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Abstract: In this article, reversal activities of Euphorbia factor L1 (EFL1) against  

ABCB1-mediated multidrug resistance (MDR) and apoptosis sensitization in K562/ADR 

cells are reported. EFL1 decreased the IC50 values of anticancer agents in K562/ADR cells 

over-expressing ABCB1. However, EFL1 did not affect the IC50 values of anticancer agents 

in sensitive K562 cells. Additionally, EFL1 increased the intracellular accumulation of 

rhodamine 123 and doxorubicin in K562/ADR cells without affecting their accumulation in 

K562 cells. Furthermore, EFL1 sensitized the apoptosis triggered by vincristine in 

K562/ADR cells via mitochondrial pathway, as confirmed by Annexin V-FITC/PI detection 

and western blot. At the same time, EFL1 did not influence the apoptosis induced by 

vincristine in K562 cells. Western blot results showed that EFL1 did not affect the 

phosphorylation level of AKT and ERK in K562 and K562/ADR cells. Finally, EFL1 did 

not down-regulate protein expression of ABCB1. 
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1. Introduction 

Multi-drug resistance (MDR), which refers to the resistance of cancer cells to multiple  

structurally and mechanistically unrelated anticancer drugs, is the major obstacle to successful cancer 

chemotherapy in the clinic [1,2]. P-glycoprotein (P-gp, ABCB1), a member of the ATP-binding 

cassette (ABC) family, exports structurally diverse compounds from cells through a process driven by 

ATP hydrolysis [3,4]. High expression and activity of ABCB1 has been linked to the efflux of 

chemotherapeutic drugs in cancer cells. Indeed, ABCB1 acting as a drug efflux pump is the most 

important cause of MDR [5,6]. 

It is well established that many chemotherapeutic agents exert anticancer activity by inducing 

apoptosis. Most chemotherapeutic agents applied in the treatment of hematologic malignancies cells 

can induce apoptosis, but MDR tumor cells are generally resistant to apoptosis induction [7,8] and the 

resistance of leukemic cells to chemotherapy-induced apoptosis remains the most serious problem in 

the treatment of leukemia [9–11]. 

Currently, the most attractive strategy for overcoming MDR is to use sensitizer or reversal agents, 

which are combined with chemotherapeutic drugs [12]. Great effort has been taken to find reversal 

agents from natural products [13–15]. In our previous study, we have found that lathyrane diterpene 

Euphorbia factor L1 (EFL1, Figure 1A) from seeds of Euphorbia lathyris, can reverse ABCB1-mediated 

MDR by inhibiting the efflux function of ABCB1 [16]. In this article, the apoptosis sensitization effect 

of EFL1 in ABCB1-mediated MDR K562/ADR cells was reported. 

2. Results and Discussion 

Chemotherapy is a valuable tool used in cancer treatment. However, the emergence of cancer cell 

resistance to chemotherapy often undermines treatment efficacy. Recently, investigators have carried 

out numerous studies on drug resistance reversal in cancer cells [17]. The major mechanism of resistance 

is the over-expression of drug efflux pumps, such as P-glycoprotein (ABCB1, P-gp). Multi-drug 

resistance (MDR) in hematological malignancies is also the main reason of chemotherapy failure [18,19]. 

One strategy for reversal of MDR in cells over-expressing ABC transporters is the combined use of 

anticancer drugs with modulators. 

We examined the cytotoxicity of EFL1 (Figure 1A) alone in different cell lines by the MTT assay. 

The IC50 values were 33.86 ± 2.51, 39.64 ± 2.93 μM to K562 and K562/ADR cells (treatment time of 

96 h), respectively (Figure 1B). More than 90% of cells were viable at the concentrations of EFL1 up 

to 10.0 μM in all cells under experiments (treatment time of 72 h). We selected EFL1 of 2.5, 5.0 and 

10.0 μM to assess reversal of MDR in vitro (treatment time of 72 h). 

