. Stereoselective reduction under Luche’s conditions afforded the β-alcohol 21. After 
protection of the hydroxy group, debenzoylation and subsequent protection with TBDMSOTf-lutidine 
afforded 23.  
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Figure 5 
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Reagents and Conditions: a) PPH3, imidazole, I2, toluene, 80ºC, 30 min., 80%; b) BzCl, Et3N, 
DMAP, r.t., 21 h., 99%; c) AgF, Py, r.t., 20 h., 99%; d) PdCl2, dioxane – H2O, 60ºC, 3 h., 86%; e) 
MsCl, Et3N, CH2Cl2, 0ºC, 5 min., 95%; f) CeCl3·7H2O, NaBH4, MeOH, 0ºC, 30 min., 97% (α:β = 
1:5); g) CCl3C(=NH)OMPM, TfOH. Et2O, r.t., 10 min., 95%; h) 2N NaOH, MeOH, r.t., 12 h., 82%; 
i) TBDMSOTf, lutidine, CH2Cl2, r.t., 10 min., 95%; j) DDQ, CH2Cl2 - H2O, 0ºC, 3 h., 95%; k) 
m-CPBA, Na2HPO4, CH2Cl2, r.t., 14 h., 86%; l) MPMCl, NaH, DMF – THF, 0ºC, 2.5 h., 66%; m) 
Mes2BCH2Li, THF, r.t., 1 h.; n) 5N NaOH, H2O2, r.t., 30 min., 76% (2 steps); o) TBAF, THF, r.t., 2 
days; p) NaH, BnCl, DMF – THF, 60ºC, 4 h., 89% (2 steps); q) DDQ, CH2Cl2 – H2O, r.t., 3 h., 
quant.; r) MsCl, Et3N, ClCH2CH2Cl, 60ºC, 5 h., 61%; s) H2, Pd(OH)2/C, MeOH, r.t., 20 h., 73%; t) 
1.0M NaOH, r.t., 20 h., quant. 

 
Deprotection of the MPM ether of 23 provided the β-alcohol 24, which was oxidized with m-CPBA 

to yield the epoxide 25 efficiently in a highly diastereoselective manner. The remaining hydroxy group 
was protected as an MPM ether to give 26.  The subsequent introduction of a hydroxymethyl group by  
nucleophilic opening of the epoxide afforded the diol 27 in good yield. Deprotection of 27 and 
successive benzylation afforded 28, which was deprotected with DDQ and then mesylation provided the 
mesylate 29. The fully-benzylated mesylate 29 was subjected to hydrogenolysis using 1 atm of H2 and 
Pd(OH) 2 in MeOH to generate the deprotected mesylate 30. Finally, treatment of 30 with aqueous 
NaOH afforded the cyclophellitol C3- epimer. 
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Conclusions 

We have presented a facile synthesis of cyclophellitol and its C3-epimer utilizing Ferrier-II reaction 
mediated by PdCl2. This method enables not only the synthesis of various diastereomers of 
cyclophellitol but also application of the new strategy for the regioselective hydroxymethylation 
reaction of highly oxygenated cyclohexanes. 
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Experimental 

General 

Melting points were determined with a Yanagimoto micro melting point apparatus and are 
uncorrected. IR spectra were measured with a JASCO FT/IR-8000 spectrometer. HRFAB-MS were 
recorded with a JEOL SX-102A. 1H-NMR and 13C-NMR spectra were recorded at 600 MHz with a 
JEOL GSX-600 spectrometer using tetramethylsilane (TMS) as the internal standard. Chemical shifts 
were reported in ppm downfield from TMS. Optical rotations were measured with a JASCO DIP-370 in 
a 1-dm cell. Analytical and preparative TLC was conducted on precoated TLC plates (silica gel 60 F254, 
Merck). Column chromatography was performed using Merck silica gel 60 N (100–210 µm). All 
anhydrous solvents were purified according to standard methods. 
 
