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Abstract: Covalently functionalized multi-walled carbon nanotubes (MWNTs) were 

prepared by grafting well-defined thermo-responsive poly(N-isopropylacrylamide) 

(PNIPAM) via click reactions. First, azide-terminated poly(N-isopropylacrylamide)  

(N3-PNIPAM) was synthesized by reversible addition fragmentation chain-transfer (RAFT) 

polymerization, and then the N3-PNIPAM moiety was connected onto MWNTs by click 

chemistry. The products were characterized by means of FT-IR, TGA and TEM. The 

results show that the modification of MWNTs is very successful and MWNTs 

functionalized by N3-PNIPAM (MWNTs-PNIPAM) have good solubility and stability in 

water. TEM images show the functionalized MWNTs are dispersed individually, indicating 

that the bundles of original MWNTs are separated into individual tubes by surface 

modification with polymer chains. These MWNTs modified with PNIPAM represent a 

potential nano-material for preparation of hydrophilic composite materials. 

Keywords: multi-walled carbon nanotubes; RAFT; NIPAM; temperature-responsive;  

click chemistry 
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Selected Abbreviations and Acronyms: 

CNTs   Carbon nanotubes 

MWNTs   Multi-walled carbon nanotubes 

SWNTs   Single-walled carbon nanotubes 

PNIPAM  poly(N-isopropylacrylamide) 

N3-CTA   Azide-capped chain transfer agent 

N3-PNIPAM  Azide-terminated poly(N-isopropylacrylamide) 

MWNTs-alk  MWNTs with alkyne groups 

MWNTs-PNIPAM MWNTs functionalized by N3-PNIPAM 

1. Introduction 

Carbon nanotubes (CNTs) [1] have attracted extensive industrial and academic attention thanks to 

their exciting potential applications in sensors [2], nanocomposites [3], molecular devices [4] or 

advanced materials with electronic properties [5]. However, their inherent insolubility in most organic 

and aqueous solvents, together with the poor chemical and biological compatibility of CNTs, are the 

major limitations to the solution-phase manipulation and processability of these structures, greatly 

hindering the wide application of CNTs in practical use [6]. 

In this respect, much effort, including noncovalent and covalent modification [7–9], has been made 

in the surface modification of CNTs, mainly to enhance their solubility and processability. The 

advantage of noncovalent modification is that the structure and original properties of CNTs are not 

altered after modification, but this method is limited to several hydrophobic polymers, such as nylon 

and polyacrylonitrile dissolved in toxic organic solvents, and furthermore, high concentrations of 

polymers are usually necessary to obtain dispersions of CNTs, and most importantly, it is difficult to 

further modify CNTs with different functionalities [8,9]. On the other hand, covalent sidewall 

modification with polymeric structures has shown promise in improving the solubility of nanotube-

polymer conjugates, even with a relatively low degree of functionalization [10,11]. Furthermore, the 

versatility of polymer chemistry allows for control over the final properties of the nanotube-polymer 

hybrids, which are dictated by the chemical and physical characteristics of the grafted polymer. For 

example, many polymers such as polystyrene (PS) [12,13], poly(methyl methacrylate) [14,15], or 

polyacrylamide [16], have been used for surface modification of CNTs by covalent functionalization. 

Although a number of research groups have focused on functionalizing CNTs with various polymers, 

the ability to solubilize separate individual CNTs into water remains a great challenge. 

For the applications of CNTs-based sensors and probes in a biological environment and medical 

chemistry, some aspects have not been explored very thoroughly, such as how to functionalize a 

carbon nanotube to make it water-soluble and responsive to environmental stimuli such as pH, 

temperature, or ionic strength [17]. These studies require CNTs that are not only water-soluble, but 

also well-controlled with regard to modification of the surface to obtain a shell that is sensitive to the 

environmental conditions [18]. Poly(N-isopropylacrylamide) (PNIPAM), a well-known thermo-sensitive 

polymer, has a low critical solution temperature (LCST) in water (around 32 °C) and represents 

probably the most often-used thermoresponsive polymer in biotechnology and medicine [19–23]. 
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Therefore, it can be expected that CNTs will find use in new potential applications if temperature-

sensitive PNIPAM chains were attached onto their sidewalls. 

