molecules

ISSN 1420-3049
© 2008 by MDPI
www.mdpi.org/molecules

Communication

NMR Spectra of Sparteine N1-oxide and α-Isosparteine N-oxide

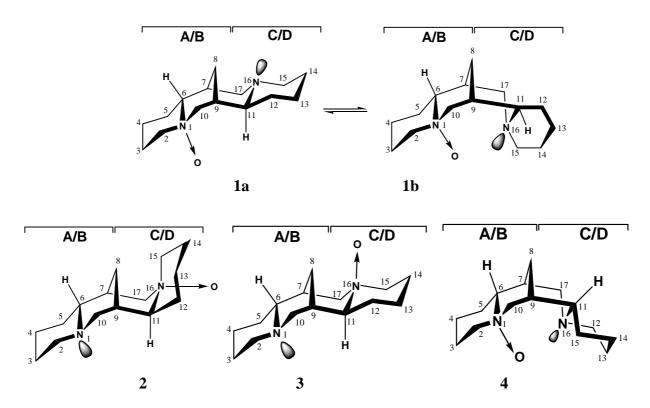
Beata Jasiewicz

Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland; E-mail: beatakoz@amu.edu.pl

Received: 4 December 2007 / Accepted: 30 December 2007 / Published: 9 January 2008

Abstract: Sparteine N1-oxide and α -isosparteine N-oxide were prepared and their structures determined for the first time by ${}^{1}\text{H-}$ and ${}^{13}\text{C-NMR}$ spectroscopy using two-dimensional techniques. The N-oxide effects were also calculated.

Keywords: Sparteine, α-isosparteine, N-oxides, NMR spectroscopy, DFT calculations.


Introduction

The wide use of quinolizidine alkaloids in chemistry is related first of all with a possibility of configurational-conformational changes that could take place in the bis-quinolizidine skeleton. Naturally occurring (–)-sparteine is an equilibrium mixture in which the conformer possessing a boat ring C and trans junction of rings C/D predominates [1-4]. On the other hand, the less stable all-chair conformer participates in complex formation [5-7]. The compound α -isosparteine, consisting of two trans-quinolizidine systems, exists solely in an all-chair conformation, and similarly in the free base form [8] and in metal complexes [5-7,9,10]. As a continuation of our study on the complex forming ability of bis-quinolizidine alkaloids [6,7,9,10], the choice of N-oxides as ligands was made. We have already obtained the complexes of sparteine N16-oxides with lithium [11] and zinc [12] salts. This time the subject of our study was the synthesis of the complexes of sparteine N1-oxide, sparteine epi-N-oxide and α -isosparteine N-oxide.

NMR spectroscopy is known to permit observation of conformational changes taking place in the structure of the ligands during complexation reactions. Moreover, a comparison of the chemical shifts of carbon atoms and protons of the initial alkaloid and the complex formed, enables determination of the effects of complexation. The present work is a continuation of our studies on the structural investigation of bis-quinolizidine alkaloids [13-17]. The NMR data of sparteine N16-oxide and

sparteine epi-N-oxide have been presented before [11,18]. In this paper we present the NMR spectra of sparteine N1-oxide and α -isosparteine N-oxide. For each of them the N-oxide effects were determined. The two conformers of sparteine form three isomeric mono N-oxides: sparteine N1-oxide (1), sparteine N16-oxide (2) and sparteine epi-N-oxide (3). In the reactions of sparteine with H_2O_2 a 1:3 mixture of the two sparteine N-oxides: sparteine N_1 -oxide and sparteine N16-oxide is obtained [19,20]. Sparteine N1-oxide (1) occurs in a chair-boat type equilibrium involving inversion of the lone pair on the N16 atom [20]; the N16-oxide of sparteine (2), previously thought to adopt the all chair conformation, has been found recently to have ring C in a boat conformation and a *cis* C/D ring junction [21]. Sparteine epi-N-oxide (3) has the C ring boat conformation and must be obtained by NaBH₄ reduction of lupanine N-oxide [20]. α -Isosparteine N-oxide (4) has a conformation identical to that of the free base (Figure 1) [19].

Figure 1. Chemical structures of sparteine N-oxides 1-3 and α -isosparteine N-oxide (4).