Spectral Data 
 
(1S,2R,3S,4S,5R,6R)-2,3,4-Tris(benzyloxy)-5-[(4-methoxybenzyl)oxy]-7-oxabicyclo[4.1.0]heptane (4): 
1H-NMR (CDCl3) δ: 7.50-7.24 (m, 17H), 6.90-6.85 (m, 2H), 4.90-4.60 (m, 8H), 3.88 (m, 2H), 3.79 (s, 
3H), 3.60 (dd, 1H, J=10.4, 8.5), 3.46 (dd, 1H, J=10.4, 7.9), 3.27 (m, 1H), 3.18 (d, 1H, J=3.7); 13C-NMR 
(CDCl3) δ: 159.3, 138.6, 137.6, 130.32, 129.5, 128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 127.6, 127.5, 
113.83, 79.0, 76.7, 75.9, 75.5, 73.3, 72.7, 55.2, 53.9; HRMS (EI) for C35H36O6 (M+): Calcd 552.2512; 
Found 552.2512.; Mp.110°C 

 
(1S,2R,3R,4S,5R,6S)-2,3,4-Tris(benzyloxy)-5-[(benzyloxy)methoxy]-7-oxabicyclo[4.1.0]heptane (6): 
1H-NMR (CDCl3) δ: 7.38-7.27 (m, 20H), 5.00 (d, 1H, J=7.0), 4.94 (d, 1H, J=7.0), 4.89-4.59 (m, 6H), 
4.07 (1H, dd, J=10.4, 1.8), 3.89 (d, 1H, J=7.9), 3.56 (dd, 1H, J=10.4, 8.5), 3.49 (dd, 1H, J=10.4, 7.9), 
3.43 (m, 1H), 3.22 (d, 1H, J=3.7); HRMS (CI) for C35H36O2 (M+): Calcd 552.2512; Found 552.2514. 

 
tert-Butyl(dimethyl)[[(1S,2R,3S,4R,5R,6S)-3,4,5-tris(benzyloxy)-7-oxabicyclo[4.1.0]hept-2-yl]oxy]- 
silane (7): 1H-NMR (CDCl3) δ: 7.38-7.19 (m, 15H), 4.85-4.64 (m, 6H), 4.09 (m, 1H), 3.90 (m, 1H), 3.46 
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(m, 2H), 3.25 (m, 1H), 3.18 (d, 1H, J = 4.0), 0.93 (s, 9H), 0.14 (s, 3H), 0.09 (s, 3H); 13C-NMR (CDCl3) δ: 
138.8, 138.6, 137.7, 128.5, 128.2, 128.1, 127.9, 127.8, 127.6, 127.5, 127.3, 83.4, 79.7, 79.4, 75.7, 75.5, 
73.3, 57.6, 54.0, 25.8, 18.1, -4.5, -4.6; HRMS (EI) for C33H42O5Si (MH+): Calcd 546.2802; Found 
546.2802. 

 
(1S,2R,3S,4R,5R,6S)-3,4,5-Tris(benzyloxy)-7-oxabicyclo[4.1.0]hept-2-yl acetate (8): 1H-NMR (CDCl3)  
δ: 7.40-7.21 (m, 15H), 5.28 (d, 1H, J=8.2), 4.78-4.70 (m, 5H), 4.60 (d, 1H, J=11.6), 3.90 (d, 1H, J=7.3), 
3.66-3.56 (m, 2H), 3.40 (m, 1H), 3.23 (d, 1H, J=3.7), 2.02 (s, 3H); 13C-NMR (CDCl3) δ: 170.5, 138.3, 
137.4, 128.5, 128.3, 128.0, 127.8, 127.6, 83.2, 78.9, 75.6, 75.5, 73.6, 73.2, 54.6, 54.0, 20.9l; HRMS (EI) 
for C29H30O6 (M+): Calcd 474.2043; Found 474.2044. 