In our study, multidrug-resistant K562/ADR cells were less sensitive to adriamycin cytotoxicity and 

accumulated less adriamycin than K562 cells (Table 1). The indicated concentrations of EFL1 were 

chosen for combination treatment with known anticancer drugs acting as substrates of ABCB1, such as 

Vincristine (VCR) and doxorubicin (DOX). Our data showed that EFL1 dose-dependently enhanced 

the cytotoxicity of tested anticancer drugs in MDR cells. EFL1 of 2.5, 5.0 and 10.0 μM showed 1.74, 

3.79 and 5.88 reversal fold against resistance to DOX in K562/ADR cells, respectively. EFL1 of 2.5, 

5.0 and 10.0 μM showed 2.76, 5.06 and 8.47 reversal fold against resistance to VCR in K562/ADR 
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cells, respectively. However, in drug sensitive K562 cells, the cytotoxicity generated by VCR or DOX 

was unaffected at the presence of EFL1. To evaluate substrate specificity of the transporter, cisplatin, 

which is not the substrate of ABCB1, was selected as the control [16]. Intriguingly EFL1 did not 

significantly alter the IC50 values of cisplatin in parental sensitive and ABCB1-mediated MDR cells. 

These results suggested that EFL1 strongly enhanced the sensitivity of ABCB1-overexpressiong MDR 

cells to conventional chemotherapeutic agents, while EFL1 did not affect the sensitivity of parental 

sensitive cells. 

Figure 1. Chemical structure of Euphorbia factor L1 (A) and cell growth inhibition results 

in K562 and K562/ADR cells (B). 

 

Table 1. Effects of EFL1 on reversing ABCB1-mediated drug resistance. 

 IC50 ± SD (μM) (fold-reversal) 
 K562 K562/ADR (ABCB1) 
VCR 0.032 ± 0.001 3.261 ± 0.412  
+ 2.5 μM EFL1 0.032 ± 0.001 (1.00) 1.184 ± 0.027 ** (2.76) 
+ 5.0 μM EFL1 0.033 ± 0.001 (0.97) 0.644 ± 0.015 ** (5.06) 
+ 10.0 μM EFL1 0.031 ± 0.001 (1.03) 0.385 ± 0.013** (8.47) 
Cisplatin 3.642 ± 0.135 3.895 ± 0.167  
+ 10.0 μM EFL1 3.510 ± 0.153 (1.04) 3.933 ± 0.204 (0.99) 
DOX 0.526 ± 0.0446 14.302 ± 1.237 
+ 2.5 μM EFL1 0.513 ± 0.044 (1.02) 8.210 ± 0.068 **(1.74) 
+ 5.0 μM EFL1 0.505 ± 0.040 (1.02) 3.773 ± 0.045 **(3.79) 
+ 10.0 μM EFL1 0.502 ± 0.040 (1.05) 2.430 ± 0.072** (5.88) 

* and ** represent significance at p < 0.05 and p < 0.01, respectively. 

To investigate the related mechanisms, we examined whether EFL1 affected the accumulation of 

DOX in parental sensitive and ABCB1-mediated MDR cells. The results (Figure 2) showed that EFL1 

increased the accumulation of DOX in K562/ADR cells, as indicated by the significantly higher 

fluorescence of DOX assayed by flow cytometry. Herein, the R-enantiomer of verapamil (R-VRP), 

being an inhibitor of ABCB1 and reversal agent against ABCB1-mediated MDR, was applied as 

positive control. In K562/ADR cells, the intracellular accumulation of DOX was enhanced to 1.73-, 

1.40-, 1.57- and 1.59-fold vs. control for 10.0 μM R-VRP, 2.5, 5.0 and 10.0 μM EFL1, respectively. 

However, EFL1 did not increase the intracellular accumulation of DOX in K562 cells. These results 

demonstrated that EFL1 was able to interfere with ABCB1-mediated transport. 
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Figure 2. Effects of EFL1 on the accumulation of DOX in K562 and K562/ADR cells. 

K562 and K562/ADR cells were incubated with 0, 2.5, 5.0 and 10.0 μM EFL1 at 37 °C for 

3 h. Then 10 μM DOX of final concentration was added for another 3 h incubation. 

Intracellular fluorescence was analyzed by flow cytometry with the excitation wave length 

of 488 nm. R-VRP of 10.0 μM of final concentration was used as the positive control.  

(A) accumulation of DOX in K562 cells. (B) accumulation of DOX in K562/ADR cells. 