The covalent method for connecting PNIPAM onto CNTs must also be considered and it is another 

key to determine and influence the properties of CNTs. So far, covalent CNTs-polymer conjugates 

could be synthesized by either the “grafting from” or “grafting to” techniques [9]. The “grafting from” 

mechanism promises high graft densities. For instance, this technique was used to graft PNIPAM from 

multi-walled carbon nanotubes (MWNTs) by reversible addition−fragmentation chain transfer (RAFT) 

polymerization [17]. However, initiator groups are hard to attach to CNTs and the desired polymer 

molecular weight and architecture are difficult to achieve and control [9]. On the contrary, the 

“grafting to” procedure allows full control over polymer molecular weight and structure, but it suffers 

from low theoretical polymer loadings due to steric repulsion between grafted polymer chains. Pan et al. [24] 

used this method for grafting PNIPAM to MWNTs by thiol-coupling reactions, but the modification 

reaction takes more than 36 h. A more efficient coupling protocol is demanded to generate relatively 

high nanotube graft densities. 

The copper-catalyzed azide-alkyne cycloaddition (click chemistry) discovered by Sharpless has 

been widely employed and confirmed to be highly efficient [25–28]. It would be very convenient and 

effective to graft polymer chains to CNTs by using such a coupling reaction. Adronov and co-workers 

pioneered the research on the linkage of polystyrene with single-walled carbon nanotubes (SWNTs) 

via click chemistry [29]; later, the same group of authors modified MWNTs using  

poly(N,N-dimethylacrylamide)-poly(N-isopropylacrylamide) (PDMA-PNIPAM) [30]. Cho et al. [31] 

also successfully attached PS to MWNTs by click reaction. Although fabrication of innovative materials 

based on MWNTs is still challenging [32], these results confirmed click chemistry is a useful tool for 

modifying the surface properties of CNTs with various functionalities to satisfy special end use [33]. 

In this work, MWNTs were modified and functionalized with the thermo-responsive homopolymer 

PNIPAM by click chemistry. The azide-terminated PNIPAM was prepared by RAFT polymerization 

with an azide-capped chain transfer agent (N3-CTA), and the alkyne groups were installed at the 

sidewalls of MWNTs. Then, the azide-terminated polymer was coupled and MWNTs were 

functionalized via Cu(I)-catalyzed 1,3-dipolar cycloaddition. 

2. Results and Discussion 

Herein, we reported a two-step approach to functionalize MWNTs with a temperature-responsive 

polymer. As illustrated in Scheme 1, azide-decorated PNIPAM, namely N3-PNIPAM, was prepared 

through RAFT polymerization, and MWNTs were covered with alkyne groups; then the MWNTs 

modified with PNIPAM were obtained through coupling reaction via click chemistry. 

2.1. Preparation of MWNTs with Alkyne Groups (MWNTs-alk) 

In the present study, the MWNTs were lightly functionalized with nitric acid to afford MWNTs-

COOH. MWNTs-COOH were then treated with thionyl chloride and reacted with excess propargyl 

alcohol to obtain MWNTs-alk where the alkyne groups should be connected on the surface. The 

MWNTs-alk can be measured via TGA. The TGA results (Figure 1) indicate that the mass losses of 

MWNTs-COOH and MWNTs-alk were approximately 2.3% and 6.2%, which also shows the alkyne 
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group was successfully introduced. It was found that the amount of alkyne groups introduced into 

MWNTs is 7.0 × 10−4 mol/g, which was calculated by the difference between the mass losses of 

MWNTs-COOH and MWNTs-alk. 

Scheme 1. The protocol to functionalize MWNTs with PNIPAM. 

 
Reagents and Conditions: (i) HNO3, reflux, 2 h; (ii) SOCl2; propargyl alcohol, CHCl3, room 
temperature, 24 h; (iii) NIPAM, AIBN, 1,4-dioxane, 60 °C, 20 h; (iv) CuBr, PMDETA, 70 °C, 12 h. 

Figure 1. Comparison of the weight losses of pristine MWNTs, MWNTs-COOH, 

MWNTs-alk, MWNTs-PNIPAM-1, MWNTs-PNIPAM-2 and MWNTs-PNIPAM-3. The 

data is measured by TGA. 