 
(1R,2S,3R,4R,5S,6R)-2,3,4-Tris(benzyloxy)-6-(hydroxymethyl)-5-[(4-methoxybenzyl)oxy]cyclohexanol 
(9a): 1H-NMR (CDCl3) δ: 7.38-7.26 (m, 15H), 7.21 (m, 2H), 6.85 (m, 2H), 4.98 (d, 1H, J=11.6), 
4.93-4.81 (m, 5H), 4.68 (d, 1H, J=11.3), 4.56 (d, 1H, J=10.7), 3.89 (dd, 1H, J=10.7, 3.1), 3.77 (s, 3H), 
3.74 (dd, 1H, J=10.7, 4.7), 3.63 (dd, 1H, J=9.2, 9.2), 3.49 (m, 2H), 3.39 (m, 2H), 1.65 (m, 1H); 13C-NMR 
(CDCl3) δ:152.6, 138.7, 138.6, 138.5, 130.4, 130.1, 129.9, 128.9, 128.7, 128.2, 128.1, 128.0, 127.9, 
127.8, 114.2, 80.9, 79.3, 77.6, 77.5, 76.0, 75.9, 75.7, 75.2, 61.0, 47.5, 40.9; HRMS (EI) for C36H40O7 

(M+): Calcd 584.2774; Found 584.2771; Mp. 131°C 
 

(1R,2S,3R,4R,5S,6R)-2,3,4,5-Tetrakis(benzyloxy)-6-(hydroxymethyl)cyclohexanol (10a): 1H-NMR 
(CDCl3) δ: 7.36-7.26 (m, 20H), 5.01-4.84 (m, 6H), 4.70-4.62 (m, 2H), 3.91 (m, 1H), 3.75 (m, 1H), 3.66 
(dd, 1H, J=9.5, 9.5), 3.51 (m, 2H), 3.40 (m, 2H), 1.68 (m, 1H);  13C-NMR (CDCl3) δ: 138.4, 138.3, 138.1, 
128.7, 128.5, 128.4, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 86.3, 85.1, 83.2, 77.5, 77.2, 75.7, 75.5, 
75.3, 70.6, 60.5, 46.1; MS (EI) for C35H38O6 (M+) : Calcd 554.2668; Found 554.2654 

 
(1R,2R,3R,4R,5S,6R)-2,3,4-Tris(benzyloxy)-5-[(benzyloxy)methoxy]-6-(hydroxymethyl)cyclohexanol 
(11a): 1H-NMR (CDCl3) δ: 7.40-7.22 (m, 20H), 5.20-4.70 (m, 9H), 4.53 (d, 1H, J=11.9), 3.94 (m, 1H), 
3.85 (m, 1H), 3.60-3.36 (m, 5H), 1.57 (m, 1H);  13C-NMR (CDCl3) δ: 138.5, 138.3, 137.0, 128.6, 128.4, 
128.0, 127.9, 127.8, 127.7, 127.6, 97.1, 85.8, 85.5, 83.1, 76.5, 75.7, 75.6, 75.4, 70.7, 69.1, 58.0, 46.0; 
HRMS (EI) for C29H33O7: Calcd 493.2226; Found 493.2226. 

 
(1S,2S,3S,4R,5R,6S)-3,4,5-Tris(benzyloxy)-2-[(benzyloxy)methoxy]-6-(hydroxymethyl)cyclohexanol 
(11b): 1H-NMR (CDCl3) δ: 7.40-7.22 (m, 20H), 5.05-4.55 (m, 10H), 4.18 (m, 1H), 4.00-3.50 (m, 6H), 
2.58 (m, 1H); HRMS (EI) for C29H33O7: Calcd 493.2226; Found 493.2226. 

