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Abstract: Pd-catalyzed amination of isomeric 2,6-, 2,8-, 4,8- and 4,7-dichloroquinolines 

was studied using adamantane-containing amines in which substituents at the nitrogen 

atom differ in bulkiness. The selectivity of the amination of 2,6-dichloroquinoline was very 

low, substantially better results were obtained with 2,8-dichloroquinoline, and 4,8- and  

4,7-dichloroquinolines provided the best yields of the amination products. Diamination of 

4,8- and 4,7-dichloroquinolines was carried out with two amines which differ strongly in 

the bulkiness of the alkyl group. In the majority of cases BINAP ligand was successfully 

applied, however, it had to be replaced with DavePhos in certain reactions when using the 

most sterically hindered amine as well as for the diamination reactions. 
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1. Introduction 

The pharmacological activity of adamantane derivatives is well documented and arises from various 

factors, the main being their ability to penetrate the lipid layers of membranes and to interact with 

hydrophobic sites of proteins due to the presence of a rigid lipophilic backbone. A special place among 
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these compounds is occupied by the amines with adamantane-containing substituents which have already 

found medical applications, like adamantan-1-amine (amantadine) [1], (1-adamantylmethyl)amine 

hydrochloride (rimantadine) [2], 1,3-dimethyladamantan-5-amine (memantine) [3]. Biological studies 

of the adamantane derivatives bearing heterocyclic substituents, e.g., pyridine, pyrazole, benzimidazole, 

and other N-heterocycles are reported [4], and their psychotropic activity was especially addressed. 

However, there is scarce information about the quinolinyl derivatives of adamantaneamines, as only 

two publications [5,6] deal with 4-quinolinyl derivatives which demonstrated anti-malarial activity, 

and one describes the synthesis of 2-quinolinyl-substituted adamantane-1,3-diamine [7]. All these 

compounds were obtained using non-catalytic methods. 

In general, the successful application of catalytic amination for the synthesis of aminoquinoline 

compounds from corresponding halogen derivatives depends strongly on the position of the halogen 

atom in the quinoline moiety. Pd-catalyzed amination reactions [8–13] are the most frequently used for 

this purpose. There are enough examples of the Pd-catalyzed amination of 2-chloroquinoline [14–18], 

3-bromo- and 3-chloroquinolines [13–23], 6-bromoquinoline [24,25]. Less studied are the Pd-catalyzed 

aminations of 5-bromoquinoline [26,27], 8-chloro- and 8-bromoquinolines [14,28]. The Cu-catalyzed 

amination of 3-haloquinolines [29–31] and of 5-bromoquinoline [32] has also been reported, while 

there is almost no information about the application of the catalytic approaches for the synthesis of  

4-aminoquinoline derivatives except for one work [33], although 4-amino- and especially 4-amino-7-

chloroquinolines were shown to be potent anti-malarial agents [34–36]. 

Taking all these facts into consideration and in view of our interest in the Buchwald-Hartwig 

amination of heteroaryl halides [37–40], we decided to study the Pd-catalyzed amination reactions of 

isomeric dichloroquinolines with selected adamantane-containing amines, which differ in the steric 

hindrance at the amino group, and to determine the best conditions for the selective mono- and 

diamination of these hetaryl dichlorides. 

2. Results and Discussion 

We investigated the Pd-catalyzed amination of commercially available 2,6-, 2,8-, 4,8- and  

4,7-dichloroquinolines which possess two chlorine atoms of different reactivity. The four adamantane-

containing amines 1a–d studied in the amination reactions have different substituents at the nitrogen 

atom. Catalytic reactions were carried out using Pd(dba)2 as a source of Pd(0), phosphine ligands 

BINAP (2,2'-bis(diphenylphosphino)-1,1'-binaphthalene) or DavePhos (2-dicyclohexylphosphino-2'-

dimethylaminobiphenyl), and sodium tert-butoxide as a base. The reactions were conducted in boiling 

dioxane (c = 0.1 M), equimolar amounts of reagents were employed for the synthesis of 

monoaminosubstituted quinolines, 3–4 equiv. of amine were used to obtain diamino-substituted 

products. All four amines were studied in the monoamination reactions with each dichloroquinoline, 

and two amines, namely 1a and 1d, were employed in the diamination processes. Generally, the 

reactions were run for 6–8 h in the case of monoamination processes and 15 h in the case of 

diamination processes to achieve full consumption of the starting materials. The reaction products 

were isolated by column chromatography on silica gel. First, we carried out the reactions of  

2,6-dichloroquinoline which was thought to be suitable for the synthesis of monoaminated products 

due to the presence of a reactive chlorine atom in position 2 and a much less reactive chlorine in 
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position 6. However, all our attempts to obtain the monoamino or diamino derivative failed. The 

reactions with 1 or 4 equiv. of the amine 1a catalyzed with 4 or 8 mol% of the catalyst, in the presence 

of BINAP or DavePhos, provided only complicated reaction mixtures which could not be separated by 

the chromatography. Such behavior of 2,6-dichloroquinoline may be explained by a high reactivity of 

the chlorine atom at position 2 which promotes the N-arylation and N,N-diarylation reactions as well as 

other substitution processes like alkoxylation with t-BuONa and homocoupling. Moreover, the 

substitution of the chlorine atom at position 2 markedly affects the substitution of the chlorine atom at 

position 6 due to a mesomeric effect. Thus we gave up attempts to work with 2,6-dichloroquinoline and 

turned to its isomer, 2,8-dichloroquinoline (Scheme 1). 

Scheme 1. Pd-catalyzed amination of 2,8-dichloroquinoline. 

