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Abstract: Two fluorescent streptocyanine labelled oligonucleotides have been  

synthesized by a simple “click” reaction between a non-fluorescent hemicarboxonium  

salt and aminoalkyl functionalized thymidines within the oligonucleotide and their 

spectrophotometric properties have been studied. 
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1. Introduction 

Oligonucleotides labelled by fluorescent dyes are widely used in numerous genomic assays from 

gene quantification to single nucleotide polymorphism typing [1–3]. The fluorescent probe can be 

covalently attached to the oligonucleotide either through a post-synthetic modification or by 

incorporation of a phosphoramidite dye during the synthesis of the oligodeoxynucleotide (ODN) [4]. 

The latter method suffers from a time-consuming preparation of the modified DNA building blocks 

that must be resistant to the acidic or basic conditions involved during the process, while the former 

implies the removal of the unreacted dye modifier to avoid background noise. A convenient alternative 

to that is the development of bioorthogonal fluorogenic reactions. This appealing methodology aims to 

generate fluorescent compounds from two non-fluorescent precursors that can undergo a rapid and 

efficient combination under mild conditions and as far as possible, with no need of any others reagents. 
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This approach is particularly interesting because the fluorogenic reaction can be triggered through a 

recognition process and the “on” signal does not need the removal of a quencher from an initially 

fluorescent probe. Among a few possible chemical processes, the popular Cu(I) catalysed alkyne-azide 

cycloaddition (CuAAC) has been adapted to this purpose by developing non- or weakly-fluorescent 

alkynes and azides allowing the formation of highly fluorescent triazole-linked dye compounds [5]. 

This fluorogenic “click-on” dye synthesis has been successfully applied to nucleosides [6,7] and to ODN 

labelling [8,9]. The Staudinger reduction has also been used as a fluorogenic process between azido-caged 

coumarin-conjugated DNA and a phosphine-DNA under the guidance of a DNA template [10]. 

Alternatively, fluorescent cyanine dyes have been generated through a fluorogenic aldol-type reaction 

with or without a catalytic amine additive [11,12].  

As a first step of a program aimed to develop novel fluorogenic processes aim towards labelling of 

biomolecules and for the in vivo detection of small molecules by selected nucleic acids sequences, we 

looked for a fluorogenic reaction that involves only two components without any additive in order to 

facilitate a potential in vivo procedure and to avoid the potential toxicity of the additive (copper for 

example). With these requirements in mind, we proposed a model study involving a new methodology 

based on the reactivity of hemicarboxonium salts towards aminoalkyl-functionalized oligonucleotides 

(Scheme 1 with R3 = ODN) that can provide access to highly fluorescent conjugates. In a buffered 

aqueous medium, the non-fluorescent hemicarboxonium salt precursor generates a fluorescent 

streptocyanine dye by a very simple “click”-type reaction through a nucleophilic substitution of the 

ethoxy group of the hemicarboxonium by the primary amine function of the target. 

Scheme 1. General synthetic pathway to streptocyanine dyes. 

 

Furthermore, we evaluated the behavior of the newly synthesized streptocyanine-DNA adduct in 

function of the position of the dye label within the duplex, either directed towards the minor or towards 

the major groove of the double helix with DNA or RNA counterparts with regards to single nucleotide 

polymorphism (SNP) discrimination.  
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2. Results and Discussion 

The proposed post-synthetic labelling of oligonucleotides relies on the versatile methodology 

developed for streptocyanine dye synthesis (Scheme 1). Reaction of penta-, hepta- or nonacarbon chain 

carboxonium salts with various nitrogen nucleophiles (amines, imines, hydrazines, and hydrazones) 

lead to a key hemicarboxonium intermediate [13] that can be further combined with other amines to 

provide the corresponding fluorescent streptocyanines that have been fully characterized by 

spectroscopic techniques and X-ray diffraction analysis [14–16]. This allows the design of dyes in 

which the absorption wavelengths can be tuned across the visible and near-infrared spectrum by 

changing the length of the conjugated chain from three to five methine units and the nature of  

the terminal substituents with high extinction molar coefficients in the range of 50,000 to  