Results and Discussion

In order to obtain the NMR spectra of the two conformers of the N1-oxide of sparteine (**1a** and **1b**), the NMR spectra were measured in two solvents: CDCl₃ and DMSO-d₆. The NMR spectrum of sparteine N1-oxide recorded in DMSO-d₆ solution is typical of that expected for pure **1a** conformer, while the spectrum recorded in CDCl₃ seems to be that of sparteine N1-oxide hydrochloride (all-chair conformation) since in its ¹H-NMR spectrum the signal of the "acid" proton appears at 17.5 ppm.

The ¹H- and ¹³C-NMR data for sparteine N1-oxide (conformer **1a**), sparteine N1-oxide hydrochloride (**1**-HCl) and free base of sparteine are collected in Table 1. The N-oxide effect can be derived as a difference in the chemical shifts of the appropriate carbon atoms in N-oxide and its basic amine. This effect is superimposed by the solvent effect as the solvent is changed from CDCl₃ (free base of

sparteine) into DMSO-d₆ (sparteine N1-oxide). The 13 C chemical shifts for C7, C8, C9, C12, C13, C14 and C15 carbon atoms of conformer **1a** approximate the analogous δ_C values of sparteine [22]. This result corroborates the presence of chemically unchanged C and D rings preserving the *trans*-quinolizidine form in the N-oxide. The deshielding influence of the N-oxide function, generated on the N1 nitrogen of the alkaloid considered, causes a down-field shift of the α carbons, i.e. C2 ($\Delta\delta_C = 13.4$ ppm), C6 ($\Delta\delta_C = 4.3$ ppm) and C10 ($\Delta\delta_C = 8.7$ ppm), as compared with respective sparteine δ_C values.

Table 1. 13 C- and 1 H-NMR chemical shifts of sparteine, sparteine N1-oxide (conformer **1a**) and sparteine N1-oxide hydrochloride (**1**-HCl) (δ in ppm).

С	Sparteine [see ref. 22] CDCl ₃		Sparteine N1-oxide (1a) DMSO-d ₆		N-oxide effects	hydrochl	ne N1-oxide oride (1-HCl) CDCl ₃	N-oxide and protonation effects	
	δ_{C}	δ_{H}	δ_{C}	δ_{H}	$\Delta \; \delta_C$	δ_{C}	δ_{H}	$\Delta \delta_C$	
2	56.0	1.79	69.4	4.80	+13.4	66.9	5.00	+10.9	
		2.53		3.10			3.41		
3	25.6	1.38	19.9	1.35	-5.7	20.3	1.65	-5.3	
		1.38		2.35			2.18		
4	24.5	1.05	23.1	1.30	-1.4	21.8	1.85	-2.7	
		1.55		1.60			1.85		
5	29.1	1.24	26.0	1.35	-3.1	24.3	1.45	-4.8	
		1.12		2.25			2.20		
6	66.3	1.58	70.6	3.20	+4.3	72.9	4.70	+6.6	
7	32.9	1.69	32.1	1.95	-0.8	33.8	2.10	+0.9	
8	27.4	0.90	26.1	1.25	-1.3	24.0	1.45	-3.4	
		1.91		2.15			2.15		
9	35.9	1.32	35.5	1.60	-0.4	34.2	2.10	-1.7	
10	61.8	1.84	70.5	4.15	+8.7	70.9	4.50	+9.1	
		2.38		3.10			3.30		
11	64.2	1.83	57.8	3.70	-6.4	58.4	3.05	-5.8	
12	34.5	1.35	35.2	1.10	+0.7	24.5	1.45	-10.0	
		1.21		1.40			1.90		
13	24.6	1.15	24.3	2.30	-0.3	23.2	2.50	-1.4	
		1.55		1.15			1.45		
14	25.8	1.43	24.8	1.50	-1.0	18.4	1.50	-7.4	
		1.43		1.60			2.18		
15	55.2	1.86	53.9	2.60	-1.3	51.8	2.90	-3.4	
		2.63		2.00			2.00		
17	53.4	2.20	48.4	2.40	-5.0	43.9	2.60	-9.5	
		2.54		3.80			3.20		

Analysis of the chemical shifts given in Table 1 shows that the conformational changes are observed for the bis-quinolizidine skeleton in sparteine N1-oxide hydrochloride on passing from the free base to the N-oxide salt. The γ -gauche effects which usually accompany a conformational change from boat-chair to all-chair [23] are observed at carbon atoms C12 ($\Delta\delta_C = 10.0$ ppm), C14 ($\Delta\delta_C = 7.4$ ppm) and C17 ($\Delta\delta_C = 9.5$ ppm). The conformational changes are superimposed by the N-oxide effect

assuming the greatest values for the carbon atoms in the α position with respect to the N-oxide group: C2 (+10.9 ppm), C6 (+6.6 ppm) and C10 (+9.1 ppm).