 

 

This compound also possesses two chlorine atoms with distinctively different reactivity. The 

reaction with a less sterically hindered amine 1a catalyzed by 4 mol% catalyst with BINAP as ligand 

provided 64% yield of the monoamination product 2a in which a more reactive chlorine atom was 

substituted for the amino group (Table 1, entry 1). The attempt to obtain the diamination product by 

reacting 2,8-dichloroquinoline with 4 equiv. of the amine 1a in the presence of the twofold amount of 

the same catalyst gave rise to an inseparable mixture (entry 2), and the diamination product could not 

be isolated as an individual product. The change of BINAP for the electron-donor DavePhos led to the 

formation of one main product 3, which is the result of the combination of the diamination and  

N,N-diarylation processes (entry 3). It was isolated in 41% yield, and no desired diamino compound 

was obtained. The 1H-NMR spectrum of compound 3 is characterized by two distinctively different 

NCH2CH2O fragments. The first, bearing two quinolinyl substitutents at the nitrogen atom, possesses 

downfield-shifted CH2N protons ( 4.58 ppm), while in the second fragment CH2N protons are 

observed at 3.4 ppm. In the 13C-NMR spectrum the corresponding carbon atoms are observed at 49.8 

and 43.9 ppm, respectively. To compare, in the compound 2a the protons of the CH2N group are 

observed at 3.7 ppm and corresponding carbon atom possesses the chemical shift 42.0 ppm. The 
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downfield shift of both protons and carbon atoms in CH2NQuin2 fragment compared to CH2NHQuin is 

very characteristic [40] and verifies the structure of the compound 3. Additional support is provided  

by a pronounced downfield shift of the H3, H3' protons of the quinolinyl moieties in compound 3  

(7.47 ppm compared to 6.67 ppm in N-monoaryl derivative 2a). 

Table 1. Pd-catalyzed amination of 2,8-dichloroquinoline. 

Entry Amine Equiv. of amine Ligand Pd(dba)2/L, mol% Product, yield 

1 1a 1 BINAP 4/4.5 2a, 64% 
2 1a 4 BINAP 8/9 inseparable mixture
3 1a 4 DavePhos 8/9 3, 41% 
4 1b 1 BINAP 4/4.5 2b, 42%; 4, 26% 
5 1c 1 BINAP 4/4.5 2c, 56% 
6 1d 1 BINAP 4/4.5 no amination 
7 1d 3 BINAP 8/9 inseparable mixture
8 1d 1 DavePhos 4/4.5 2d, 42% 
9 1d 3 DavePhos 8/9 inseparable mixture

The reaction with one equivalent of a more sterically hindered amine 1b unexpectedly gave not 

only the target monoamino derivative 2b, but also some amount of the diamination product 4 (entry 4). 

This fact can be explained by the impossibility of N,N-diarylation in this case due to steric hindrances 

in the amine 1b. Amine 1c, in which the amino group bears a substituent with a tertiary carbon atom, is 

somewhat less active and provided 56% yield of the monoamination product 2c (entry 5). It was 

necessary to increase the reaction time to 15 h to ensure full consumption of the starting materials. The 

reaction with the most sterically hindered amine 1d could not be catalyzed with 4 mol% catalyst using 

BINAP (entry 6), but the application of DavePhos solved the problem, and the target compound 2d 

was obtained in 42% yield (entry 8). It was found impossible to synthesize diaminosubstituted 

quinoline using the excess of amine and twofold amount of the catalyst either in the presence of 

BINAP or DavePhos ligands (entries 7 and 9). In all runs the reaction mixtures contained numerous 

compounds which could not be separated by the column chromatography. In many cases the formation 

of 2-tert-butoxy-substituted quinolines was noted, due to the non-catalytic substitution of the chlorine 

atom, and this process diminished the yields of the target amination products. The most upfield-shifted 

proton of the quinoline moiety in the compounds of type 2 ( 6.6–6.7 ppm) possesses the largest 

coupling constant (3J = 8.8 Hz) with the most downfield-shifted proton ( 7.7–7.8 ppm). This fact 

unambiguously supports the structure of these compounds with the amino group in position 2 of the 

quinoline system because 3JH3H4 is the largest coupling constant in quinolines and the difference in 

chemical shifts of these protons in 2-aminoquinolines is the biggest. 

If 2,8-dichloroquinoline was found to be quite capricious in the Pd-catalyzed amination, its isomer, 

4,8-dichloroquinoline, proved to react in a smoother manner (Scheme 2). The reaction of the most 

active amine 1a under the convenient catalytic conditions provided 77% yield of the product of the 

compound 5a (Table 2, entry 1). It was impossible to obtain the 4,8-diaminosubstituted quinoline 6a 

with 4 equiv. of this amine using BINAP as a ligand (entry 2), however, the application of DavePhos 

promoted this reaction (entry 3). The monoamination processes ran normally for all other amines 1b–d 

and the yields of the 4-amino-8-chloroquinolines ranged from 67 to 84% (entries 4–6). These better 
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results compared to the reactions with 2,8-dichloroquinoline can be attributed to a lower reactivity of 

the chlorine atom in the position 4 due to steric reasons and to the absence of the possible side 

reactions like N,N-diarylation. These results are in a good correspondence with our recent observations 

of the catalytic amination of 2- and 4-chloroquinolines [40]. The diamination of 4,8-dichloroquinoline 

with the most hindered amine 1d is possible when using DavePhos ligand (entry 8), whereas in the 

presence of BINAP the reaction gave only the monoamination product 5d almost in the same yield as 

it was with one equivalent of amine 1d (entry 7). The most upfield-shifted proton of the quinoline 

moiety in the compounds of type 5 ( 6.2–6.5 ppm) possesses the smallest coupling constant (3J = 5.4 Hz) 

with the most downfield-shifted proton ( 8.4–8.6 ppm). This fact unambiguously supports the 

structure of these compounds with the amino group in the position 4 of the quinoline system because 
3JH2H3 is the smallest coupling constant in quinolines and the difference in chemical shifts of these 

protons in 4-aminoquinolines is the biggest. The same observation is true for the compounds of type 7 

(vide infra). 