250,000 mol−1·L·cm−1. The streptocyanine fluorescence properties have been used to study the 

diffusion of single dye molecules in the nanoporous network of sol-gel glasses [17]. Thanks to the 

hemicarboxonium reactivity, hybrid streptocyanines/cyclic endoperoxide or 4-aminoquinoline 

molecules have been prepared that exhibited good antiplasmodial activities [18]. 

A model decamer sequence 5'-d(GCGCTTGCCG) was chosen because of its extinction molar 

coefficient of around 84,400 mol−1·L·cm−1 (λ = 260 nm) that was expected to be in the same range with 

the future streptocyanine one at its absorption maximum. Moreover this sequence exhibited many 

extracyclic amine functions that should demonstrate the chemoselectivity of the proposed reaction in 

favor of aliphatic amines. Two dye labelled 5'-d(GCGCTT*GCCG) oligonucleotides were prepared, 

ODN3 by means of a 5'-C-convertible – ODN1 [19] (Scheme 2) and ODN5 (Figure 1) from ODN4 

prepared with the commercially available amino modifier uridine (amino-C6dT). Molecular modeling 

indicated that in the former, the pendant substitution was directed towards the minor groove [19] 

whereas for the latter the substitution on the 5-position of the base moiety pointed out towards the 

major groove when the duplex were formed with the complementary strand.  

Scheme 2. Synthetic route to streptocyanine dye labelled oligonucleotide ODN3.  

DMTr: dimetoxytrityl; CEO: cyanoethyloxy; CPG: controlled pore glass.  
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Figure 1. Streptocyanine dye installed on 5-position of thymidine (ODN5). 

 

The ODN2 and ODN4 derivatives were obtained by automated synthesis according to the standard 

phosphoramidite technology [20]. The primary alkylamine function of ODN2 was generated by 

displacement of the bromine of the convertible nucleoside during the ammonia treatment for the 

cleavage and protective groups removal of the oligonucleotide [21,22]. 

The hemicarboxonium salt 1-ethoxy-5-diethylamino-1,5-bis(4-methylphenyl)-penta-1,3-dienylium 

tetrafluoroborate, denoted as Hemi1, was synthetized from the corresponding carboxonium salt by 

addition of one equivalent of diethylamine and was isolated in pure form after recrystallization from 

ethanol according to a well-established procedure [13].  

As expected, when unprotected and unmodified nucleosides exhibiting free exocyclic amine 

functions were reacted with Hemi1, no streptocyanine dye formation was detected. Importantly, prior 

to undergoing the click reaction with Hemi1, amino substituted ODN2 and ODN4 had to be desalted 

in order to remove the ammonium counter ions and to replace them with triethylammonium ones 

because the former were reactive towards Hemi1 under the reaction conditions. In 0.1 M aqueous 

NaHCO3 solution at pH 9, 20-fold excess of Hemi1 in DMSO cleanly reacted at 25 °C with ODN2, 

whereas reaction with ODN4 need a warm up to 40 °C to furnish the corresponding 

ODN/streptocyanine conjugates ODN3 and ODN5, respectively.  

The reaction was easy to monitor by reverse phase RP-HPLC with UV-Vis detection (Figure 2). 

