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Abstract: 12-Hydroxy-9(10→20)-5aH-abeo-abieta-1(10),8(9),12(13)-triene-11,14-dione 

(quinone 2) served as the dienophile in numerous intermolecular Diels-Alder reactions. 

These cycloadditions were conducted either thermally (including microwave heating) or 

with Lewis acid activation. While most dienes reacted with quinone 2 in good chemical 

yield, others were incompatible under the experimental conditions used.  
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1. Introduction 

In a Fall 1974 invited lecture before the Pittsburgh Section of the ACS, Professor Samuel 

Danishefsky stated, reporting on his group’s progress toward a synthesis of vernolepin, that: “A 

synthesis cannot be considered truly elegant if it does not contain at least one Diels-Alder 

reaction.” The transformations being cited are shown in Scheme 1 and are discussed in [1]. 

Scheme 1. Danishefsky et al.’s synthesis of vernolepin. 
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Since its discovery in 1928 by Otto Diels and Kurt Alder [2], the cycloaddition of a diene with a 

dienophile has become a powerful method to construct a cyclohexene ring, thanks to its remarkable 

regioselectivity, syn stereospecificity, and the capability to create as many as four chiral centers in a 

single transformation [3,4]. The past fifty years have seen Diels-Alder reactions expand from making 

cyclohexene rings, either inter- or intramolecularly [5–7], to a useful means to prepare six-membered 

ring heterocycles via the hetero-Diels-Alder reaction [8–13], and as a practical way to prepare complex 

polycyclic frameworks via the homo-Diels-Alder reaction [14,15], and for creating asymmetry [16–18]. 

This explosion of activity is reflected in the large number of books and reviews focused on the 

advancements made in Diels-Alder reactions [19–25]. 

One way for chemists to devise the most efficient synthetic route possible for a given compound is 

to recognize when two or more transformations can be achieved under the same reaction conditions 

without isolation of the intermediate product(s) [26–32]. Indeed, the more sequential transformations 

that can occur, the fewer the steps needed to achieve a given total synthesis, and hence the more 

efficient the synthesis is. Such transformations have been widely studied and are described in the 

literature either as a cascade, [33] domino, [34] tandem, [35] consecutive, [36] or as an one-pot 

reaction. It is not surprising that Diels-Alder reactions are particularly useful for multiple bond formations.  

In 1994 we achieved a 16-step synthesis of the triterpene (±)-perovskone (1) [37] that featured a 

cascade process in which three rings and five stereocenters of the product were created in a single 

operation (Scheme 2) [38]. 

Scheme 2. The cascade-based total synthesis of perovskone. 
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45 °C for 72 h, followed by heating at 110 °C for 48 h, produced tertiary alcohol 6 in 82% yield. The 
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relative configurations at C-8, C-9, and C-24 (cf. adduct 4). The use of ocimene as the diene 

component also facilitated the formation of the C-11, C-26 σ-bond, the C-11 chiral center as a result of 

an intramolecular Prins reaction (i.e., 4→5), and the formation of the heterocyclic F-ring (i.e., 5→6). 

Although ring closure of the G-ring did not occur under the conditions used, brief exposure of 6 with 

the acidic resin Amberlyst-15® produced perovskone in 90% yield. 

We recently reported simpler conditions whereby quinone (S)-2 reacted with triene 3 to directly 

provide (+)-perovskone (1) in which five bonds, four rings, and six chiral were created in a single 

operation [42,43]. Please note the mild conditions employed in this one-pot transformation: 0 °C for 

ninety minutes followed by warming at 50 °C for seven h. 

In our initial synthesis of 1 vanillin (7) was converted in eight steps to bromide 8 in 27% overall 

yield [38]. The subsequent conversion of 8 to quinone (±)-2 required seven additional steps and 

occurred in 52% overall yield (Scheme 3). The use of 1,2,4-trimethoxybenzene (9) [44,45] or carvacrol 

(10) as the starting material [46] to prepare bromide 8 required fewer steps and gave better overall 

yield, without the isolation or purification of any intermediates. Since the C-5 chiral center in quinone 

2 controls the stereochemistry for each new chiral center produced in the tandem polycyclizations 

leading to (+)-perovskone, the preparation of quinone 2 in optically active form was essential to 

prepare (+)-perovskone. Quinone (S)-2 was prepared from bromide 8 in seven steps and 62% overall 

yield [45].  