Scheme 2. Pd-catalyzed amination of 4,8-dichloroquinoline. 

 

 

Table 2. Pd-catalyzed amination of 4,8-dichloroquinoline. 

Entry Amine Equiv. of amine Ligand  Pd(dba)2/L, mol% Product, yield 

1 1a 1 BINAP 4/4.5 5a, 77% 
2 1a 4 BINAP 8/9 inseparable mixture
3 1a 4 DavePhos 8/9 6a, 52% a 

4 1b 1 BINAP 4/4.5 5b, 67% 
5 1c 1 BINAP 4/4.5 5c, 84% 
6 1d 1 BINAP 4/4.5 5d, 70% 
7 1d 3 BINAP 8/9 5d, 68% 
8 1d 3 DavePhos 8/9 6d, 45% 

a Contains admixtures. 

As it has been already mentioned, the halogen atom in the position 7 of the quinoline ring is much 

less active than those in the positions 2 and 4, what should result in a better selectivity of the 

monoamination process. The reactions of 4,7-dichloroquinoline supported this idea (Scheme 3). The 

reaction with the amine 1a afforded 52% yield of the 4-amino-7-chloroquinoline 7a (Table 3, entry 1), 

while the diamination process was successful with either BINAP or DavePhos ligands (entries 2 and 3) 

providing almost equal amounts of the diaminated product 8a. The reactions with the amines 1b–d were 

successful as well, giving corresponding monoaminated products 7b–d in 61–79% yields (entries 4–6). 
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Diamination in the presence of Pd(dba)2/BINAP system ran normally, even with the most bulky amine 

1d, affording diamino derivative 8d in 58% yield (entry 7). Diamino-substituted quinolines 6d and 8d 

are formed as pairs of diastereomers due to the presence of an asymmetric carbon atom in the structure 

of parent amine 1d. Nevertheless, their 1H and 13C spectra show almost no splitting of the signals due 

to a long distance between the substituents bearing asymmetric carbon atom, their free rotation and the 

presence of a planar heteroaromatic spacer. 

Scheme 3. Pd-catalyzed amination of 4,7-dichloroquinoline. 

 

 

Table 3. Pd-catalyzed amination of 4,7-dichloroquinoline. 

Entry Amine Equiv. of amine Ligand Pd(dba)2/L, mol% Product, yield 

1 1a 1 BINAP 4/4.5 7a, 52% 
2 1a 4 BINAP 8/9 8a, 67% 
3 1a 4 DavePhos 8/9 8a, 71% 

4 1b 1 BINAP 4/4.5 7b, 61% 
5 1c 1 BINAP 4/4.5 7c, 79% 
6 1d 1 BINAP 4/4.5 7d, 77% 
7 1d 3 BINAP 8/9 8d, 58% 

3. Experimental 

General 

NMR spectra were registered using a Bruker Avance 400 spectrometer, MALDI-TOF spectra were 

obtained with a Bruker Autoflex II spectrometer using 1,8,9-trihydroxyanthracene as a matrix  

and PEGs as internal standards. Isomeric dichloroquinolines, BINAP and DavePhos ligands, sodium  

tert-butoxide were purchased from Aldrich and Acros and used without further purification. Amine 1a 

was obtained according to a reported procedure [41], as was amine 1b [42], while amines 1c,d were 

obtained according to a method described in ref. [43]. Pd(dba)2 was synthesized from PdCl2 according to 

a known procedure [44]. Dioxane was distilled over NaOH followed by the distillation over sodium under 

argon. Acetonitrile, dichloromethane and methanol were used freshly distilled. 

Palladium-Catalyzed Amination of Dichloroquinolines—General Method 

A two-neck flask equipped with a condenser and a magnetic stirrer, flushed with dry argon, was 

charged with corresponding dichloroquinoline (50 mg, 0.25 mmol), Pd(dba)2 (6–12 mg, 4–8 mol%), 

BINAP or DavePhos ligand (4.5–9 mol%), and absolute dioxane (2 mL). The mixture was stirred for  
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2–3 min, then corresponding amine 1a–d (0.25 or 0.75–1 mmol) and tBuONa (0.375 mmol or 0.75 mmol) 

were added, and the reaction mixture was refluxed for 6–15 h. After cooling it down to ambient 

temperature the reaction mixture was diluted with CH2Cl2, the solution filtered and evaporated  

in vacuo, and the residue was chromatographed on silica gel using a sequence of eluents: petrol ether, 

petrol ether–CH2Cl2 2:1–1:1, CH2Cl2, CH2Cl2/MeOH 200:1–3:1. 

N-[2-(1-Adamantyloxy)ethyl]-8-chloroquinolin-2-amine (2a). Obtained from 2,8-dichloroquinoline  

(50 mg), amine 1a (49 mg) in the presence of Pd(dba)2 (6 mg), BINAP (7 mg) and t-BuONa (36 mg). 

Eluent CH2Cl2/MeOH 100:1. Yield 57 mg (64%), yellowish viscous oil. 1H-NMR (CDCl3)  1.55–1.68 

(m, 6H), 1.76 (br.s, 6H), 2.14 (br.s, 3H), 3.66–3.70 (m, 2H), 3.70–3.75 (m, 2H), 5.27 (br.s, 1H), 6.67 

(d, J = 8.7 Hz, 1H), 7.08 (dd, Jobs = 7.7, 7.7 Hz, 1H), 7.47 (d, J = 7.8 Hz, 1H), 7.62 (d, J = 7.5 Hz, 1H), 

7.76 (d, J = 8.7 Hz, 1H). 13C-NMR (CDCl3) 30.5 (3C), 36.4 (3C), 41.6 (3C), 42.0 (1C), 58.7 (1C), 

72.4 (1C), 112.6 (1C), 121.5 (1C), 124.5 (1C), 126.4 (1C), 129.5 (1C), 129.9 (1C), 137.3 (1C), 157.1 

(1C), one quaternary carbon atom was not assigned due to line broadening. HRMS (MALDI-TOF): 

C21H26ClN2O (M+H)+ calcd.; 357.1734 observed; 357.1769. 