The β -effect influencing the secondary carbon atoms in the outer ring (A) is negative, amounting to -5.7 and -3.1 ppm for 1a and -5.3 and -4.8 ppm for 1-HCl. In the inner ring (B), the oxidation effects on on the tertiary carbon atoms differ only slightly from 0. The γ -effect in the outer ring amounts to ca. -1.4 ppm (1a) and -2.7 ppm (1-HCl), in the inner rings (B and C), it amounts ca. -1.3, -5.0, -6.4 ppm for the boat conformer 1a and -3.4, -5.8 and -9.5 ppm for the hydrochloride salt. In the proton spectra, the greatest N-oxidation effect is observed for C2, C6 and C10 (Table 1). The protons connected with these carbons appear within the range $5.00 > \delta_{\rm H} > 3.10$. The NMR spectra of α -isosparteine N-oxide and the free base of α -isosparteine are shown in Table 2. The spectra of both compounds display the 13 C chemical shift of C8 characteristic of the α -isosparteine skeleton structure (32.8 ppm for α -isosparteine and 31.7 ppm for the N-oxide).

Table 2. 13 C- and 1 H-NMR chemical shifts of α-isosparteine and α-isosparteine N-oxide (δ in ppm)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		α-isosparteine C DMSO-d ₆		α-isospart	eine N-oxide (4)	N-oxide effects		
2 55.5 1.76 66.5 3.42 +11.0 2.74 3.50 3.50 -3.9 3 23.8 1.75 19.9 1.60 -3.9 1.40 2.02, -3.9 -4.2 -4.2 4 22.9 1.24 21.8 1.44 -1.1 1.70 1.76 -4.2 -4.2 5 28.0 1.69 23.8 1.70 -4.2 1.19 1.40 -4.2 -4.2 -4.2 7 32.1 1.45 32.4 2.07 +0.3 8 32.8 1.31 31.7 1.80 -1.1 1.52 2.00 -9 32.1 1.31 33.0 2.18 +0.9 9 32.1 1.31 33.0 2.18 +0.9 10 55.7 2.04 65.5 3.74 +9.8 2.96 3.74 1.60 -0.6 1.19 1.74 1.60 -0.6 1.19 1.74 1.76 14 23.8	C			DN	MSO-d ₆			
2.74 3.50 3 23.8 1.75 19.9 1.60		δ_{C}	δ_{H}	δ_{C}	δ_{H}	$\Delta \delta_C$		
3 23.8 1.75 19.9 1.60 -3.9 1.40 2.02, 4 22.9 1.24 21.8 1.44 -1.1 1.70 1.76 -4.2 5 28.0 1.69 23.8 1.70 -4.2 1.19 1.40 -4.2 -4.2 6 65.7 1.86 72.9 3.74 +7.2 7 32.1 1.45 32.4 2.07 +0.3 8 32.8 1.31 31.7 1.80 -1.1 1.52 2.00 -9 32.1 1.31 33.0 2.18 +0.9 9 32.1 1.31 33.0 2.18 +0.9 10 55.7 2.04 65.5 3.74 +9.8 2.96 3.74 1.60 -0.6 12 28.0 1.69 27.4 1.60 -0.6 1.19 1.74 1.76 -0.5 -0.5 14 23.8 1.75 23.3 2.16 -0.5 1.40 <td< td=""><td>2</td><td>55.5</td><td>1.76</td><td>66.5</td><td>3.42</td><td>+11.0</td></td<>	2	55.5	1.76	66.5	3.42	+11.0		