(C) data analysis of A and B. All experiments were repeated three times. The relative value 

was calculated by dividing the fluorescence intensity of sensitive or corresponding drug 

resistance cells by that of the drug resistance cells without treatment of R-VRP or EFL1, 

respectively. Columns, means of triplicate determinations. * and ** represent significance 

at p < 0.05 and p < 0.01, respectively. 

 

The results of Figure 2 indicate that EFL1 could increase intracellular accumulation of ABCB1 

substrates. To confirm this, accumulation of rhodamine 123 (Rh123) was determined. Rh123 is also a 

substrate of ABCB1. At the same time, Rh123 is a fluorescent dye, which can be detected by flow 

cytometry. Figure 3 showed that EFL1 could significantly increase accumulation of Rh123 in 
K562/ADR cells (p ＜ 0.01 vs. control) and did not affect that in K562 cells (p ＞ 0.05 vs. control). In 

K562/ADR cells, the intracellular accumulation of Rh123 was increased to 39.85, 5.06, 7.26 and 9.56 

fold vs. control for 10.0 μM R-VRP, 2.5, 5.0 and 10.0 μM EFL1, respectively (Figure 3). 

Taken together, Figures 2 and 3 provided support for results of Table 1. Furthermore, our results 

exhibited that EFL1 inhibited efflux of Rh123 in K562/ADR cells (Figure 4C,D). At the same time, 

EFL1 did not affect the efflux of Rh123 in K562 cells (Figure 4A,B). In the absence of Rh123, 

intracellular Rh123 in K562 cells at time of 2 h was 81.16 ± 1.82%, 80.83 ± 2.12% and 83.68 ± 4.47% 

of control (initial) for group of untreated, 10.0 μM EFL1 and 10.0 μM VRP, respectively. At the 

absence of Rh123, intracellular Rh123 in K562/ADR cells at time of 2 h was 42.16 ± 6.78%,  

62.62 ± 6.34% and 75.33 ± 4.24% of control (initial) for group of untreated, 10.0 μM EFL1 and  

10.0 μM VRP, respectively.  
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Figure 3. Effects of EFL1 on the accumulation of Rh123 in K562 and K562/ADR cells. 

Indicated cells were incubated with 0, 2.5, 5.0 and 10.0 μM EFL1 at 37 °C for 3 h. 

Subsequently, 5 μM Rh123 of final concentration was added for another 0.5 h incubation. 

Intracellular fluorescence was determined by flow cytometry with the excitation wavelength 

of 488 nm. R-VRP of 10.0 μM of final concentration was added as the positive control.  

(A) accumulation of Rh123 in K562 cells. (B) accumulation of Rh123 in K562/ADR cells. 

(C) data analysis of A and B. All these experiments were carried out for three times. The 

relative value was calculated by dividing the fluorescence intensity of sensitive or 

corresponding drug resistance cells by that of the drug resistance cells without  

treatment of R-VRP or EFL1, respectively. Columns, means of triplicate determinations.  
* and ** represent significance at p ＜ 0.05 and p ＜ 0.01, respectively. 

 

Figure 4. EFL1 inhibited the efflux function of K562/ADR cells and did not influence that 

of K562 cells. After K562 or K562/ADR cells were treated with 5 μM Rh123 at 37 °C for 

30 min, the cells were washed twice by ice-cold PBS and then maintained at 37 °C and 

absence of Rh123 with culture media containing 10 μM EFL1 or not. At time of 2 h, cells 

were gathered and washed twice with ice-cold PBS. Subsequently, cells were determined 

by flow cytometry. (A) Rh123 efflux in K562 cells. (B) data analysis of A. (C) Rh123 

efflux in K562/ADR cells. (D) data analysis of C. Columns, means of triplicate 
determinations. * and ** represent significance at p ＜ 0.05 and p ＜ 0.01, respectively. 
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Figure 4. Cont. 

 

These results indicated that EFL1 could inhibit the efflux function of ABCB1 in K562/ADR cells.  

It has been proved that EFL1 could increase the ATPase activity of ABCB1 stimulated by VRP by the 

concentration-dependent manner, acting similarly as verapamil (VRP) and Vandetanib [16]. These 

indicated that EFL1 reversed ABCB1-mediated MDR via inhibiting function of ABCB1. 