N2,N8-bis[2-(1-Adamantyloxy)ethyl]-N2-(8-{[2-(1-adamantyloxy)ethyl]amino}quinolin-2-yl)quinoline-

2,8-diamine (3). Obtained from 2,8-dichloroquinoline (50 mg), amine 1a (195 mg) in the presence of 

Pd(dba)2 (12 mg), DavePhos (9 mg) and t-BuONa (60 mg). Eluent CH2Cl2/MeOH 200:1–100:1. Yield 

57 mg (64%), yellowish viscous oil. 1H-NMR (CDCl3)  1.47–1.78 (m, 36H), 2.06 (br.s, 6H), 2.14 

(br.s, 3H), 3.38–3.44 (m, 4H), 3.69 (t, J = 5.9 Hz, 4H), 3.84 (t, J = 6.0 Hz, 2H), 4.58 (t, J = 6.0 Hz, 

2H), 6.09 (br.s, 2H), 6.67 (d, J = 7.6 Hz, 1H), 6.96 (d, J = 7.3 Hz, 1H), 7.21 (dd, Jobs = 7.8, 7.8 Hz, 

1H), 7.47 (d, J = 9.0 Hz, 1H), 7.87 (d, J = 9.0 Hz, 1H). 13C-NMR (CDCl3)  30.4 (9C), 36.4 (9C), 41.5 

(9C), 43.9 (2C), 49.8 (1C), 58.0 (1C), 58.5 (2C), 72.2 (2C), 72.3 (1C), 105.4 (1C), 113.8 (1C), 116.4 

(1C), 125.0 (1C), 125.5 (1C), 136.4 (1C), 137.0 (1C), 143.8 (1C), 153.9 (1C). HRMS (MALDI-TOF): 

C54H70N5O3 (M+H)+ calcd.; 836.5479 observed; 836.5422. 

N-(1-Adamantylmethyl)-8-chloroquinolin-2-amine (2b). Obtained from 2,8-dichloroquinoline (50 mg), 

amine 1b (41 mg) in the presence of Pd(dba)2 (6 mg), BINAP (7 mg) and t-BuONa (36 mg). Eluent 

petroleum ether–CH2Cl2 1:1. Yield 34 mg (42%), yellowish viscous oil. 1H-NMR (CDCl3)  1.58–1.62 

(m, 6H), 1.62–1.75 (m, 6H), 1.99 (br.s, 3H), 3.23 (d, J = 5.6 Hz, 2H), 5.03 (br.s, 1H), 6.70 (d, J = 8.8 Hz, 

1H), 7.06 (dd, Jobs = 7.7, 7.7 Hz, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.62 (d, J = 7.5 Hz, 1H), 7.78 (d,  

J = 8.8 Hz, 1H). 13C-NMR (CDCl3) 28.3 (3C), 34.2 (1C), 37.0 (3C), 40.5 (3C), 53.4 (1C), 111.5 

(1C), 121.3 (1C), 124.4 (1C), 126.3 (1C), 129.6 (2C), 137.5 (1C), 143.5 (1C), 158.0 (1C). HRMS 

(MALDI-TOF): C20H24ClN2 (M+H)+ calcd.; 327.1628 observed; 327.1602. 

N,N'-bis(1-adamantylmethyl)quinoline-2,8-diamine (4). Obtained as the second product in the synthesis 

of compound 2b. Eluent petroleum ether–CH2Cl2 1:1. Yield 16 mg (26%), yellowish viscous oil.  
1H-NMR (CDCl3)  1.59–1.79 (m, 24H), 1.98 (br.s, 3H), 2.03 (br.s, 3H), 2.95 (d, J = 5.3 Hz, 2H), 3.28 

(d, J = 6.4 Hz, 2H), 4.66 (br.s, 1H), 5.97 (br.s, 1H), 6.54–6.61 (m, 2H), 6.83 (d, J = 8.0 Hz, 1H), 7.05 

(dd, Jobs = 7.5, 7.5 Hz, 1H), 7.69 (d, J = 8.6 Hz, 1H). 13C-NMR (CDCl3) С 28.5 (3С), 34.0 

(1C), 34.7 (1C), 37.1 (3C), 37.2 (3C), 40.8 (3C), 40.9 (3C), 53.1 (1C), 55.9 (1C), 105.0 (1C), 111.4 
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(1C), 113.4 (1C), 121.3 (1C), 122.6 (1C), 137.5 (1C), 143.2 (1C), 144.3 (1C), 155.5 (1C). HRMS 

(MALDI-TOF): C31H42N3 (M+H)+ calcd.; 456.3379 observed; 456.3425. 

N-[2-(1-Adamantyl)-1-methylethyl]-8-chloroquinolin-2-amine (2c). Obtained from 2,8-dichloroquinoline 

(50 mg), amine 1c (49 mg) in the presence of Pd(dba)2 (6 mg), BINAP (7 mg) and t-BuONa (36 mg). 