1.40 2.02, 4 22.9 1.24 21.8 1.44 -1.1 1.70 1.76 -4.2 5 28.0 1.69 23.8 1.70 -4.2 1.19 1.40 6 65.7 1.86 72.9 3.74 +7.2 7 32.1 1.45 32.4 2.07 +0.3 8 32.8 1.31 31.7 1.80 -1.1 1.52 2.00 9 32.1 1.31 33.0 2.18 +0.9 10 55.7 2.04 65.5 3.74 +9.8 2.96 3.74 +9.8 -5.1 12 28.0 1.69 27.4 1.60 -0.6 1.19 1.74 13 22.9 1.24 22.6 1.44 -0.3 1.70 1.76 14 23.8 1.75 23.3 2.16 -0.5 1.40 1.40 1.40 15 55.5 1.76 52.4 2.48			2.74		3.50			
4 22.9 1.24 21.8 1.44 -1.1 1.70 1.76 5 28.0 1.69 23.8 1.70 -4.2 1.19 1.40 6 65.7 1.86 72.9 3.74 +7.2 7 32.1 1.45 32.4 2.07 +0.3 8 32.8 1.31 31.7 1.80 -1.1 1.52 2.00 9 32.1 1.31 33.0 2.18 +0.9 10 55.7 2.04 65.5 3.74 +9.8 2.96 3.74 +9.8 11 65.7 1.86 60.6 2.68 -5.1 12 28.0 1.69 27.4 1.60 -0.6 1.19 1.74 13 22.9 1.24 22.6 1.44 -0.3 1.40 1.40 1.40 1.40 15 55.5 1.76 52.4 2.48 -3.1 17 55.7 2.04 50.7 2.58 -5	3	23.8	1.75	19.9	1.60	-3.9		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1.40		2.02,			
5 28.0 1.69 23.8 1.70 -4.2 1.19 1.40 6 65.7 1.86 72.9 3.74 +7.2 7 32.1 1.45 32.4 2.07 +0.3 8 32.8 1.31 31.7 1.80 -1.1 1.52 2.00 -1.1 -1.1 -1.1 9 32.1 1.31 33.0 2.18 +0.9 10 55.7 2.04 65.5 3.74 +9.8 2.96 3.74 +9.8 11 65.7 1.86 60.6 2.68 -5.1 12 28.0 1.69 27.4 1.60 -0.6 1.19 1.74 13 22.9 1.24 22.6 1.44 -0.3 1.70 1.76 14 23.8 1.75 23.3 2.16 -0.5 1.40 1.40 1.40 -0.5 -0.5 1.40 1.40 1.40 -0.5 -0.5 -0.5 1.74 <	4	22.9	1.24	21.8	1.44	-1.1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1.70		1.76			
6 65.7 1.86 72.9 3.74 +7.2 7 32.1 1.45 32.4 2.07 +0.3 8 32.8 1.31 31.7 1.80 -1.1 1.52 2.00 9 32.1 1.31 33.0 2.18 +0.9 10 55.7 2.04 65.5 3.74 +9.8 2.96 3.74 +9.8 -5.1 12 28.0 1.69 27.4 1.60 -0.6 1.19 1.74 13 22.9 1.24 22.6 1.44 -0.3 1.70 1.76 14 23.8 1.75 23.3 2.16 -0.5 1.40 1.40 1.40 15 55.5 1.76 52.4 2.48 -3.1 2.74 3.08 17 55.7 2.04 50.7 2.58 -5.0	5	28.0	1.69	23.8	1.70	-4.2		
7 32.1 1.45 32.4 2.07 +0.3 8 32.8 1.31 31.7 1.80 -1.1 1.52 2.00 9 32.1 1.31 33.0 2.18 +0.9 10 55.7 2.04 65.5 3.74 +9.8 2.96 3.74 -5.1 -1.1 11 65.7 1.86 60.6 2.68 -5.1 12 28.0 1.69 27.4 1.60 -0.6 1.19 1.74 13 22.9 1.24 22.6 1.44 -0.3 1.70 1.76 14 23.8 1.75 23.3 2.16 -0.5 1.40 1.40 1.40 15 55.5 1.76 52.4 2.48 -3.1 2.74 3.08 17 55.7 2.04 50.7 2.58 -5.0			1.19		1.40			