VCR has been applied to treat leukemia and other cancers, where apoptosis induction is involved in 

the mechanism of action [20]. Herein, apoptosis induced by VCR in K562 and K562/ADR was 

investigated. The IC50 values for K562 and K562/ADR at the absence of reversal agents were applied, 

respectively. The results of Annexin V-FITC/PI staining and flow cytometry assay showed that EFL1 

sensitized the apoptosis induced by VCR in K562/ADR cells (Figure 5). However, EFL1 did not alter 

the apoptosis triggered by VCR in K562 cells (Figure 5). After K562 cells were treated for 24 h, the 

apoptosis rate was 1.4 ± 1.2%, 2.3 ± 0.6%, 16.6 ± 1.4% and 15.7 ± 1.4% for control, 5.0 μM EFL1, 

0.03 μM VCR and 5.0 μM EFL1+0.03 μM VCR, respectively. After K562/ADR cells were treated for 

24 h, the apoptosis rates were 1.9 ± 1.6%, 2.4 ± 1.0%, 15.5 ± 1.2% and 36.2 ± 3.6% for control,  

5.0 μM EFL1, 3.0 μM VCR and 5.0 μM EFL1 + 3.0 μM VCR, respectively. These results were 

consistent with data of Figures 2–4 and Table 1. Apoptosis sensitization mediated by other reversal 

agents has been reported before [7]. Our results suggested that EFL1 showed similar apoptosis 

sensitization effects. 

Furthermore, western blot results confirmed that EFL1 strengthened the activation and cleavage of 

Caspase-3 and PARP in K562/ADR (Figure 6). After K562/ADR cells were exposed to tested 

compounds for 48 h, densitometric ratios (%) of activated Caspase-3/GAPDH were 9.23 ± 0.83%, 

11.50 ± 1.11%, 33.54 ± 2.16% and 49.90 ± 3.56% for control, 5.0 μM EFL1, 3.0 μM VCR and 5.0 μM 

EFL1 + 3.0 μM VCR, respectively. Densitometric ratios (%) of cleaved PARP/GAPDH were 17.61 ± 

2.39%, 17.80 ± 3.03%, 44.98 ± 3.57% and 74.82 ± 6.62% for control, 5.0 μM EFL1, 3.0 μM VCR and 

5.0 μM EFL1 + 3.0 μM VCR, respectively. The results indicated that EFL1 increased the activation 

and cleavage of Caspase-3 and PARP caused by VCR in K562/ADR cells (Figure 6A,B). Caspase-3 is 

the executive Caspase leading to cleavage of PARP and other vital proteins in various cells and the 

cleavage of PARP was observed in our study (Figure 6). Detection of the decrease of the native  

116-kDa enzyme and appearance of the 89-kDa fragment of PARP cleavage can be served as a 

sensitive indicator that cells are undergoing apoptosis [21]. 
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Figure 5. Apoptosis sensitization of EFL1 in K562/ADR cells. After cells were treated 

with indicated drugs for 24 h, cells were collected washed twice with ice-cold PBS. Then  

5 × 105 cells were resuspended with 0.5 mL binding buffer containing Annexin-V and PI for 

30 min at 37 °C in the dark. After that, the apoptosis was detected by flow cytometry.  

(A) EFL1 sensitized the apoptosis induced by VCR in K562/ADR cells. However, EFL1 

did not alter the apoptosis triggered by VCR in K562 cells. (B) data analysis of A. Columns, 

means of triplicate determinations. * and ** represent significance at p < 0.05 and p < 0.01. 

(A) 

(B) 

Herein, the apoptosis pathway was further investigated, including detection of Caspase-9 and -8  

(Figure 6C,D). The results indicated that activation of Caspase-9 was involved by showing decrease of 

Pro-Caspase-9 when K562/ADR cells were treated with VCR or VCR+EFL1 (p < 0.01 vs. control).  

On the other hand, decrease of Pro-Caspase-8 was not observed (p > 0.05 vs. control). It has been 

reported that activation of Caspase-8 is inhibited by ABCB1 [7], which is consistent with our research. 