Eluent petroluem ether–CH2Cl2 2:1–1:1. Yield 52 mg (56%), yellowish viscous oil. 1H-NMR (CDCl3) 

 1.27 (d, J = 6.4 Hz, 3H), 1.30 (dd, J = 14.4, 4.2 Hz, 1H), 1.39 (dd, J = 14.4, 7.3 Hz, 1H), 1.54–1.69 

(m, 12H), 1.92 (br.s, 3H), 4.33 (br.s, 1H), 4.71 (br.s, 1H), 6.62 (d, J = 8.8 Hz, 1H), 7.06 (dd, Jobs = 7.7, 

7.7 Hz, 1H), 7.45 (dd, J = 7.8, 1.0 Hz, 1H), 7.62 (dd, J = 7.5, 1.0 Hz, 1H), 7.77 (d, J = 8.8 Hz, 1H).  
13C-NMR (CDCl3) 23.7 (1C), 28.6 (3C), 32.5 (1C), 37.0 (3C), 42.9 (4C), 52.8 (1C), 111.7 (1C), 

121.2 (1C), 124.3 (1C), 126.3 (1C), 129.5 (1C), 129.9 (1C), 137.4 (1C), 156.2 (1C), one quaternary 

carbon atom was not assigned due to line broadening. HRMS (MALDI-TOF): C22H28ClN2 (M+H)+ 

calcd.; 355.1941 observed; 355.1917. 

N-[1-Adamantyl(phenyl)methyl]-8-chloroquinolin-2-amine (2d). Obtained from 2,8-dichloroquinoline 

(50 mg), amine 1d (60 mg) in the presence of Pd(dba)2 (6 mg), DavePhos (5 mg) and t-BuONa (30 mg). 

Eluent petroleum ether–CH2Cl2 2:1. Yield 42 mg (42%), yellowish viscous oil. 1H-NMR (CDCl3)  

1.52–1.62 (m, 6H), 1.63–1.72 (m, 3H), 1.72–1.80 (m, 3H), 2.00 (br.s, 3H), 4.52 (br.s, 1H), 5.77 (br.s, 

1H), 6.57 (d, J = 8.8 Hz, 1H), 7.03 (dd, Jobs = 7.7, 7.7 Hz, 1H), 7.16–7.33 (m, 5H), 7.40 (d, J = 7.3 Hz, 

1H), 7.59 (d, J = 7.3 Hz, 1H), 7.68 (d, J = 8.8 Hz, 1H). 13C-NMR (CDCl3) 28.4 (3C), 36.5 (1C), 36.8 

(3C), 39.2 (3C), 66.0 (1C), 110.9 (1C), 121.4 (1C), 124.5 (1C), 126.3 (1C), 126.9 (1C), 127.6 (2C), 

128.8 (2C), 129.2 (1C), 129.5 (1C), 137.6 (1C), 139.8 (1C), 144.3 (1C), 154.4 (1C). HRMS (MALDI-

TOF): C26H28ClN2 (M+H)+ calcd.; 403.1941 observed; 403.1960. 

N-[2-(1-Adamantyloxy)ethyl]-8-chloroquinolin-4-amine (5a). Obtained from 4,8-dichloroquinoline (50 mg), 

amine 1a (49 mg) in the presence of Pd(dba)2 (6 mg), BINAP (7 mg) and t-BuONa (36 mg). Eluent 

CH2Cl2/MeOH 100:1–50:1. Yield 69 mg (77%), beige crystalline powder, m.p. 225–227 °C. 1H-NMR 

(CDCl3)  1.55–1.68 (m, 6H), 1.74–1.77 (m, 6H), 2.15 (br.s, 3H), 3.40 (q, J = 5.1 Hz, 2H), 3.73 (t,  

J = 5.2 Hz, 2H), 5.56 (br.s, 1H), 6.45 (d, J = 5.4 Hz, 1H), 7.31 (dd, Jobs = 8.0, 8.0 Hz, 1H), 7.64 (d,  

J = 8.5 Hz, 1H), 7.74 (d, J = 7.5 Hz, 1H), 8.64 (d, J = 5.4 Hz, 1H). 13C-NMR (CDCl3) 30.4 (3C), 

36.3 (3C), 41.6 (3C), 43.4 (1C), 57.5 (1C), 72.8 (1C), 99.7 (1C), 118.5 (1C), 120.2 (1C), 124.1 (1C), 

129.2 (1C), 133.8 (1C), 144.8 (1C), 150.1 (1C), 151.4 (1C). HRMS (MALDI-TOF): C21H26ClN2O 

(M+H)+ calcd.; 357.1734 observed; 357.1698. 

N,N'-bis[2-(1-Adamantyloxy)ethyl]quinoline-4,8-diamine (6a). Obtained from 4,8-dichloroquinoline 

(50 mg), amine 1a (195 mg) in the presence of Pd(dba)2 (12 mg), DavePhos (9 mg) and t-BuONa (60 mg). 

Eluent CH2Cl2/MeOH 50:1. Yield 68 mg (52%), yellowish viscous oil. 1H-NMR (CDCl3)  1.55–1.75 

(m, 12H), 1.77 (br.s, 12H), 2.13 (br.s, 3H), 2.16 (br.s, 3H), 3.37–3.46 (m, 4H), 3.73 (t, J = 5.8 Hz, 4H), 

5.44 (br.s, 1H), 5.58 (br.s, 1H), 6.41 (d, J = 5.3 Hz, 1H), 6.67 (d, J = 7.7 Hz, 1H), 6.90 (d, J = 8.5 Hz, 

1H), 7.27 (dd, Jobs = 8.1, 8.1 Hz, 1H), 8.37 (d, J = 5.3 Hz, 1H). HRMS (MALDI-TOF): C33H46N3O2 

(M+H)+ calcd.; 516.3590 observed; 516.3561. 
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N-(1-Adamantylmethyl)-8-chloroquinolin-4-amine (5b). Obtained from 4,8-dichloroquinoline (50 mg), 

amine 1b (41 mg) in the presence of Pd(dba)2 (6 mg), BINAP (7 mg) and t-BuONa (36 mg). Eluent 

CH2Cl2/MeOH 100:1. Yield 56 mg (67%), beige crystalline powder, m.p. 210–212 °C. 1H-NMR 