 
(1S,2S,3S,4R,5R,6S)-3,4,5-Tris(benzyloxy)-2-{[tert-butyl(dimethyl)silyl]oxy}-6-(hydroxymethyl)cyclo- 
hexanol (12b): 1H-NMR (CDCl3) δ: 7.40-7.21 (m, 15H), 4.86-4.64 (m, 6H), 4.11 (dd, 1H, J=8.8, 5.9), 
3.87 (m, 2H), 3.80 (dd, 1H, J=8.8, 8.8), 3.75 (dd, 1H, J=8.8, 2.9), 3.69 (dd, 1H, J=8.8, 8.8), 3.60 (dd, 1H, 
J=11.0, 4.8), 2.59 (dddd, 1H, J=8.1, 4.8, 5.9, 2.9), 0.90 (s, 9H), 0.08 (s, 3H), 0.06 (s, 3H);  13C-NMR 
(CDCl3) δ: 138.8, 138.7, 138.0, 131.4, 128.5, 128.3, 128.2, 127.9, 127.8, 127.5, 127.4, 125.8, 82.4, 82.3, 
80.1, 76.7, 75.6, 73.9, 73.8, 72.9, 61.4, 43.0, 25.8, 15.6, -4.5, -4.8; HRMS (EI) for C34H46O6Si: Calcd 
578.3064; Found 578.3063. 
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(1S,2R,3S,4S,5R,6S)-2,3,4,5-Tetrakis(benzyloxy)-6-[(benzyloxy)methyl]cyclohexanol (14): 1H-NMR 
(CDCl3+D2O) δ: 7.33-7.26 (m, 25H), 5.00-4.44 (m, 10H), 3.82 (dd, 1H, J=8.8, 2.2), 3.70 (m, 2H), 3.62 
(m, 2H), 3.53 (m, 1H), 3.40 (dd, 1H, J=9.2, 9.2), 1.69 (m, 1H); HRMS (EI) for C42H44O6 (M+): Calcd 
644.3138; Found 644.3130. 

 
(1S,2S,3R,4S,5R,6R)-2,3,4,5-Tetrakis(benzyloxy)-6-[(benzyloxy)methyl]cyclohexylmethanesulfonate 
(15):  1H-NMR (CDCl3) δ: 7.40-7.10 (m, 25H), 5.10-4.35 (m, 11H), 3.87 (m, 1H), 3.75 (m, 1H), 3.67 (m, 
1H), 3.65-3.56 (m, 3H), 2.80 (s, 3H), 1.85 (m, 1H); HRMS (EI) for C36H39O8S (M+): Calcd 631.2366; 
Found 631.2365. 

 
(1S,2S,3R,4S,5R,6R)-2,3,4,5-Tetrahydroxy-6-(hydroxymethyl)cyclohexylmethanesulfonate (16): 1H- 
NMR (D2O) δ: 4.70 (dd, 1H, J=9.9, 9.9), 3.98 (d, 1H, J=12.0), 3.79 (d, 1H, J=12.0), 3.67 (dd, 1H, J=9.2, 
9.2), 1H), 3.34 (m, 4H), 1.82 (dd, 1H, J=11.0, 11.0); HRMS (CI) for C13H24NO6 (MH+): Calcd 
290.160363; Found 290.160300. 

 
Cyclophellitol: 1H-NMR (D2O) δ: 4.01 (dd, 1H, J=11.0, 4.0), .83 (dd, 1H, J=11.0, 7.3), 3.79 (d, 1H, 
J=8.4), 3.56 (dd, 1H, J=4.0, 1.8), 1H), 3.38 (dd, 1H, J=10.3, 8.4), 3.27 (m, 2H), 2.13 (m, 1H); 13C-NMR 
(D2O) δ: 77.0, 71.6, 67.5, 61.2, 57.0, 56.7l; MS (EI) for C7H12O5 (M+): 176, (M+-H2O): 158. 

 
Methyl 2-O-benzoyl-3,4-di-O-benzyl-6-deoxy-6-iodo-α-D-mannopyranoside (18): 1H-NMR (CDCl3) δ: 
8.18-8.14 (m, 2H), 7.70-7.23 (m, 13H), 5.62 (m, 1H), 4.96 (d, 1H, J=10.7), 4.83 (d, 1H, J=1.8), 4.77 (d, 
1H, J=11.3), 4.69 (d, 1H, J=10.7), 4.55 (d, 1H, J=11.3), 4.11 (dd, 1H, J=9.5, 1.3), 3.82 (dd, 1H, J=9.5, 
9.5), 3.59-3.46 (m, 3H), 3.42 (s, 3H); IR (thin film) cm-1: 2954 (broad), 1736, 1611, 1524, 1439, 1323, 
1204; HRMS (EI) for C28H29O6I (M+): Calcd 588.1009; Found 588.1022. 
 