Moreover, release of cytochrome c was detected in our research (Figure 6E,F). After K562/ADR cells 

were treated for 24 h, Densitometric ratios (%) of cytochrome c/GAPDH were 11.64 ± 4.08%,  

13.69 ± 4.50%, 45.17 ± 9.67% and 102.65 ± 11.56% for control, 5.0 μM EFL1, 3.0 μM VCR and  

5.0 μM EFL1 + 3.0 μM VCR, respectively. Our results exhibited that EFL1 could significantly 

enhance release of cytochrome c and then stimulate activation of Caspase-9 (p < 0.01). 
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Figure 6. Western blot results of protein related to apoptosis in K562/ADR cells. (A) after 

K562/ADR cells were treated by indicated compounds for 48 h, the total protein was 

prepared and western blot experiments were carried out. (B) Densitometric analysis of 

western blot results of A. (C) and (E) after K562/ADR cells were treated with indicated 

compounds for 24 h, whole cell lysates or subcellular fractionation was prepared for 

western blot. Then, Caspase-8, -9 and cytochrome c were determined by western blot.  

(D) and (F) Densitometric analysis of western blot results of (C) and (E), respectively. The 

values were calculated as (the gray density of investigated protein /the gray density of 

GAPDH) ×100%. GAPDH detection was applied to confirm the equal protein loading.The 

results were expressed as mean ± SEM of three experiments. * and ** represent significance 

at p < 0.05 and p < 0.01. 

 

More and more studies have showed that inhibition of AKT and ERK1/2 pathways may decrease 

the resistance in MDR cancer cells [22,23]. To determine whether EFL1 of reversal concentrations 

attenuate cell survival signaling pathways, the changes of total and phosphorylation forms of AKT and 
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ERK1/2 were investigated in K562 and K562/ADR cells. The results showed that treatment of  

10.0 μM EFL1 for 6, 12, 48 h did not alter the phosphorylation forms of AKT and ERK1/2. The 

densitometric ratios (%) of p-AKT/AKT (Figure 7C,D) in K562 cells for 0, 6, 12 and 48 h/10.0 μM 

EFL1 were 63.64 ± 0.91%, 65.38 ± 9.85%, 63.41 ± 3.56% and 66.89 ± 5.53%, respectively (p > 0.05). 

The densitometric ratios (%) of p-ERK/ERK (Figure 7C,D) in K562 cells for 0, 6, 12 and 48 h/10.0 μM 

EFL1 were 54.65 ± 3.00%, 53.38 ± 2.33%, 58.19 ± 7.59% and 54.63 ± 1.09%, respectively  

(p > 0.05). The densitometric ratios (%) of p-AKT/AKT (Figure 7E,F) in K562/ADR cells for 0, 6, 12 

and 48 h/10.0 μM EFL1 were 88.47 ± 4.68%, 90.85 ± 3.32%, 90.81 ± 2.02% and 90.90 ± 12.88%, 

respectively (p > 0.05). The densitometric ratios (%) of p-ERK/ERK (Figures 7E,F) in K562/ADR 

cells for 0, 6, 12 and 48 h/10.0 μM EFL1 were 81.50 ± 3.80%, 80.04 ± 6.93%, 79.95 ± 7.98% and 

81.79 ± 2.55%, respectively (p > 0.05). 

Receptor tyrosine kinases (RTKs) such as vascular endothelial growth factor receptor (VEGFR) and 

platelet derived growth factor receptor (PDGFR) play a crucial role in modulating cell proliferation, 

differentiation and survival by activating downstream signaling proteins such as protein kinase B/AKT 

and extracellular signal-regulated kinase 1/2 (ERK1/2) [24]. Under current understandings, aberrant 

activation of RTKs is associated with cancer growth, angiogenesis and metastasis [25]. Moreover, 

several studies have disclosed that activation of AKT and/or ERK pathways is related to resistance to 

conventional chemotherapeutic drugs [26,27]. Our results demonstrated that total and phosphorylation 

forms of AKT and ERK remained unchanged in K562 and K562/ADR cells after exposure to 10.0 μM 

EFL1 for different time (Figure 7). These observations implied that blockade of AKT and ERK 

activation was not involved in the reversal of ABCB1-mediated MDR in this study of EFL1. Although 

other compounds from plants of Euphorbia have been reported to inhibit phosphorylation form of 

AKT and ERK [28,29], our results indicated that EFL1 might not be inhibitor of AKT and ERK. 