(CDCl3)  1.58–1.61 (m, 6H), 1.61–1.76 (m, 6H), 2.00 (br.s, 3H), 2.69 (d, J = 5.7 Hz, 2H), 5.11 (t,  

J = 5.7 Hz, 1H), 6.47 (d, J = 5.4 Hz, 1H), 7.27 (dd, J = 8.6, 7.6 Hz, 1H), 7.63 (dd, J = 8.6, 1.1 Hz, 1H), 

7.71 (dd, J = 7.6, 1.1 Hz, 1H), 8.60 (d, J = 5.4 Hz, 1H). 13C-NMR (CDCl3) 28.1 (3C), 34.0 (1C), 36.8 

(3C), 40.6 (3C), 55.0 (1C), 99.4 (1C), 118.2 (1C), 119.9 (1C), 123.9 (1C), 129.1 (1C), 133.9 (1C), 

144.8 (1C), 150.5 (1C), 151.4 (1C). HRMS (MALDI-TOF): C20H24ClN2 (M+H)+ calcd.; 327.1628 

observed; 327.1654. 

N-[2-(1-adamantyl)-1-methylethyl]-8-chloroquinolin-4-amine (5c). Obtained from 4,8-dichloroquinoline 

(50 mg), amine 1c (49 mg) in the presence of Pd(dba)2 (6 mg), BINAP (7 mg) and t-BuONa (36 mg). 

Eluent CH2Cl2/MeOH 100:1–50:1. Yield 75 mg (84%), yellowish viscous oil. 1H-NMR (CDCl3)  

1.25 (d, J = 6.4 Hz, 3H), 1.38 (dd, J = 14.6, 3.9 Hz, 1H), 1.45 (dd, J = 14.6, 7.6 Hz, 1H), 1.53 (br.s, 

6H), 1.54–1.67 (m, 6H), 1.90 (br.s, 3H), 3.78–3.87 (m, 1H), 4.85 (d, J = 7.3 Hz, 1H), 6.48 (d, J = 5.5 Hz, 

1H), 7.28 (dd, J = 8.6, 7.5 Hz, 1H), 7.60 (dd, J = 8.6, 1.1 Hz, 1H), 7.72 (dd, J = 7.5, 1.1 Hz, 1H), 8.64 

(d, J = 5.5 Hz, 1H). 13C-NMR (CDCl3) 22.4 (1C), 28.5 (3C), 32.5 (1C), 36.8 (3C), 42.9 (3C), 44.2 

(1C), 52.6 (1C), 99.2 (1C), 118.2 (1C), 120.0 (1C), 124.0 (1C), 129.2 (1C), 133.8 (1C), 145.0 (1C), 

148.5 (1C), 151.4 (1C). HRMS (MALDI-TOF): C22H28ClN2 (M+H)+ calcd.; 355.1941 observed; 355.1978. 

N-[1-Adamantyl(phenyl)methyl]-8-chloroquinolin-4-amine (5d). Obtained from 4,8-dichloroquinoline 

(50 mg), amine 1d (60 mg) in the presence of Pd(dba)2 (6 mg), BINAP (7 mg) and t-BuONa (36 mg). 

Eluent CH2Cl2/MeOH 100:1. Yield 70 mg (70%), beige crystalline powder, m.p. 171–173 °C. 1H-NMR 

(CDCl3)  1.55–1.67 (m, 6H), 1.68–1.81 (m, 6H), 2.04 (br.s, 3H), 4.08 (d, J = 6.2 Hz, 1H), 5.77 (d,  

J = 6.2 Hz, 1H), 6.19 (d, J = 5.4 Hz, 1H), 7.20–7.32 (m, 5H), 7.38 (dd, Jobs = 7.9, 7.9 Hz, 1H), 7.76 (d, 

J = 7.6 Hz, 1H), 7.79 (d, J = 8.3 Hz, 1H), 8.44 (d, J = 5.4 Hz, 1H). 13C-NMR (CDCl3) 28.2 (3C), 

36.5 (1C), 36.7 (3C), 39.3 (3C), 67.2 (1C), 100.9 (1C), 117.7 (1C), 120.2 (1C), 124.2 (1C), 127.4 (1C), 

127.9 (2C), 128.3 (2C), 129.1 (1C), 134.1 (1C), 137.9 (1C), 144.7 (1C), 149.0 (1C), 151.3 (1C). 

HRMS (MALDI-TOF): C26H28ClN2 (M+H)+ calcd.; 403.1941 observed; 403.1930. 

N,N'-bis[1-Adamantyl(phenyl)methyl]quinoline-4,8-diamine (6d). Obtained from 4,8-dichloroquinoline 

(50 mg), amine 1d (180 mg) in the presence of Pd(dba)2 (12 mg), DavePhos (9 mg) and t-BuONa  

(72 mg). Eluent petroleum ether–CH2Cl2 1:1. Yield 75 mg (45%), beige crystalline powder, m.p.  