8 32.8 1.31 31.7 1.80 -1.1 1.52 2.00 9 32.1 1.31 33.0 2.18 +0.9 10 55.7 2.04 65.5 3.74 +9.8 2.96 3.74 -5.1 11 65.7 1.86 60.6 2.68 -5.1 12 28.0 1.69 27.4 1.60 -0.6 1.19 1.74 13 22.9 1.24 22.6 1.44 -0.3 1.70 1.76 14 23.8 1.75 23.3 2.16 -0.5 1.40 1.40 1.40 15 55.5 1.76 52.4 2.48 -3.1 2.74 3.08 17 55.7 2.04 50.7 2.58 -5.0	6	65.7	1.86	72.9	3.74	+7.2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	32.1	1.45	32.4	2.07	+0.3		
9 32.1 1.31 33.0 2.18 +0.9 10 55.7 2.04 65.5 3.74 +9.8 2.96 3.74 11 65.7 1.86 60.6 2.68 -5.1 12 28.0 1.69 27.4 1.60 -0.6 1.19 1.74 13 22.9 1.24 22.6 1.44 -0.3 1.70 1.76 14 23.8 1.75 23.3 2.16 -0.5 1.40 1.40 15 55.5 1.76 52.4 2.48 -3.1 2.74 3.08 17 55.7 2.04 50.7 2.58 -5.0	8	32.8	1.31	31.7	1.80	-1.1		
10 55.7 2.04 65.5 3.74 +9.8 2.96 3.74 11 65.7 1.86 60.6 2.68 -5.1 12 28.0 1.69 27.4 1.60 -0.6 1.19 1.74 13 22.9 1.24 22.6 1.44 -0.3 1.70 1.76 14 23.8 1.75 23.3 2.16 -0.5 1.40 1.40 15 55.5 1.76 52.4 2.48 -3.1 2.74 3.08 17 55.7 2.04 50.7 2.58 -5.0			1.52		2.00			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	32.1	1.31	33.0	2.18	+0.9		
11 65.7 1.86 60.6 2.68 -5.1 12 28.0 1.69 27.4 1.60 -0.6 1.19 1.74 13 22.9 1.24 22.6 1.44 -0.3 1.70 1.76 14 23.8 1.75 23.3 2.16 -0.5 1.40 1.40 15 55.5 1.76 52.4 2.48 -3.1 2.74 3.08 17 55.7 2.04 50.7 2.58 -5.0	10	55.7	2.04	65.5	3.74	+9.8		
12 28.0 1.69 27.4 1.60 -0.6 1.19 1.74 13 22.9 1.24 22.6 1.44 -0.3 1.70 1.76 14 23.8 1.75 23.3 2.16 -0.5 1.40 1.40 15 55.5 1.76 52.4 2.48 -3.1 2.74 3.08 17 55.7 2.04 50.7 2.58 -5.0			2.96		3.74			
1.19 1.74 13 22.9 1.24 22.6 1.44 -0.3 1.70 1.76 14 23.8 1.75 23.3 2.16 -0.5 1.40 1.40 15 55.5 1.76 52.4 2.48 -3.1 2.74 3.08 17 55.7 2.04 50.7 2.58 -5.0	11	65.7	1.86	60.6	2.68	- 5.1		
13 22.9 1.24 22.6 1.44 -0.3 1.70 1.76 14 23.8 1.75 23.3 2.16 -0.5 1.40 1.40 15 55.5 1.76 52.4 2.48 -3.1 2.74 3.08 17 55.7 2.04 50.7 2.58 -5.0	12	28.0	1.69	27.4	1.60	-0.6		
1.70 1.76 14 23.8 1.75 23.3 2.16 -0.5 1.40 1.40 15 55.5 1.76 52.4 2.48 -3.1 2.74 3.08 17 55.7 2.04 50.7 2.58 -5.0			1.19		1.74			
14 23.8 1.75 23.3 2.16 -0.5 1.40 1.40 15 55.5 1.76 52.4 2.48 -3.1 2.74 3.08 17 55.7 2.04 50.7 2.58 -5.0	13	22.9	1.24	22.6	1.44	-0.3		
1.40 1.40 15 55.5 1.76 52.4 2.48 -3.1 2.74 3.08 17 55.7 2.04 50.7 2.58 -5.0			1.70		1.76			
15 55.5 1.76 52.4 2.48 -3.1 2.74 3.08 17 55.7 2.04 50.7 2.58 -5.0	14	23.8	1.75	23.3	2.16	-0.5		
2.74 3.08 17 55.7 2.04 50.7 2.58 -5.0			1.40		1.40			
17 55.7 2.04 50.7 2.58 —5.0	15	55.5	1.76	52.4	2.48	-3.1		
			2.74		3.08			
2.96 3.00	17	55.7	2.04	50.7	2.58	-5.0		
			2.96		3.00			