First because the streptocyanine induced a lipophilic character to the conjugate (tr = 26.1 min) in 

comparison with the starting ODN (tr = 9.9 min) and second because the streptocyanine UV absorption 

(λmax = 437 nm) takes place at about a 45 nm red shift in comparison to Hemi1 (λmax = 392 nm,  

tr = 30.9 min). Therefore, the conjugates ODN3 and ODN5 were characterized by an extra band at  

437 nm in addition to the usual nucleic acid band at 260 nm. It was clear that the reaction ran to 

completion for the synthesis of ODN3 and ODN5 in a quantitative yield since no other peaks with the 

UV characteristics (at λ 260 nm) of a nucleic acid were detected. Moreover the UV spectra of the 

conjugates showed two bands at 260 and 437 nm that gave indications on the molar extinction 

coefficient of the streptocyanine moieties. The calculated molar extinction coefficients of ODN3 and 

ODN5 at 260 nm are 84,400 mol−1·L·cm−1 and the band corresponding to the dyes at 437 nm were 

24% lower in intensity, that led us to estimate the corresponding extinction molar coefficient values 

around 64,000 mol−1·L·cm−1 which were in the range of molar extinction coefficient values measured 

for streptocyanine dyes previously synthesized from aliphatic amines [13]. 
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Figure 2. RP-HPLC monitoring of the reaction between ODN3 and Top left: RP-HPLC 

profile of the “click” formation of the conjugate ODN3 at t = 0, Top right: t = 1 h  

(X-Bridge OST C18 2.5 μm, 4.6 × 50 mm, A: ACN; B: TEAA 50 mM, pH 7 from 5% of A to 

80% in B. Bottom: UV spectra of Hemi1 (green) and of ODN3 (red) in pH 7 phosphate buffer. 

 

The reaction work-up consisted in a liquid/liquid extraction of each component. The aqueous 

reaction medium was washed with methylene chloride to remove the excess of Hemi1 while  

dye-labelled ODNs remain in the water layer. Removal of the solvent and desalting gave the labelled 

ODN3 or ODN5 that were characterized by MALDI-TOF and UV-Vis techniques. Mass spectrometry 

analysis showed that only one streptocyanine was formed, which confirmed that the amine functions of 

the nucleic bases were unreactive towards Hemi1 (see SI). UV-Vis and fluorescence studies of these 

conjugates in single (ss) and double strand (ds) contexts were carried out in pH 7 phosphate buffer  

(10 mM Na2HPO4, 100 mM NaCl, 1 mM EDTA, see Supplementary Information). The dye 

conjugation induced a weak destabilizing effect of −1 °C in duplexes formed between ODN3 or 

ODN5 with complementary DNA strand 5'-d(CGGCAAGCGC) whereas with complementary RNA 

strand 5'-r(CGGCAAGCGC) the duplexes were destabilized by −5.2 with ODN3 and slightly favored 

by +0.8 °C with ODN5. It is noteworthy that no bleaching was observed during the denaturation 

studies. Moreover, fluorescence spectra clearly showed that the conjugates exhibited nice emission 

bands around 500 nm, as expected for this kind of streptocyanine, whereas the starting Hemi1 was not 

fluorescent (Figure 3). 

Only slight differences were observed in the absorption and fluorescence emission wavelengths of 

the streptocyanine moiety between ODN3 and ODN5 either in single strand (λabs = 437.0 and  

435.5 nm; λem = 490.0 and 485.0 nm, respectively) or in a double stranded context (λabs = 438.5 and 

435.5 nm; λem = 500.0 and 500.0 nm, respectively, Figure 3). On the other hand, fluorescence intensity 

was 1.5 fold-enhanced from single to double strand in both cases and the fluorescence of ODN3 was 



Molecules 2013, 18 12971 

 

 

always higher than that of ODN5 which suggested the relative impact of the position of the dye on the 

chain in favor of a 5'-C-positioning.  

Figure 3. Fluorescence emission spectra (λex = 420 nm), c = 1.49 10−6 M (10 mM 

Na2HPO4, 100 mM NaCl, 1 mM EDTA, pH = 7). Green: Hemi1; red: ss ODN3; doted red: 

ds ODN3; blue: ss ODN5 and doted blue: ds ODN5. 