175–177 °C. 1H-NMR (CDCl3)  1.50–1.83 (m, 24H), 1.95–2.04 (m, 6H), 4.00 (d, J = 6.6 Hz) + 4.02 

(d, J = 6.7 Hz) (1H for two diastereomers), 4.06 (d, J = 5.0 Hz, 1H), 5.59 (d, J = 5.2 Hz, 1H), 6.11 (d,  

J = 5.2 Hz, 1H), 6.27 (d, J = 7.5 Hz, 1H), 6.91 (d, J = 8.3 Hz, 1H), 7.06–7.35 (m, 12H), 8.22 (d,  

J = 5.2 Hz, 1H). 13C-NMR (CDCl3)  28.3 (3C), 28.5 (3C), 36.6 (1C), 36.7 (1C), 36.8 (3C), 37.0 (3C), 

39.3 (6C), 67.1 (1C), 67.8 (1C), 100.4 + 100.5 (1C for two diastereomers), 103.9 (1C), 105.0 (1C), 

125.7 (1C), 126.6 (1C), 127.1 (1C), 127.4 (2C), 127.8 (2C), 128.4 (2C), 128.8 (2C), 138.1 (1C), 138.7 

(1C), 140.3 (1C), 144.9 (1C), 145.0 (1C), 147.4 (1C), 148.7 (1C). HRMS (MALDI-TOF): C43H50N3 

(M+H)+ calcd.; 608.4005 observed; 608.3969. 
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N-[2-(1-adamantyloxy)ethyl]-7-chloroquinolin-4-amine (7a). Obtained from 4,7-dichloroquinoline (50 mg), 

amine 1a (49 mg) in the presence of Pd(dba)2 (6 mg), BINAP (7 mg) and t-BuONa (36 mg). Eluent 

CH2Cl2/MeOH 50:1–35:1. Yield 46 mg (52%), beige crystalline powder, m.p. 173–175 °C. 1H-NMR 

(CDCl3)  1.55–1.67 (m, 6H), 1.74–1.77 (m, 6H), 2.15 (br.s, 3H), 3.39 (q, J = 5.1 Hz, 2H), 3.72 (t,  

J = 5.2 Hz, 2H), 5.54 (br.s, 1H), 6.38 (d, J = 5.3 Hz, 1H), 7.35 (dd, J = 9.0, 2.2 Hz, 1H), 7.64 (d,  

J = 9.0 Hz, 1H), 7.93 (d, J = 2.2 Hz, 1H), 8.50 (d, J = 5.3 Hz, 1H). 13C-NMR (CDCl3)  30.4 (3C), 

36.3 (3C), 41.6 (3C), 43.3 (1C), 57.6 (1C), 72.8 (1C), 99.2 (1C), 117.3 (1C), 121.0 (1C), 125.3 (1C), 

128.6 (1C), 134.8 (1C), 149.0 (1C), 149.9 (1C), 151.9 (1C). HRMS (MALDI-TOF): C21H26ClN2O 

(M+H)+ calcd.; 357.1734 observed; 357.1715. 

N,N'-bis[2-(1-Adamantyloxy)ethyl]quinoline-4,7-diamine (8a). Obtained from 4,7-dichloroquinoline 

(50 mg), amine 1a (195 mg) in the presence of Pd(dba)2 (12 mg), DavePhos (9 mg) and t-BuONa (60 mg). 

Eluent CH2Cl2/MeOH 20:1–3:1. Yield 92 mg (71%), beige crystalline powder, m.p. 160–162 °C.  
1H-NMR (CDCl3)  1.53–1.66 (m, 12H), 1.72 (br.s, 12H), 2.12 (br.s, 6H), 3.31 (q, J = 4.5 Hz, 2H), 3.42 

(q, J = 5.1 Hz, 2H), 3.63 (t, J = 5.0 Hz, 2H), 3.70 (t, J = 5.4 Hz, 2H), 4.59 (br.s, 1H), 6.16 (br.s, 1H), 

6.22 (d, J = 5.9 Hz, 1H), 6.79 (dd, J = 9.0, 1.9 Hz, 1H), 6.94 (d, J = 1.9 Hz, 1H), 7.62 (d, J = 9.0 Hz, 

1H), 8.21 (d, J = 5.9 Hz, 1H). 13C-NMR (CDCl3) 30.4 (6C), 36.3 (6C), 41.5 (6C), 43.4 (1C), 43.9 

(1C), 57.9 (2C), 72.4 (1C), 72.7 (1C), 99.7 (1C), 104.0 (1C), 110.6 (1C), 116.4 (1C), 121.0 (1C), 148.0 

(1C), 148.1 (1C), 149.6 (1C), 151.2 (1C). HRMS (MALDI-TOF): C33H46N3O2 (M+H)+ calcd.; 

516.3590 observed; 516.3634. 

N-(1-Adamantylmethyl)-7-chloroquinolin-4-amine (7b). Obtained from 4,7-dichloroquinoline (50 mg), 

amine 1b (41 mg) in the presence of Pd(dba)2 (6 mg), BINAP (7 mg) and t-BuONa (36 mg). Eluent 

CH2Cl2/MeOH 100:1–50:1. Yield 50 mg (61%), beige crystalline powder, m.p. 225–227 °C. 1H-NMR 

(CD3OD)  1.65 (br.s, 6H), 1.65–1.78 (m, 6H), 1.97 (br.s, 3H), 3.09 (s, 2H), 6.60 (d, J = 5.8 Hz, 1H), 

7.39 (dd, J = 9.0, 2.1 Hz, 1H), 7.76 (d, J = 2.1 Hz, 1H), 8.13 (d, J = 9.0 Hz, 1H), 8.30 (d,  

J = 5.8 Hz, 1H), NH proton was not observed. 13C-NMR (CD3OD) 29.8 (3C), 36.7 (1C), 38.0 (3C), 

41.7 (3C), 55.5 (1C), 100.0 (1C), 118.6 (1C), 124.2 (1C), 125.9 (1C), 127.5 (1C), 136.3 (1C), 149.7 (1C), 

152.2 (1C), 153.8 (1C). HRMS (MALDI-TOF): C20H24ClN2 (M+H)+ calcd.; 327.1628 observed; 327.1649. 

N-[2-(1-Adamantyl)-1-methylethyl]-7-chloroquinolin-4-amine (7c). Obtained from 4,7-dichloroquinoline 

(50 mg), amine 1c (49 mg) in the presence of Pd(dba)2 (6 mg), BINAP (7 mg) and t-BuONa (36 mg). 