 

2.2. Synthesis and Characterization of N3-PNIPAM 

The azide-decorated RAFT agent N3-CTA is the most important precursor for obtaining serial  

N3-PNIPAM, and it was obtained by coupling 2-azidoethanol with trithiocarbonate CTA. The 1H-NMR 

spectra of N3-CTA showed the following peaks: 0.99 (t, –CH2CH3, 3H), 1.37–1.47 (m, –CH2CH2, 

20H), 1.75 (s, –C(CH3)–CH3, 6H), 3.42 (t, –CH2S, 2H), 3.5 (t, –CH2CH2–, 2H), 4.24 (t, –CH2CH2–, 2H). 
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After preparation of the azide-capped N3-CTA, we can access azide-decorated PNIPAM by RAFT 

polymerization. It was noticed that increasing the molecular weight of the end-functionalized polymer 

would inevitably cause a decrease in nanotube grafting efficiency due to the entropy constraints of the 

polymer and the heterogeneous nature of the grafting reactions [18], but RAFT polymerization is an 

ideal method to obtain the polymers with controlled degrees of polymerization [16]. Three linear 

PNIPAM polymers with theoretical Mn values of 2.6 × 103, 5.2 × 103 and 11 × 103 g·mol−1 and bearing an 

azide function on one end group were prepared by RAFT polymerization of NIPAM with N3-CTA; 

meanwhile, the reference sample PNIPAM-0 was synthesized by a traditional polymerization method. 

Their average molecular weights as measured by GPC is reported in Table 1. 

Table 1. The feed ratio of polymerization and the GPC analysis results of serial  

N3-PNIPAM and PNIPAM-0. 

Entry Sample [M]:[CTA]:[I] Mtheo (g·mol−1) Mn (g·mol−1) PDI 

1 N3-PNIPAM-1 100:5:1 2200 2,180 1.19 
2 N3-PNIPAM-2 250:5:1 5600 4,790 1.26 
3 N3-PNIPAM-3 500:5:1 11,000 9,440 1.22 
4 PNIPAM-0 200:1 * / 8,220 2.83 

* The PNIPAM-0 as a comparison sample was synthesized by traditional radical polymerization, the reactant 

didn’t have CTA and 200:1 means the feed ratio of [M]:[I]. 

The GPC results showed that the molecular weight of the series of N3-PNIPAMs obtained by RAFT 

polymerization was close to the theoretical molecular weight, and the molecular weight distribution 

was 1.19–1.26, which satisfies the RAFT polymerization criteria, whereas the molecular weight 

distribution distribution of PNIPAM-0 obtained by traditional free radical polymerization was much 

wider. Additionally, the N3-PNIPAM obtained from RAFT polymerization was a yellow powder, as 

expected [34,35], whereas the PNIPAM reference sample obtained by traditional polymerization 

without azide groups was a white powder. Figure 2 compares the FT-IR spectra of N3-PNIPAM-1 and 

PNIPAM-0. It is clear that the N3-PNIPAM-1 and the PNIPAM-0 both have characteristic C=O 

(1,645.7 cm−1) and –N(CH3)2 (1,386 cm−1, 1,366 cm−1) absorption peaks, but only N3-PNIPAM has a 

peak at 2,105 cm−1 which corresponds to the azide absorption, suggesting the N3-PNIPAM has the 

potential ability to connect with MWNTs-alk via azide-alkyne cycloaddition. In order to investigate 

whether the series of synthesized PNIPAM have temperature-responsive behaviors, the aqueous 

polymer solutions were first observed visually at different temperatures. The phase transition 

phenomena of N3-PNIPAM-1 and PNIPAM-0 in pure water are compared in Figure 3. At room 

temperature, the N3-PNIPAM solution was light yellow and PNIPAM-0 solution was colorless and 

transparent. After warming above 35 °C, both solutions immediately became milky white and viscous.  
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Figure 2. The FT-IR spectra of N3-PNIPAM-1and PNIPAM-0. 