It is notable that EFL1 did not down-regulated expression of ABCB1 in K562/ADR cells  

(Figure 7E,F). The results showed that the densitometric ratios (%) of ABCB1/GAPDH (Figure 7A,B) 

in K562 and K562/ADR cells were 3.19 ± 0.87 and 72.71 ± 5.94, respectively (p > 0.01). The 

densitometric ratios (%) of ABCB1/GAPDH (Figure 7E,F) in K562/ADR cells for 0, 6, 12 and  

48 h/10.0 μM EFL1 were 83.42 ± 6.97%, 83.21 ± 1.13%, 84.86 ± 4.55% and 86.34 ± 4.70%, 

respectively (p > 0.05). The data suggested that ABCB1 expression in K562/ADR was much higher 

than that in K562 cells. Treatment of EFL1 under concentration of 10.0 μM for 6, 12 or 48 h did not 

change the expression of ABCB1 in K562/ADR cells. 

In summary, EFL1 elevated sensitivity to chemotherapeutical drugs (e.g., DOX and VCR) in 

ABCB1-mediated MDR K562/ADR cells and did not affect the sensitivity of sensitive K562 cells. 

EFL1 might not be inhibitor of AKT and ERK. Although EFL1 did not down-regulate expression of 

ABCB1, it could inhibit efflux function of ABCB1 and thus enhance the intracellular accumulation of 

anticancer drugs. Thereafter, EFL1 strengthened the effect of anticancer agents, including sensitizing 

the apoptosis induced by VCR via mitochondrial pathway. This implied that EFL1 might be used as 

chemotherapy sensitizer for MDR cancer cells. It is noteworthy that EFL1 can be served as a lead 

compound, based on which, more powerful reversal agents will be designed. 



Molecules 2013, 18 12802 

 

 

Figure 7. EFL1 did not alter expression of p-AKT, p-ERK and ABCB1. (A) protein 

expression of ABCB1 in K562 and K562/ADR cells. (B) Densitometric analysis of western 

blot results of A. The values were calculated as (the gray density of ABCB1/the gray density 

of GAPDH) × 100%. (C) protein expression of AKT, p-AKT, ERK and p-ERK in K562 

cells. (D, Densitometric analysis of western blot results of C. The values were calculated as 

(the gray density of p-AKT or p-ERK/the gray density of AKT or ERK) × 100%. (E) protein 

expression of AKT, p-AKT, ERK and p-ERK in K562/ADR cells. (F) Densitometric 

analysis of western blot results of E. The values were calculated as (the gray density of  

p-AKT or p-ERK/the gray density of AKT or ERK) × 100% or (the gray density of 

ABCB1/the gray density of GAPDH) × 100%. The results were expressed as mean ± SEM 

of three experiments. * and ** represent significance at p < 0.05 and p < 0.01. GAPDH of 

MW 36 KD detection was applied to confirm equal protein loading. 

 

3. Experimental 

3.1. Reagents 

Euphorbia factor L1 (EFL1, Figure 1A) was isolated from Caper Euphorbia seed and identified as 

having a purity of more than 98%. RPMI 1640 were products of Gibco BRL (Gaithersburg, MD, 
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USA). Antibodies against Caspase-3, -8, -9, cytochrome c and PARP were obtained from Signalway 

Antibody Co., Ltd. (College Park, MD, USA). Antibodies against glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH), anti-mouse and anti-rabbit IgG-HRP were products of Kangchen Co. 

(Shanghai, China). 3-(4,5-Dimethylthiazol-yl)-2,5-diphenyllapatinibrazolium bromide (MTT), rhodamine 

123 (Rh123), vincristine (VCR), doxorubicin (DOX) and verapamil R-enantiomer (R-VRP) were 

products of Sigma Chemical Co. (St. Louis, MO, USA). Annexin V-FITC/PI Kit was from KeyGEN 

Biotech (Nanjing, China). Other routine laboratory reagents of analytical or HPLC grade were 

obtained from commercial sources. 