Eluent CH2Cl2/MeOH 50:1. Yield 73 mg (79%), beige crystalline powder, m.p. 207–209 °C. 1H-NMR 

(CDCl3)  1.26 (d, J = 6.2 Hz, 3H), 1.39 (dd, J = 14.8, 3.9 Hz, 1H), 1.46 (dd, J = 14.8, 7.6 Hz, 1H), 1.54 

(br.s, 6H), 1.54–1.69 (m, 6H), 1.91 (br.s, 3H), 3.78–3.87 (m, 1H), 4.78 (d, J = 7.2 Hz, 1H), 6.42 (d,  

J = 5.5 Hz, 1H), 7.33 (dd, J = 9.1, 2.2 Hz, 1H), 7.60 (d, J = 9.1 Hz, 1H), 7.93 (d, J = 2.2 Hz, 1H), 8.51 

(d, J = 5.5 Hz, 1H). 13C-NMR (CDCl3) 22.4 (1C), 28.5 (3C), 32.5 (1C), 36.8 (3C), 43.0 (3C), 44.1 

(1C), 52.6 (1C), 98.8 (1C), 117.2 (1C), 120.7 (1C), 125.1 (1C), 128.8 (1C), 134.8 (1C), 148.2 (1C), 149.3 

(1C), 152.0 (1C). HRMS (MALDI-TOF): C22H28ClN2 (M+H)+ calcd.; 355.1941 observed; 355.1904. 

N-[1-Adamantyl(phenyl)methyl]-7-chloroquinolin-4-amine (7d). Obtained from 4,7-dichloroquinoline 

(50 mg), amine 1d (60 mg) in the presence of Pd(dba)2 (6 mg), BINAP (7 mg) and t-BuONa (36 mg). 

Eluent CH2Cl2/MeOH 100:1. Yield 77 mg (77%), yellowish viscous oil. 1H-NMR (CDCl3)  1.54–1.66 
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(m, 6H), 1.68–1.80 (m, 6H), 2.03 (br.s, 3H), 4.07 (d, J = 6.2 Hz, 1H), 5.70 (d, J = 6.2 Hz, 1H), 6.13 (d, 

J = 5.3 Hz, 1H), 7.23–7.33 (m, 5H), 7.41 (dd, J = 8.8, 1.9 Hz, 1H), 7.79 (d, J = 8.8 Hz, 1H), 7.93 (d,  

J = 1.9 Hz, 1H), 8.31 (d, J = 5.3 Hz, 1H). 13C-NMR (CDCl3) 28.2 (3C), 36.5 (1C), 36.7 (3C), 39.3 

(3C), 67.1 (1C), 100.4 (1C), 117.4 (1C), 120.4 (1C), 125.3 (1C), 127.4 (1C), 127.9 (2C), 128.7 (2C), 

129.0 (1C), 134.6 (1C), 138.0 (1C), 148.7 (1C), 148.9 (1C), 151.9 (1C). HRMS (MALDI-TOF): 

C26H28ClN2 (M+H)+ calcd.; 403.1941 observed; 403.1958. 

N,N'-bis[1-Adamantyl(phenyl)methyl]quinoline-4,7-diamine (8d). Obtained from 4,7-dichloroquinoline 

(50 mg), amine 1d (180 mg) in the presence of Pd(dba)2 (12 mg), BINAP (14 mg) and t-BuONa  

(72 mg). Eluent CH2Cl2/MeOH 35:20:1. Yield 88 mg (58%), beige crystalline powder, m.p. 240–242 °C. 
1H-NMR (CDCl3)  1.48–1.63 (m, 12H), 1.63–1.76 (m, 12H), 1.99 (br.s, 6H), 4.00–4.06 (2H), 4.74 (d, 

J = 6.7 Hz, 1H), 5.54 (d, J = 6.1 Hz), 5.85 (d, J = 5.4 Hz) + 5.86 (d, J = 5.4 Hz) (1H for two 

diastereomers), 6.81 (br.s, 1H), 6.85 (d, J = 9.0 Hz, 1H), 7.14–7.28 (m, 10H), 7.56 (d, J = 9.0 Hz, 1H), 

8.07 (d, J = 5.4 Hz, 1H). 13C-NMR (CDCl3) 28.3 (3C), 28.4 (3C), 36.5 (2C), 36.8 (3C), 36.8 (3C), 

39.2 (3C), 39.3 (3C), 66.9 (1C), 67.6 (1C), 97.1 + 97.8 (1C for two diastereomers), 107.1 (1C), 111.0 

(1C), 115.7 (1C), 119.6 (1C), 126.9 (1C), 127.2 (1C), 127.7 (2C), 127.8 (2C), 128.3 (2C), 128.6 (2C), 

138.5 (1C), 138.6 (1C), 139.5 (1C), 148.4 (1C), 149.1 (1C), 150.3 (1C). HRMS (MALDI-TOF): 

C43H50N3 (M+H)+ calcd.; 608.4005 observed; 608.3980. 

4. Conclusions 

To sum up, we have investigated the Pd-catalyzed amination reactions of isomeric chloroquinolines 

with several adamantane-containing amines and found out that 4,8- and 4,7-dichloroquinolines 

provided the best yields of the mono- and diamination reaction products due to a difference in the 

reactivity of the chlorine atoms. 2,8-Dichloroquinoline proved to be a more problematic substrate, 

especially in the case of the diamination process, and the application of 2,6-dichloroquinoline led only 

to complicated mixtures of unidentified products. The monoamination reactions were successfully 

performed using 1 equiv. of the amine and BINAP as a ligand, while diamination processes demanded 

the use of 3–4 equiv. of the amines and DavePhos ligand in the majority of cases. There was no 

pronounced dependence of the yields of the monoamination products on the bulkiness of the amine 

used, but the diamination processes were more successful for a less sterically hindered amine 1a 

compared to the most hindered amine 1d. 
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