 

Figure 3. The thermoresponsive performance of N3-PNIPAM-1 (A) and PNIPAM-0 (B) 

water solution with polymer concentration 2 w.t.%. 

 

To determine the response temperature accurately, the variation of transmittance with temperature 

was monitored using an UV-visible spectrophotometer (Figure 4). It was observed that both N3-

PNIPAM and PNIPAM-0 have thermo-responsive behavior.  

Figure 4. Variation of transmittance with temperature for the series of N3-PNIPAM and 

PNIPAM-0 water solution (2 wt%). 
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The LCST values of N3-PNIPAM-1, N3-PNIPAM-2, N3-PNIPAM-3 and PNIPAM-0 were 28.5, 

30.6, 31.7 and 32 C, respectively. The N3-PNIPAM’s LCST is apparently smaller than the PNIPAM-0, 

and it can be attributed to the introduction of the hydrophobic chain transfer groups [34]. The 

difference in LCST for the series of N3-PNIPAM polymers was due to the different relative contents of 

hydrophobic chain transfer agent. When the molecular weight is small, the proportion of CTA 

hydrophobic head groups was relatively large and the LCST is reduced greatly. In contrast, when the 

molecular weight was higher, the proportion of the hydrophobic head groups can be ignored, and the 

LCST was close to pure PNIPAM. 

2.3. Coupling of Polymers onto MWNTs by Click Reaction 

As mentioned previously, it is very quick and simple to connect PNIPAM and MWNTs via click 

reactions. The cycloadditions between alkyne decorated MWNTs and PNIPAM polymer with azide 

groups on the outer shell were performed in water in the presence of a Cu(I) catalyst, which was 

generated in situ, resulting in the formation of polymer functionalized MWNTs (Scheme 1). The most 

attractive features for this coupling are its mild reaction conditions and high reaction efficiency. The 

reaction was conducted at about 70 °C and the concentration of N3-PNIPAM is 3.0 mg·mL−1. In this 

study, the N3-PNIPAM is in excess and the remaining polymer can be easily removed after each 

reaction by ultra-filtration and prolonged washing with water. In addition, trace amounts of copper 

salts in the products were removed by washing with an aqueous ammonium hydroxide solution and water. 

FT-IR spectral comparison between MWNTs-alk and MWNTs-PNIPAM provides information 

about the structures appended to the surface of MWNTs. The absorbance peaks at 1,620 and 1,743 cm−1 

can be attributed to C=C, and result from skeletal vibrations of unoxidized graphite domains, C=O in 

carbonyl moieties, respectively (Figure 5).  

Figure 5. The FT-IR spectra of MWNTs-PNIPAM-1 and MWNTs-alk. 

 

After the coupling reaction, several new peaks appeared in the FT-IR spectrum of MWNTs-

PNIPAM, clearly due to the existence of PNIPAM in the products. For example, the characteristic 

amide group [–C(O)NH–] stretching vibration at 1,555 cm−1 indicates the presence of the amide bond 
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originating from PNIPAM. Additionally, there are other bands (1,384.7 cm−1 and 1,401 cm−1 for  

–CH(CH3)2, 1,631 cm−1 for C=O, and 3,426 cm−1 for –NH), all of which are from the PNIPAM. In 

short, these results confirmed PNIPAM was successfully grafted onto the MWNTs. 

In order to further confirm that the N3-PNIPAM was connected onto the MWNTs, a DSC test was 

performed on the MWNTs-PNIPAM-1 to detect the thermal properties of the surface material (Figure 6). 

After two temperature scans, it was found its Tg was 134 °C, which was also consistent with the Tg of 

PNIPAM from the literature data [35], and the result proved that MWNTs were successfully modified 

with PNIPAM. 

Figure 6. The DSC curves of MWNTs-PNIPAM-1 after twice temperature scan, showing 

the glass transitions of the complex. Vertical shifts have been used for clarity. 

 

To obtain a quantitative picture of the extent of MWNTs functionalization, thermogravimetric 

analysis (TGA) was performed on the reaction product (Figure 1). As the samples were washed 

repeatedly after N3-PNIPAM was clicked onto the MWNTs, the physical adsorption and wrapping of 

polymer chains were eliminated, thus the remaining products were PNIPAM polymer chains grafted 

on the MWNTs. The molecular weights of the various PNIPAM connected onto MWNTs is 2,180  

(N3-PNIPAM-1), 4,790 (N3-PNIPAM-2) and 9,440 (N3-PNIPAM-3) gmol−1, respectively (Table 1). 