 

The streptocyanine-oligonucleotides ODN3 and ODN5 have been evaluated for their ability to 

discriminate single-nucleotide mismatches in DNA/DNA or DNA/RNA duplexes by mean of 

fluorescence. DNA and RNA complementary sequences 5'-(CGGCAAT(U)CGC), 5'-(CGGCAT(U) 

GCGC), 5'-(CGGCT(U)AGCGC) and 5'-(CGGT(U)AAGCGC) have been designed to exhibit G/T(U), 

T/T(U) or C/T(U) mismatched base pairs when hybridized with ODN3 and ODN5. Therefore the  

non-pairing nucleotide was positioned one base pair 3'-downstrean, or opposite, or one and two base 

pairs 5'-upstream of the dye-functionalized thymidine, respectively. Thermal denaturation data 

obtained for ODN3 and ODN5 hybridized with DNA or RNA mismatched counterparts were 

consistent with no disruption of the mismatch discrimination capability of the conjugates  

(see Supplementary Materials). 

It is noteworthy that by means of UV, fluorescence and circular dichroism spectroscopies similar 

free streptocyanine dyes did not exhibit any interaction with DNA or RNA, either in single stranded 

form nor in duplex structure. When the dye was located into the minor groove of the duplex formed 

with ODN3 and DNA counterparts, only a small (around 10 nm) blue-shift of the fluorescence 

emission maximum was observed for the down- or upstream-mismatched base pair without significant 

change in fluorescence intensity when compared with the full complementary sequences (Figure 4a). 

With RNA-type complementary strands, there was no change in the maximum of the fluorescence 

emission band at 490 nm between matched and mismatched duplexes (Figure 4b). However, the 

fluorescence intensity was increased by two to three folds for the four mismatched sequences with 

respect of the fluorescence level of the fully matched duplex. The highest level of discrimination was 

achieved for the base mismatch immediately 5' upstream of the labelled thymidine (CTT*G/GUAC) 

whereas similar behaviors were observed for the others positioned unpaired bases (CTT*G/GAAU; 

CTT*G/GAUC and CTT*G/UAAC). 
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Figure 4. Fluorescence emission spectra (λex = 420 nm, c = 1.49 10−6 M, 10 mM Na2HPO4, 

100 mM NaCl, 1 mM EDTA, pH = 7) of ODN3 (dye labelled thymidine in red) with DNA (a) 

or RNA (b) and of ODN5 (dye labelled thymidine in blue) with DNA (c) or RNA (d) 

single mismatched counterparts, respectively.  

 

There was no significant shift observed for the position around 490 nm of the maximum of the 

streptocyanine fluorescence intensity when the dye was oriented towards the major groove within 

duplexes formed with ODN5 and mismatched DNA or RNA counterparts (Figures 4(c,d)). A slight 

1.5-fold increase of the fluorescence intensity was detected for two DNA mismatched duplex 

CTT*G/GATC and CTT*G/GTAC whereas no change or even a decrease of intensity were observed 

for the two others cases, CTT*G/GAAT and CTT*G/TAAC, respectively. With RNA mismatch 

counterparts, whereas the level of fluorescence was lower than the one measured for the dye directed 

towards the minor groove (cf. Figure 4b and d)), a three-fold improvement of the fluorescence 

intensity relatively to the full complementary DNA/RNA duplex, was observed for the mismatched 

CTT*G/GAUC and CTT*G/UAAC and two-fold for CTT*G/GAAU and CTT*G/GUAC. 

Therefore, if single mismatched base pairs were not significantly detected in DNA duplexes, 

streptocyanine dye-labelled ODNs showed interesting discrimination towards RNA mismatched 

counterparts with a more intense effect when the dye was directed towards the minor groove of the 

duplex. However, changes in fluorescence intensity were still very modest and insufficient for direct 

SNP detection when compared with DNA probes labeled with fluorene [23] or phenoxazinium [24], 

pyrene- or cyanine-functionalized ODNs [25,26], cyanine dye installed as base surrogates within  

PNA [27] or with coumarin derivatives-based detection by DNA-template fluorogenic ligation [8]. 