The relatively rigid skeleton of α -isosparteine allows us to determine the N-oxide effects more precisely than in the flexible sparteine. The α N-oxide effect for the metine carbon atom (C6) is +7.2 ppm, and for methylene carbon atoms (C2, C10) +11.0 and + 9.8 ppm, respectively, while the value of the N-oxide β effect on carbon atoms C3, C5, C7 and C9 range from -4.2 to +0.9 ppm. The γ -effect in the A ring amounts to ca. -1.1 ppm. In the rings B and C, it is generally greater and amounts to ca. -5.1 ppm. Chemical shift changes (from -0.6 to -3.1 ppm) are noted on the carbon atoms of ring D. These changes follow mainly from the presence of the N-O group. It seems probable that the effect of a slight change in the geometry of the molecule involving greater deformation of rings B and C than that of ring A (following an elongation of the N-C bonds as a result of introducing the N⁺-O⁻ function) is imposed on the direct N-oxidation effect in the inner rings. In the proton spectra, the greatest N-oxidation effect (Table 2) is for H6 ($\Delta\delta_H$ = 1.88 ppm). Other large effects are those on the α -axial protons (above 1.70 ppm). Also significant are the effects on α -equatorial protons (0.80 ppm).

The conformational assignment for compounds **1a**, **1**-HCl and **2** was also carried out by comparison of the experimental ¹³C-NMR chemical shifts with those predicted by DFT/CSGT shielding calculations. The results of these calculations for the optimized structures, together with the experimental values are listed in Table 3. The correlation coefficient (R²) for carbon chemical shifts is 0.97 for **1a**, 0.98 for **1**-HCl and 0.98 for **2**. The results suggest that the structures of the N-oxides investigated in solution and under vacuum are the same.

Table 3. Comparison of CSGT chemical shifts (δ , in ppm) calculated at the DFT level of theory for sparteine N1-oxide (conformer **1a**), sparteine N1-oxide hydrochloride (**1**-HCl) and α -isosparteine N-oxide (**2**).

C	δ exper.	δ theor.	$\Delta\delta_{\mathrm{C}}$	δ exper.	δ theor.	$\Delta\delta_{\mathrm{C}}$	δ exper.	δ theor.	$\Delta\delta_{\mathrm{C}}$
	(1a)	(1a)	(1a)	(1-HCl)	(1-HCl)	(1-HCl)	(2)	(2)	(2)
C2	69.4	72.2	2.8	66.9	66.3	-0.6	52.4	48.9	-3.8
C3	19.9	21.3	1.4	20.3	17.9	-2.4	23.3	23.4	0.1
C4	23.1	23.0	-0.1	21.8	21.4	-0.4	22.6	23.4	0.8
C5	26.0	27.1	1.1	24.3	26.2	1.9	27.4	28.9	1.5
C6	70.6	70.3	-0.3	72.9	70.9	-2.0	60.6	57.5	-3.1
C7	32.1	33.3	1.2	33.8	31.2	-2.6	33.0	34.0	1.0
C8	26.1	23.4	-2.7	24.0	22.3	-1.7	31.7	33.3	1.6
C9	35.5	35.0	-0.5	34.2	32.5	-1.7	32.4	33.4	1.0
C10	70.5	71.8	1.3	70.9	67.3	-3.6	50.7	45.5	-5.2
C11	57.8	60.8	3.0	58.4	62.9	4.5	72.9	71.8	-1.1
C12	35.2	34.4	-0.8	24.5	25.4	0.9	23.8	23.5	-0.3
C13	24.3	26.6	2.3	23.2	22.9	-0.3	21.8	23.5	1.7
C14	24.8	21.5	-3.3	18.4	17.6	-0.8	19.9	19.6	-0.3
C15	53.9	53.2	-0.7	51.8	53.1	1.3	66.5	69.4	2.9
C17	48.4	52.2	3.8	43.9	45.9	2.0	65.5	65.9	0.4

Conclusions

The NMR data of sparteine N1-oxide and α -isosparteine N-oxide have been presented. The spectrum of sparteine N1-oxide recorded in DMSO-d₆ solution is typical of that expected for the boat conformer $\mathbf{1a}$, while the spectrum recorded in CDCl₃ solution turned out to be a spectrum of sparteine N1-oxide hydrochloride (in the all chair conformation $\mathbf{1b}$). The similarity of the conformation of $\mathbf{1a}$ and $\mathbf{4}$ to that of their free bases allowed us to determine the N-oxidation effect better than previously possible.