The mass loss of MWNTs-PNIPAM-1, MWNTs-PNIPAM-2 and MWNTs-PNIPAM-3 was 

approximately 15%, 20% and 34%, due to polymer decomposition, from which we can find around 

6.89 × 10−5 mol of N3-PNIPAM-1, 4.17 × 10−5 mol of N3-PNIPAM-1 3.60 × 10−5 mol of N3-PNIPAM-

1 were attached onto 1 g of hybrids. The MWNT-PNIPAM-3 showed two major decompositions in the 

temperature range. One possible reason is that the high molecular weight polymer contains DMF, whose 

boiling point is 153 °C. The results in Figure 1 show the larger grafted polymer molecular weight 

indicates the higher rate of weight loss. Nevertheless, the actual measured mass losses of MWNT-

PNIPAM are much lower than the theoretical mass losses, which should be 60% (N3-PNIPAM-1), 

77% (N3-PNIPAM-2) and 86% (N3-PNIPAM-3). The reason is that only part of the N3-PNIPAM was 

connected on the surface of MWNTs, as some of alkyne groups did not react completely with azide 

groups. This result suggests that increasing the degree of polymerization has a negative influence on 

the grafting density for polymers connected on MWNTs, due to steric effects. After modification, there 
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is the intertwining between the molecule of PNIPNAM and MWNTs, and this phenomenon must 

hinder the connection of azide and alkyne groups. The result indicates that with higher molecular 

weight PNIPNAM it becomes more difficult to obtain high grafting density. 

2.4. Dispersion Behavior of MWNTs-PNIPAM in Water 

The successful implementation of click reaction on the MWNT surface prompted us to investigate 

the effect of temperature and block length on the solubility of the resulting MWNTs-polymer conjugates. 

The direct qualitative test of MWNTs-PNIPAM is checking the solubility of the modified products 

in water (Figures7A–C). It shows the dispersion state of pristine MWNTs, MWNTs-alk and  

MWNTs-PNIPAM-1 in water at the same concentration (1.0 mg·mL−1) after one week at 25 °C, 

respectively. Clearly, the pristine MWNTs and MWNTs-alk were completely insoluble in water, and 

the transmittances of supernatant solution measured by UV/Vis spectrophotometer are both higher than 

98% at room temperature. Owing to the incorporation of PNIPAM, the PNIPAM-grafted MWNTs can 

be readily dissolved in pure water by the aid of ultrasonication. The MWNTs-PNIPAM-1 formed a 

clear, dark-brown solution that exhibits no discernible particulate materials and remained stable for a 

period of at least four weeks, and the transmittance measured by UV/Vis spectrophotometer is in the 

range of 3%–5%, even after the suspension had been standing for one month at room temperature. It 

was found that MWNTs-PNIPAM-1 could be uniformly dispersed in water to afford homogenous 

solutions that were stable over a long time. The solubility of MWNTs-PNIPAM-1 in pure water  

was good, due to the benign solubility of PNIPAM, and this also testified to the successful 

functionalization of MWNTs. The surface of MWNTs turned to hydrophobic from hydrophobic, 

because of the introduction and modification of the PNIPAM. However, no temperature-response 

behavior of MWNTs-PNIPAM was observed, perhaps because the graft density is low and there are 

not enough PNIPAM approaching the surface on MWNTs. The transmission electron microscopy 

(TEM) images also showed similar results. As shown in Figure 7D, some impurities such as 

amorphous carbon and metal catalysts were present in the MWNTs. and the MWNTs cannot be 

dispersed. MWNTs-alk is also intertwined according to the TEM image, but after modification with 

PNIPAM, the MWNTs can be dispersed individually and completely, indicating that the bundles of 

original MWNTs were separated into individual tubes by surface modification with polymer chains. 