Nevertheless, these experiments underscored that the relative position of the dye within the duplex 

could tune the relative fluorescence intensities. Moreover, it is the first step in this direction and 
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investigations with streptocyanines with longer polymethine chains (Scheme 1, n = 2 or 3) exhibiting 

very high extinction molar coefficients that should improve the fluorescence intensity are under process. 

3. Experimental  

3.1. General 

Reagents and solvents were purchased from commercial suppliers (Acros, Geel, Belgium; Sigma-

Aldrich, Steinheim, Germany; Chemgenes, Wilmington, MA, USA; Biosolve Chimie, Dieuze, France) 

and used as provided, unless indicated otherwise.  

Mass spectrometry data were recorded on a MALDI-TOF Waters Micro MX with use of THAP 

(2,4,6-trihydroxyacetophenone) as matrix. Analytical reverse phase high performance liquid 

chromatography analyses were performed on a Waters 600 coupled with a Waters 996 Photodiode 

array detector and a Waters 715+ auto sampler. UV experiments were recorded on a Varian CARY-300 

Bio equipped with a Peltier controller and spectra were treated with the CARY Win software. 

Fluorescence data were recorded on a Varian CARY-Eclipse equipped with a Peltier controller and 

spectra were treated with the CARY–Eclipse software Needs sources of reagents, analytical 

instruments used, etc. 

3.2. Protocol for Streptocyanine Dye Formation with Amino ODN 

To a solution of ODN (0. 1 μM) in an aqueous solution of NaHCO3 (0.5 mL, 100 mM, pH 9) in a 

1.5 mL screw neck vial was added an aliquot of a stock solution of Hemi1 (142 μL, 20 eq) in DMSO 

(25.6 mg in 5 mL, 14 mM) and the mixture was placed in a dry bath (25 or 40 °C). The reaction was 

followed by means of HPLC with UV detection. After completion the reaction mixture was washed 

with dichloromethane (1 mL) five times. The supernatant was collected and salts were removed by 

means of filtration through a reverse phase silica gel cartridge (0.2 g, Chromafix C18ec, Macherey-Nagel, 

Düren, Germany) eluted with 80% acetonitrile in water. The conjugates were recovered after 

evaporation with a speed-vac apparatus and controlled by analytical reverse phase HPLC (Column:  

X-Bridge OST C18, Waters, USA, 2.5 μm, 4.6 × 50 mm, Mobile phase: A: TEEA 50 mM, pH 7 B: 

CH3CN, Gradient starting with 5% of B in A at t = 0 to 10% of B in A at t = 10 min, then 80% of B in A 

at t =15 min and for five additional min.  

4. Conclusions  

In conclusion, streptocyanine dye formation by in situ reaction of a hemicarboxonium salt with a 

pendant aminoalkyl function installed on an oligonucleotide extends the reaction repertoire for 

oligonucleotide labelling. The significance of our approach is outlined by the possible orientation 

choice of the dye either towards the major or the minor groove of the nucleic acid duplex. This 

versatile “click”-type methodology could be applied in many contexts to generate fluorescent-labeled 

molecules. Small molecules [28] or DNA template-directed fluorogenic oligonucleotide ligation 

studies involving streptocyanine dye formations from non-fluorescent DNA-hemicarboxonium 

conjugates are underway [29,30].  
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Supplementary Materials 

A supplementary file with HPLC profiles of the formation of ODN5, UV spectra of ODN3 and 

ODN5 in single or double strand, mass spectra of ODN2, ODN3, ODN4 and ODN5 and thermal 

denaturation data of ODN3 and ODN5 within a duplex, is provided. They can be accessed at: 

http://www.mdpi.com/1420-3049/18/10/12966/s1. 
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