Experimental

General

The ¹H- and ¹³C-NMR spectra (including ¹H-¹H COSY, ¹³C-¹H COSY) were measured on a Varian 300 Mercury spectrometer operating at 300.13 and 75.462 MHz, respectively, and at ambient temperature, using ~0.5 M solutions in CDCl₃ and DMSO-d₆ with TMS as internal reference. The conditions of the spectra recording were: ¹³C NMR: acquisition time 1.5 s; spectral width 23 000 Hz; number of points 69 000. ¹H NMR: acquisition time 3.0 s; spectral width 9000 Hz; number of points 45 000 (**1a**, **2**), 70 000 (**1**-HCl). ¹H-¹H Cosy 90-90: relax. delay 1.0 s; acquisition time 0.170 s (**1a**, **2**), 0.250 s (**1**-HCl); spectral width and 2D width 6 330 Hz (**1a**), 4160 Hz (**1**-HCl), 5700 Hz (**2**); 16 repetitions (**1a**), 32 repetitions (**1**-HCl, **2**); 256 increments (**1**-HCl), 512 increments (**1a**, **2**). ¹³C-¹H COSY: relax. delay 0.9 s; acquisition time 0.180 s (**1a**, **2**), 0.250 s (**1**-HCl); spectral width 4160 Hz (**1**-HCl), 5700 (**2**), 6300 (**1a**); 2D width 2 2630 Hz; 32 repetitions (**1a**), 64 repetitions (**1**-HCl, **2**); 2 x 256 increments (**1**-HCl), 2 x 512 increments (**1a**, **2**).

Syntheses

Sparteine N1-oxide (1) was prepared by oxidation with 30% aqueous H_2O_2 in methanol of the alkaloid freed from commercial (–)-sparteine sulphate pentahydrate (Aldrich), according to a previously described method [20].

α-Isosparteine N-oxide (4). α-Isosparteine (234 mg) was dissolved in methanol (6 mL) and 30% aqueous hydrogen peroxide (4 mL) was added. The reaction was complete after 1 day (TLC). A small amount of palladium on asbestos was added to decompose excess H_2O_2 and filtered off after 12 h. The solvents were evaporated under reduced pressure giving a white crystalline product. Yield: 64%. Elemental analysis: calcd. (%) for $C_{15}H_{28}N_2O$: C, 67.16; H, 10.45; N, 10.45. Found: C, 67.24; H, 10.38; N, 10.46.

DFT calculations

The 13 C-NMR absolute shielding constants (σ values) were calculated at the B3LYP/DFT level with the continuous set of gauge transformations (CSGT) method using the (6)6-311+G basis set. The

calculated magnetic shieldings were converted into the δ chemical shifts using the calculated ¹³C absolute shieldings in TMS (177.3) at the same level of theory [3].