Figure 7F shows the highest thickness of the polymer layer on MWNTs is about 20 nm, but only a 

little amount of PNIPAM is seen on the surface of MWNTs, suggesting a low grafting density. It is 

known that after hydrophilic functionalization carbon nanotubes are excellent biomedical materials 

such as a potentially ideal carriers for drug delivery [36]. The click chemistry still supports the possible 

approach to prepare the hydrophilic functionalized MWNTs. Froms Figure 7D–F, the original diameter 

of the pristine MWNTs is about 20–30 nm, and there is almost no change in the diameter of MWNTs-

alk, but after coupling of PNIPAM and MWNTs, the products resemble partial polymer-encapsulated 

nanotubes, and the widest part is now more than 50 nm. 
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Figure 7. Photographs of (A) pristine MWNTs; (B) MWNTs-alk and  

(C) MWNTs-PNIPAM-1 in water; (D) TEM images of pristine MWNTs; (E) MWNTs-alk; 

(F) MWNTs-PNIPAM-1. 

 

3. Experimental 

3.1. Materials 

The chain transfer agent S-1-dodecyl-S'-(α,α-dimethyl-α-acetic acid)trithiocarbonate (CTA) and  

2-azidoethanol were synthesized in our lab according to a previously reported procedure [37,38]. The 

pristine MWNTs (purity 90%, 20–30 nm in diameter and several micrometers in length (Timesnano 

Inc., Chengdu, China) were used without further purification. N-isopropylacrylamide (NIPAM, 97%, 

Tokyo Kasei Kagyo, Japan) was recrystallized with toluene/hexane (1/6, v/v) prior to use. 

N,N,N,N,N-pentmethyldiethylenetriamine (PMDETA, 98%), CuBr (99.999%), 1,3-dicyclohexyl-

carbodiimide (DCC) and 4-(dimethylamino)pyridine (DMAP) were obtained from Sigma Aldrich 

(Milwaukee, WI, USA). Other reagents or analytical grade solvents were from commercial resources. 

3.2. Synthesis of Alkyne-Modified Multi-Walled Carbon Nanotubes (MWNTs-alk) 

Typically, pristine MWNTs (1.0 g) were added to an aqueous HNO3 solution (60 wt%, 20.0 mL). 

The mixture was treated in a sonication bath (40 kHz) for 10 min and stirred for 2 h at reflux, then 

filtered through a poly(tetrafluoroethylene) (PTFE) membrane and washed with distilled water until 

the pH of the filtrate was approximately 7.0. The treated MWNTs were dried under vacuum for 28 h at 

40 °C, affording 0.95 g of carboxyl-functionalized MWNTs (MWNTs-COOH). 

The obtained MWNTs-COOH (0.10 g) was suspended in SOCl2 (2 mL) in a 10 mL round-bottomed 

flask and this suspension was stirred at 65 °C for 24 h. After the excess SOCl2 was removed under 

reduced pressure, the flask was cooled in an ice bath. A mixed solution of propargyl alcohol (1 mL, 

16.9 mmol), CHCl3 (2 mL), and anhydrous triethylamine (1 mL, 7.17 mmol) was added dropwise into 

the flask over a period of 0.5 h under magnetic stirring; the mixture was stirred at 0 °C for 1 h and then 
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at room temperature for 24 h. The product was filtered through a PTFE membrane under vacuum, and 

the filter cake was washed with THF and distilled water for several times. The obtained MWNTs-alk 

was dried under vacuum at 25 °C for 48 h. 

3.3. Synthesis of N3-PNIPAM 

Firstly, trithiocarbonate CTA was synthesized following the previously reported procedure [37]. 

The azide decorated RAFT agent, N3-CTA, was prepared by coupling 2-azidoethanol with the 

trithiocarbonate CTA in the presence of DCC and DMAP in dry CH2Cl2. A typical procedure was as 

follows: trithiocarbonate CTA (2.00 g, 5.46 mmol), DDC (1.69 g, 8.19 mmol), DMAP (1.00 g, 5.46 mmol), 

and dichloromethane (10 mL) were placedd in a round-bottomed flask and stirred for 10 min under an 

inert atmosphere. 2-Azidoethanol (1 mL, 17.8 mmol) was added and the mixture was stirred overnight 

at room temperature. The N3-CTA product was precipitated in diethyl ether, filtered and dried at room 

temperature. Next, the N3-CTA was washed with acidic water, brine and water successively and finally 

dried under reduced pressure. The yield was 50.5%. After the N3-CTA was obtained, PNIPAM was 

synthesized by RAFT polymerization of the corresponding monomer with N3-CTA as the initiator. 