Methyl 2-O-benzoyl-3,4-di-O-benzyl-6-deoxy -α-D-lyxo-hex-5-enopyranoside (19): 1H-NMR (CDCl3) 
δ: 8.08-8.04 (m, 2H), 7.61-7.22 (m, 13H), 5.62 (dd, 1H, J=5.5, 3.0), 4.94 (brs, 1H ), 4.88 (brs, 1H), 
4.84-4.61 (m, 5H, J=11.3), 4.36 (d, 1H, J=9.5), 4.05 (dd, 1H, J=9.5, 3.0); 13C-NMR (CDCl3) δ: 170.4, 
166.0, 130.2, 130.1, 128.9, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 128.0, 106.3, 84.8, 81.2, 77.4, 77.2, 
72.4, 60.4; HRMS (EI) for C28H28O6 (M+) : Calcd 460.1886; Found 460.1876. 
 
(1R,5S,6R)-5,6-Bis(benzyloxy)-4-oxocyclohex-2-en-yl benzoate (20): 1H-NMR (CDCl3) δ: 8.02-8.00 (m, 
2H), 7.65-7.21 (m, 13H), 6.90 (dd, 1H, J=10.4, 4.0), 6.17 (d, 1H,  J=10.4 ),6.07 (dd, 1H, J=3.7, 3.7), 4.88 
(d, 1H, J=11.9), 4.70 (m, 3H), 4.24 (d, 1H, J=7.6), 4.19 (dd, 1H, J=7.6, 3.4); 13C-NMR (CDCl3) δ: 165.7, 
143.6, 138.6, 136.8, 133.2, 128.3, 127.7, 126.5, 125.6, 86.6, 77.0, 76.9, 71.4, 69.5; HRMS (EI) for 
C27H24O5 (M+): Calcd 428.1624; Found 428.1639. 

 
(1R,4S,5R,6R)-5,6-Bis(benzyloxy)-4-hydroxycyclohex-2-en-1-yl benzoate (21): 1H-NMR (CD3OD) δ: 
7.95 (m, 2H), 7.56-7.11 (m, 13H), 5.89-5.80 (m, 3H), 4.78-4.50 (m, 4H), 4.15 (d, 1H, J=7.3), 3.84 (dd, 
1H, J=10.3, 7.3), 3.69 (dd, 1H, J=10.3, 3.7); HRMS (CI) for C13H24NO6 (MH+): Calcd 290.160363; 
Found 290.160300. 
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(1R,4S,5R,6R)-5,6-Bis(benzyloxy)-4-[(4-methoxybenzyl)oxy]cyclohex-2-en-1-yl benzoate (22): 1H- 
NMR (CDCl3) δ: 7.95 (m, 2H), 7.40-7.10 (m, 12H), 6.85 (m, 2H), 5.86 (m, 1H), 5.80 (m, 2H), 4.90 (1H, 
d, J=11.0), 4.76 (1H, d, J=11.0), 4.70 (1H, d, J=11.6), 4.63 (1H, d, J=11.0), 4.56 (2H,m), 4.39 (3H, s), 
4.05 (1H,m), 3.70 (2H,m); 13C-NMR (CDCl3) δ: 166.0, 159.2, 138.8, 138.4, 131.4, 130.1, 129.8, 129.7, 
129.5, 128.5, 128.3, 127.7, 114.1, 114.0, 79.2, 78.7, 75.4, 68.7, 67.2, 64.6, 62.9, 55.5; HRMS (CI) for 
C13H24NO6 (MH+): Calcd 290.160363; Found 290.160300. 

 
[[(1R,4S,5R,6S)-5,6-Bis(benzyloxy)-4-[(4-methoxybenzyl)oxy]cyclohex-2-en-1-yl]oxy](tert-butyl)- 
dimethylsilane (23): 1H-NMR (CDCl3) δ: 7.40-7.20 (m, 12H), 6.85 (m, 2H), 5.77-5.67 (m, 2H), 4.92 (d, 
1H,  J=11.0 ), 4.79 (d, 1H, J=11.0), 4.73 (s, 2H), 4.59 (d, 1H,  J=11.3), 4.54 (d, 1H,  J=11.3), 4.32 (dd, 1H, 
J=8.2, 4.9), 4.22-4.02 (m, 2H), 3.80 (s, 3H), 3.40 (dd, 1H,  J=9.8, 4.4), 0.88 (s, 9H), 0.08 (3H,s), 0.05 (3H, 
s); MS (EI) for C34H44O5Si (M+) 560, (M+-tBu) 503. 
 