References

- 1. Wiewiórowski, M.; Edwards, O.E.; Bratek-Wiewiórowska, M.D. Conformation of the C₁₅ lupine alkaloids. *Can. J. Chem.* **1967**, *45*, 1447-1457.
- 2. Wysocka, W.; Brukwicki, T. Conformational equilibria in quinolizidine alkaloids. *J. Mol. Struct.* **1996**, *385*, 23-33.
- 3. Galasso, V.; Asaro, F.; Berti, F.; Kovač, B.; Habuš, I.; Sacchetti, A. On the structure and spectroscopic properties of sparteine and its diastereoisomers. *Chem. Phys.* **2003**, *294*, 155-169.
- 4. Haasnoot, C.A.G. Conformational analysis of six-membered rings in solution: Ring puckering coordinates derived from vicinal NMR proton-proton coupling constants. *J. Am. Chem. Soc.* **1993**, *115*, 1460-1468.
- 5. Boschmann, E.; Weinstock, L.M.; Carmack, M. Metal Complexes of the Three Sparteine Diastereoisomers. Properties and Reactivities of the Copper(II) Derivatives. *Inorg. Chem.* **1974**, *13*, 1297-1300.
- 6. Jasiewicz, B.; Boczoń, W.; Warżajtis, B.; Rychlewska, U.; Rafałowicz, T. Synthesis, spactral and structural characterization of zinc(II) methacrylate complexes with sparteine and α-isosparteine; The role of hydrogen bonds and dipolar interactions in stabilizing the molecular structure. *J. Mol. Struct.* **2005**, *753*, 45-52.
- 7. Jasiewicz, B.; Boczoń, W.; Kowalczyk, A. Synthesis and spectral characterization of sparteine and α-isosparteine complexes with copper(II) sulfate. *J. Coord. Chem.* **2007**, *60*, 2441-2448.
- 8. Przybylska, M.; Barnes, W.H. The crystal and molecular structure of α-isosparteine monohydrate. *Acta Cryst.* **1953**, *6*, 377-384.
- 9. Jasiewicz, B.; Boczoń, W.; Mumot, A.; Warżajtis, B.; Rychlewska, U. Synthesis, spectroscopy and crystal structure of α-isosparteine complexes with ZnX₂ (X = Br, CN, Cl). *J. Mol. Struct*. **2005**, 737, 239-244.
- 10. Jasiewicz, B.; Boczoń, W.; Borowiak, T.; Wolska, I. Synthesis and structural characterization of zinc(II) acetate complexes with α-isosparteine. *J. Mol. Struct.* **2007**, doi: 10.1016/j.molstruc.2007.04.016
- 11. Jasiewicz, B. NMR and DFT studies of bis-quinolizidine complexes with LiClO₄ and LiCl. *J. Mol. Struct.* **2007**, doi: 10.1016/j.molstruc.2007.03.060
- 12. Jasiewicz, B. N16-oxides of sparteine, 2-methylsparteine and 2-phenylsparteine as ligands; spectroscopic and DFT studies of complexes with ZnX₂ (X=Cl, Br). *J. Coord. Chem.* Accepted manuscript.
- 13. Boczoń, Wł.; Kozioł, B. Synthesis and Structure of 17β-Isopropyllupanine N-Oxide and Its Perchlorate Salt. *Pol. J. Chem.* **2000**, *74*, 1249-1258.
- 14. Boczoń, Wł.; Jasiewicz, B. Synthesis and conformational analysis of di-substituted sparteine derivatives. *Collect. Czech. Chem. Commun.* **2003**, *68*, 696-710.
- 15. Jasiewicz, B.; Boczoń, Wł.; Warżajtis, B.; Rychlewska, U. *rac*-2-Cyano-2-(p-tolyl)sparteine and its perchlorate salt. *J. Mol. Struct.* **2004**, *688*, 111-119.

16. Jasiewicz, B.; Boczoń, Wł.; Kurek, J. Synthesis and conformational analysis of new 17-alkyl derivatives of lupanine and their perchlorate salts. *Coll. Czech. Chem. Commun.* **2004**, *69*, 2068-2080.

- 17. Jasiewicz, B.; Boczoń, Wł. Oxidation Reaction of bis-quinolizidine System: Synthesis of new 2-Methyl-17-oxosparteine and 2-Methyl-α-isosparteine. *Lett. Org. Chem.* **2007**, *4*, 27-31.
- 18. Brukwicki, T.; Wysocka, W. NMR spectra and geometry of epi N-oxides of sparteine and some of its derivatives in solution. *J. Mol. Struct.* **2003**, *647*, 275-286.
- 19. Wiewiórowski, M.; Baranowski, P. Amine Oxides of Lupin Alkaloids. I. The Structure of the Noxides of N₁ and N₁₆-Sparteine, α-Isosparteine and Lupanine. *Bull. Acad. Pol.: Chim.* **1962**, *10*, 537-542.
- 20. Bratek-Wiewiórowska, M.D.; Skolik, J.; Łangowska, K.; Wiewiórowski, M. Further Studies on the Chemistry and Structure of N-oxides of Sparteine and its derivatives. IV. Synthesis and Structure of a New Sparteine-N₍₁₆₎-oxide. Conformation of Sparteine-N₍₁₎-oxide. *Bull. Acad. Pol.: Chim.* **1974**, *12*, 1025-1036.
- 21. Thiel, J.; Boczoń, Wł.; Fiedorow, P.; Jasiewicz, B.; Knychała, M. Conformation of some sparteine N-16 oxides revisited. *J. Mol. Struct.* **2002**, *642*, 15-23.
- 22. Jasiewicz, B.; Boczoń, Wł. A comparative study of sparteine, α-isosparteine and 2-methylsparteine monoperchlorate salts and zinc(II) complexes by NMR chemical shifts. *J. Mol. Struct.* **2005**, 752, 115-123.
- 23. Boczoń, Wł.; Skolik, J.; Kozioł, B. Further studies on the stereochemistry of sparteine, its isomers and derivatives: Part XXII. ¹³C NMR analysis of sparteine derivatives substituted in external rings monosalts. *J. Mol. Struct.* **1994**, *328*, 1-10.

Sample Availability: Contact the author.

© 2008 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.