NIPAM (1.0 g, 8 mmol), AIBN (0.013 g, 0.08 mmol), N3-CTA (0.173 g, 0.4 mmol) and 1,4-dioxane 

(10 mL) were added to a round-bottomed flask; the mixture in the flask was deoxygenated by a freeze-

pump-thaw process, and the reaction was then maintained for 20 h at 60 °C in an oil bath. 

3.4. Coupling of N3-PNIPAM and MWNTs-alk via Click Reaction 

In a typical experiment, MWNTs-alk (12.0 mg) were dispersed in DMF (15 mL) by sonication for 5 min 

and bubbling with nitrogen for 10 min, then N3-PNIPAM (1.00 g), CuBr (29 mg, 0.2 mmol) and 

PMDETA (4 μL, 0.2 mmol) were added. The reaction vessel was evacuated and refilled with nitrogen 

three times, followed by stirring under nitrogen at 70 °C for 12 h. The reaction was terminated by 

cooling the reaction flask in an ice bath followed by exposure to air. The mixture was diluted with 

DMF (10 mL), sonicated for 5 min, and filtered through a PTFE membrane, then washed with THF, 

aqueous ammonium hydroxide solution and pure water twice, respectively. 

3.5. Characterizations 

The structure of N3-CTA was characterized by FT-IR (KBr, Nicolet 6700, Thermo Fisher 

Scientific, Waltham, MA, USA). The molecular weight and PDI of the polymers prepared were 

determined by gel permeation chromatography (GPC) using a Waters 515 pump (Waters, Milford, 

MA, USA), Ohpak KB-803 column (Showa Denko America, Inc., New York, NY, USA) and Waters 

2410 refractive-index (RI) detector. The equipment was calibrated with poly(ethylene oxide) (PEO) 

standards, and phosphate buffer (pH = 6.5) at 1.0 mL·min−1 was used as the eluent at a flow rate of 

0.80 mL·min−1. The phase-transition temperature of N3-PNIPAM was determined on a U-2010  

UV-visible spectrophotometer (Hitachi, Tokyo, Japan) with controlled temperature. Thermal 

decomposition of MWNTs-PNIPAM was studied by TGA with a TG Q500 thermal analysis system 

(TA Instruments Inc., New Castle, DE, USA), whereby TGA scans were recorded at 10 °C·min−1 under 

a N2 atmosphere from 100 °C to 600 °C. The thermal characterization studies were conducted by DSC 
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with an EXSTAR 6000 (SII NanoTechnology Inc., Tokyo, Japan), in which the heating rate was  

10 °C·min−1. The structural morphology of the MWNTs-PNIPAM was observed using an H-6100IV 

(Hitachi) transmission electron microscopy (TEM) at an acceleration voltage of 120 Kv. 

The solubility of the series of PNIPAMs in water was measured by centrifugation and the UV/Vis 

spectrophotometer. A vial charged with MWNTs-PNIPAM (10 mg) and water (10 mL) was sonicated 

for 10 min. Then the vial was centrifuged at 4,000 rpm for 10 min and subsequently allowed to stand 

undisturbed overnight. The supernatant was carefully separated and diluted with water to appropriate 

concentrations for UV/Vis absorption measurement at certain temperatures. 

4. Conclusions 

We have demonstrated an efficient approach to functionalizing MWNTs with a well-defined 

PNIPAM via click chemistry. TGA, FI-IR and DSC results proved the successful coupling between 

N3-PNIPAM and MWNTs-alk. MWNTs-PNIPAM has good solubility in pure water and no 

temperature-response behavior was observed, presumably because of low graft density. It is believed 

that, with their good solubility and stability in water, the MWNTs-PNIPAM represent a potential nano-

material for the preparation of novel composite materials, and click chemistry is one of possible and 

promising functionalization methods for MWNTs. 
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