3.2. Cell Lines and Culture Conditions 

Human leukemia cell line K562 and its adriamycin-selected ABCB1-overexpressing K562/ADR 

cells were maintained in RPMI 1640 medium containing 10% (v/v) heat-inactivated new-born calf 

serum, 100 U/mL penicillin and 100 μg/mL streptomycin at 37 °C in a humidified 5% CO2 incubator. 

K562/ADR cells were cultured in the medium containing 1 μg/mL adriamycin for maintaining MDR 

phenotype, and maintained in drug-free medium for at least seven days before used [18]. 

3.3. Cell Growth Inhibition Assay 

The MTT assay as previously described was performed for the analysis of the cell growth 

inhibition. The treatment time for reversal experiments (Table 1) was 72 h and that for EFL1 IC50 

values for K562, K562/ADR cells was 96 h (Figure 1B). The concentrations of inhibition growth by 

50% (IC50) were calculated from survival curves using the Bliss method. The degree of resistance  

was calculated by dividing the IC50 of the MDR cells by that of the parental sensitive cells. The  

fold-reversal factor of MDR was calculated by dividing the IC50 of the chemotherapeutic drugs in the 

absence of reversal agent by that obtained in the presence of reversal agent [18]. 

3.4. DOX and Rh 123 Accumulations 

The effect of EFL1 on the accumulation of DOX and Rh 123 was measured by flow cytometry as 

previously described. Briefly, 5 × 105 cells of K562 or K562/ADR were incubated in 6-well plates and 

allowed to attach overnight. The cells were treated with indicated concentrations of EFL1 at 37 °C for 

3 h. Then 10 μM DOX or 5 μM Rh 123 of final concentration was added and the cells were further 

cultured for another 3 h or 0.5 h, respectively. Cells were then collected and washed twice with  

ice-cold PBS buffer. Finally, cells were resuspended in PBS buffer for flow cytometric analysis  

(BD FASCanto, New York, NY, USA) and 1 × 104 cells were counted for the fluorescence intensity. 

R-VRP was used as the control inhibitor in the experiments [30]. 

3.5. Experiments of Rh123 Efflux 

Rh123 efflux experiments were performed by modified methods as described before [16]. After 

K562 and K562/ADR cells were treated with 5 μM Rh123 at 37 °C for 30 min, the cells were washed 

twice by ice-cold PBS and then maintained at 37 °C and absence of Rh123 with culture media 

containing 10 μM EFL1 or not. At time of 2 h, cells were gathered and washed twice with ice-cold 
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PBS. Finally, cells were resuspended in ice-cold PBS buffer for flow cytometric analysis (BD 

FASCanto) immediately and the fluorescence intensity was determined [16]. 

3.6. Annexin V-FITC/PI Assay 

Apoptosis rate was determined by measuring surface exposure of phosphatidylserine in apoptotic 

cells with Annexin V-FITC/PI apoptosis detection kit according to the manufacturer’s instruction. 

After K562 and K562/ADR cells were seeded in 6-well plate for 24 h, 0 or 5 μM EFL1 was added to 

the cells. Three hours later, indicated concentrations of VCR were added to the cells and the culture 

continued for 24 h. Then, the cells were collected and washed twice with ice-cold PBS. 5 × 105 cells 

were resuspended with 0.5 mL binding buffer containing Annexin-V (1:50 according to the 

manufacturer’s instruction) and 40 ng/sample of PI for 30 min at 37 °C in the dark. The number of 

viable, apoptotic and necrotic cells were quantified by flow cytometer (BD FASCanto) and analyzed 

by the CellQuest software. At least 10,000 cells were analyzed for each sample. The apoptosis rate (%) 

= (the number of apoptotic cells/the number of total cells observed) × 100% [31,32]. 