(1S,4R,5S,6R)-5,6-Bis(benzyloxy)-4-[[tert-butyl(dimethyl)silyl]oxy]cyclohex-2-en-1-ol (24): 1H-NMR 
(CDCl3) δ: 7.38-7.26 (m, 10H), 5.78 (dd, 1H, J=10.4, 3.4), 5.70 (dd, 1H, J=10.4, 3.1), 4.82 (d, 1H,  
J=11.9 ), 4.74-4.61 (m, 3H), 4.52 (m, 1H), 4.01 (m, 1H), 3.86 (dd, 1H,  J=6.7, 4.3), 3.64 (dd, 1H, J=6.7, 
3.5), 0.93 (s, 9H), 0.10 (s, 3H), 0.09 (3H, s); 13C-NMR (CDCl3) δ: 159.3, 143.0, 138.5, 129.9, 128.9, 
128.7, 128.6, 128.1, 128.0, 127.9, 123.7, 121.8, 79.2, 79.0, 78.1, 77.4, 73.5, 72.6, 69.4, 54.3, 26.1, 22.3, 
-4.3; HRMS (EI) for C26H36O4Si (M+): Calcd 440.2383; Found 440.2383. 
 
(1R,2R,3S,4S,5S,6R)-3,4-Bis(benzyloxy)-5-[[tert-butyl(dimethyl)silyl]oxy]-7-oxabicyclo[4.1.0]heptan-
2-ol (25): 1H-NMR (CDCl3) δ: 7.38-7.18 (m, 10H), 4.78 (d, 1H, J=11.9), 4.54 (m, 3H), 4.36 (dd, 1H,  
J=4.0, 3.1), 3.96 (m, 1H), 3.65 (dd, 1H, J=4.0, 3.1), 3.56 (dd, 1H, J=4.0, 4.0), 3.48 (dd, 1H,  J=4.0, 4.0), 
2.86 (d, 1H, J=10.1), 0.96 (s, 9H), 0.15 (s, 3H), 0.13 (3H, s); 13C-NMR (CDCl3) δ:137.8, 128.6, 128.3, 
128.1, 127.7, 127.5, 80.8, 76.8, 76.6, 73.6, 72.8, 67.8, 55.7, 54.3, 25.7, 19.6, -4.8; HRMS (EI) for 
C26H36O5Si(M+): Calcd 456.2332; Found 456.2327. 
 
[[(1R,2S,3S,4R,5R,6R)-3,4-Bis(benzyloxy)-5-[(4-methoxybenzyl)oxy]-7-oxabicyclo[4.1.0]hept-2-yl]- 
oxy](tert-butyl)dimethylsilane (26): 1H-NMR (CDCl3) δ: 7.40-7.20 (m, 12H), 6.92-6.82 (m, 2H), 
4.88-4.62 (m, 6H), 4.31 (dd, 1H,  J=4.6, 4.6), 3.89 (dd, 1H, J=10.1, 8.2), 3.80 (s, 3H), 3.74 (dd, 1H, J=8.2, 
2.1), 3.22 (dd, 1H,  J=4.5, 2.1), 3.19 (dd, 1H, J=4.5, 4.5), 3.14 (dd, 1H, , J=10.1, 4.6), 0.94 (s, 9H), 0.13 
(3H, s), 0.11 (3H, s); 13C-NMR (CDCl3) δ: 157.7, 137.9, 131.0, 129.5, 1283.2, 127.6, 127.4, 127.3, 125.9, 
122.7, 122.3, 76.9, 76.8, 76.7, 76.6, 70.0, 65.9, 58.8, 57.5, 50.4, 25.8, 19.7, -4.5; HRMS (EI) for 
C34H44O6Si (M+): Calcd 576.2907; Found 576.2907. 
 