3.7. Whole-Cell Lysates and Western Blot Analysis 

After 4.0 × 106/well cells were plated on culture dishes (100 × 20 mm) for 24 h, the cells were 

treated for 48 h. Then, cells were harvested, washed twice with ice-cold PBS. Subsequently, 1.5 mL 

Eppendorff tubes containing cells was centrifuged at 110 g for 5 min and the supernatant was 

discarded. The pellet was vortexed and 100 µL of 1×loading buffer (50 mM Tris-Cl (pH 6.8), 10% 

glycerol, 2% sodium dodecylsulphate, 0.25‰ bromphenol blue, 0.1 M dithiothreitol ) for every 5 × 106 

cells was added. After being heated at 100 °C for 20 min, the lysates in the Eppendorff were 

centrifuged at 15, 000 g for 10 min and the supernatant was collected. Equal amounts of lysate protein 

was separated on 8%–12% sodium dodecylsulfate–polyacrylamide gel electrophoresis (SDS-PAGE) 

and transferred onto PVDF membrane (Millipore, Billerica, MA, USA). The nonspecific binding sites 

were blocked with TBST buffer (500 mM NaCl, 20 mM Tris–HCl (pH 7.4), and 0.4% Tween 20) 

containing 5% nonfat dry milk for 2 h at room temperature. Subsequently, the membranes were 

incubated overnight at 4 °C with specific primary antibodies diluted in TBST buffer containing 5% 

nonfat dry milk. Thereafter, the membranes were washed three times with TBST buffer and incubated 

at room temperature for 1 h with HRP-conjugated secondary antibody. After three washes with TBST 

buffer, the immunoblots were visualized by PhototopeTM-HRP Detection Kit (Cell Signaling, Boston, 

MA, USA) and exposed to Kodak medical X-ray processor (Kodak, Rochester, NY, USA) [33]. 

3.8. Subcellular Fractionation and Western Blot Analysis of Cytosolic Cytochrome c 

After 3.5 × 106/well cells were plated on culture dishes (100 × 20 mm) for 24 h, the cells were 

treated for 24 h. Then, cells were harvested and washed twice with ice-cold PBS, suspended with  

5-fold volume of ice-cold cell extract buffer (20 mM Hepes-KOH (pH 7.5), 10 mM KCl, 1.5 mM 

MgCl2, 1 mM EDTA, 1 mM EGTA, 1 mM DTT, 250 mM sucrose, 0.1 mM PMSF and 0.02 mM 

aprotinin) and incubated for 40 min at 4 °C. Then the cells were centrifuged at 110 g for 10 min at  

4 °C; the supernatant was subsequently centrifuged at 15,000 g for 15 min at 4 °C and the final 
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supernatant was used as cytosolic fraction. Then 5×loading buffer (250 mM Tris-Cl (pH 6.8), 50% 

glycerol, 10% sodium dodecylsulphate, 1.25‰ bromphenol blue, 0.5 M dithiothreitol) was added to 

the above obtained supernatant and the mixture was boiled at 100 °C for 15 min. Thus, the protein 

solution was applied to identification of cytosolic cytochrome c by immunoblotting with 10%  

SDS-PAGE and blotting onto PVDF membrane. The cytochrome c protein was detected by using  

anti-cytochrome c antibody in the ratio of 1:1,000 [33]. 

3.9. Statistical Analysis 

Results were performed by t-test or one-way ANOVA with SPSS 13.0 software (SPSS Inc., 

Chicago, IL, USA). Data were presented as means ± SEM of at least triplicate determinations. * and ** 

represent significance at p < 0.05 and p < 0.01, respectively. Densitometric analysis of western blot 

results was carried out by Image J (NIH, Bethesda, MD, USA). 

4. Conclusions 

In conclusion, EFL1 could enhance the efficacy of conventional chemotherapeutic agents in MDR 

K562/ADR cells over-expressing ABCB1 (as summarized in Figure 8). Our results suggest that EFL1 

might be useful in combination with ABCB1 substrate chemotherapeutic drugs to overcome multidrug 

resistance. The mitochondrial pathway involved in the apoptosis sensitization by EFL1. VRP is 

unavailable in the clinic for its serious cardiovascular side effects when it reaches reversal concentration 

in vivo. We believe that more powerful derivatives active in vitro and in vivo will be designed on the 

base of EFL1 as the lead compound. 

Figure 8. Summary of apoptosis sensitization by EFL1 in K562/ADR cell. 
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