(1R,2R,3S,4R,5S,6R)-3,4-Bis(benzyloxy)-2-[[tert-butyl(dimethyl)silyl]oxy]-6-(hydroxymethyl)-5-[(4- 
methoxybenzyl)oxy]cyclohexanol (27): 1H-NMR (CDCl3) δ: 7.40-7.20 (m, 12H), 6.90-6.83 (m, 2H), 
4.98 (d, 1H,  J=11.0), 4.84 (m, 2H), 4.70 (s, 2H),  4.55 (d, 1H, J=11.0), 4.15 (dd, 1H, J=2.1, 2.1), 3.94 (dd, 
1H, J=9.8, 9.8), 3.87 (dd, 1H,  J=10.7, 3.7), 3.81 (m, 4H), 3.43 (m, 1H), 3.31 (dd, 1H, J=11.0, 9.8), 3.25 
(dd, 1H, J=9.8, 2.1), 2.05 (2H, brs), 1.96 (1H, m); 13C=NMR (CDCl3) δ: 159.6, 138.6, 133.2, 129.2, 
128.6, 128.5, 128.2, 128.1, 128.0, 127.8, 127.7, 114.2, 111.2, 78.6, 78.1, 77.0, 75.6, 75.1, 73.6, 72.1, 
69.9, 61.4, 44.7, 26.3, 18.7, -4.8; HRMS (EI) for C35H48O7Si(M+): Calcd 608.3169; Found 608.3169. 
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1-Methoxy-4-[[(1S,2R,3R,4R,5R,6R)-2,3,4,5-tetrakis(benzyloxy)-6-[(benzyloxy)methyl]-2-cyclohexyl]-  
oxymethyl]benzene (28): 1H-NMR (CDCl3) δ: 7.40-7.20 (m, 27H), 7.12 (d, 1H, J=8.5), 6.80 (d, 1H,  
J=8.5), 4.96 (d, 1H, J=10.7), 4.82 (m, 4H),  4.64 (m, 2H), 4.49 (m, 2H), 4.38 (m, 2H), 4.07 (m, 2H), 3.76 
(s, 3H), 3.63 (dd, 1H, J=9.2, 9.2), 3.47 (dd, 1H, J=11.6, 1.8), 3.32 (dd, 1H, J=9.8, 1.8), 2.31 (1H, m); 
HRMS (EI) for C43H45O7 (M+): Calcd 673.3166; Found 673.3165. 
 
(1S,2S,3R,4R,5R,6R)-2,3,4,5-Tetrakis(benzyloxy)-6-[(benzyloxy)methyl]cyclohexylmethanesulfonate 
(29): 1H-NMR (CDCl3) δ: 7.40-7.16 (m, 25H), 5.09 (dd, 1H, J=11.3), 4.82 (dd, 1H,  J=11.0, 11.0), 
4.69-4.35 (m, 9H), 4.12 (dd, 1H, J=9.5, 9.5),  4.03 (brs, 1H), 3.88 (dd, 1H, J=9.5, 2.5), 3.65 (dd, 1H, 
J=9.5, 1.5), 3.50 (dd, 1H,  J=11.3, 2.1), 3.36 (dd, 1H, J=11.3, 2.1), 2.81 (s, 3H), 2.45 (m, 1H); HRMS 
(EI) for C43H46O8S (M+): Calcd 722.2914; Found 722.2916. 
 
(1S,2S,3R,4R,5R,6R)-2,3,4,5-Tetrahydroxy-6-(hydroxymethyl)cyclohexylmethanesulfonate (30): HRMS 
(CI) for C13H24NO6 (MH+): Calcd 290.160363; Found 290.160300. 
 
(1S,2R,3R,4R,5R,6R)-5-(Hydroxymethyl)-7-oxabicyclo[4.1.0]heptane-2,3,4-triol (31): 1H-NMR (D2O) 
δ: 3.85 (m, 1H), 3.82 (m, 2H), 3.65 (m, 1H), 3.43 (bs, 1H), 3.28 (d, 1H, J=9.5), 3.07 (m, 1H), 2.14 (m, 
1H); 13C-NMR (D2O) δ: 71.0, 67.4, 66.2, 60.5, 56.3, 55.4, 38.5; HRMS (CI) for C13H24NO6 (MH+): 
Calcd 290.160363; Found 290.160300. 
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