Scheme 3. The preparation of quinone (±)-2 and (S)-2. 
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This review summarizes our exploration of the Diels-Alder reactions of 12-hydroxy-9(10→20)-

5aH-abeo-abieta-1(10),8(9),12(13)-triene-11,14-dione, which will henceforth be referred to as simply 

quinone 2 or quinone (S)-2, for the synthesis of perovskone and related natural products. 

2.1. The Perovskone Diels-Alder Reaction 

Quinones are excellent dienophiles for Diels-Alder reactions [48,49]. Nevertheless, the Diels-Alder 

reaction between quinone (S)-2 and any diene presents four fundamental questions that must be answered:  

• Will the cycloaddition be facially selective?  

• Will the diene component be stable under the Diels-Alder reaction conditions employed? 

• Will the Diels-Alder adduct be stable under the Diels-Alder reaction conditions used?  

• Will the cycloaddition be regiospecific?  

The facial selectivity of the Diels-Alder reaction of quinone 2 is addressed in Section 2.1.1. The 

three remaining questions are discussed in Section 2.1.2. 

2.1.1. Facial Selectivity of Quinone 2 

MM3 calculations [50] indicated that the chair cycloheptene conformer 2i is 3.4 kcal/mole lower in 

steric energy than the boat conformation 2ii (Figure 1). The magnitude of this energy difference 

suggests that the equilibrium between these conformers would strongly favor the cup-shaped 

conformation. The Diels-Alder reaction featured in our synthesis of (±)-perovskone gave only the 

adduct derived from addition to the α-face of (±)-2, which established the correct relative 

configurations at C-8, C-9, and C-24 (cf. adduct 4).  

Figure 1. MM3 calculations of two conformations of quinone 2. 
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Eu(fod)3. This result gave us confidence that the Diels-Alder reaction with 3 would be regiospecific. 

Surprisingly, changing the C-12 hydroxyl group to either a methyl ether, an acetate, or a silyl ether 

caused the protected dienophiles to resist Diels-Alder reaction with reactive dienes 11–14 even in the 

presence of Lewis acid catalysts.  

Scheme 4. Diels-Alder reactions of (S)-2with five simple dienes. 

 

The tethering of the dienophile to the diene moiety often facilitates Diels-Alder reactions and 

ensures the stereochemical outcome of the cycloaddition [56–59]. However, in our hands, linking quinone 

(S)-2 with allylic alcohol 16, either as a carbonate (cf. 17) or as a phenylboronic acid ester (cf. 18) [60], 

failed to achieve the desired [4+2]-cycloaddition either thermally or with Lewis acid activation 

(Scheme 5) [61]. 

Scheme 5. Intramolecular Diels-Alder reactions to make the triterpene skeleton. 
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well as the Diels-Alder reactions of quinones in water have been theoretically studied and support 

complexation activation [64–66]. In general, the Diels-Alder reactions were sluggish when carried out 

at 0 °C or at room temperature. Bidentate Lewis acids which can complex with both the dienophile and 

the diene moiety worked best. In theory, since the C-12 hydroxyl group of quinone 2 is a vinylogous 

carboxylic acid, it might catalyze the Diels-Alder reaction. However, simply heating 2 and 3 together 

at 200 °C gave only a trace amount of the [4+2]-adduct.  

2.1.3. Modifications of the Dienophile 

Two modified dienophiles were investigated. Although alcohols 20 and 21 were readily available 

from enone 19, a precursor to quinone 2, these dienophiles were not stable to heating or to the presence 

of Lewis acids and therefore gave extremely low yields of the desired Diels-Alder adducts (Scheme 6).  

Scheme 6. Modest modifications to quinone 2. 
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Scheme 7. Six tritepenes. 

 

2.2.1. Epoxide-Based Synthesis of Salvadione-B (24) and Salvadiol (22) 

The Diels-Alder reaction of (S)-2 with epoxy triene 28 is the key step in our routes to synthesize 

both Salvia metabolites (Scheme 8).  

Scheme 8. Triene 28 has regioselecitivity issues. 
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the 1,3-disubstituted butadiene. These considerations make the regioselectivity of this Diels-Alder 

reaction difficult to predict and can only be answered experimentally.  

After the Diels-Alder reaction (cf. 30a/30b), three additional transformations were envisioned for 

the synthesis of 22 and 23 (Scheme 9). Note that epoxy triene 28a culminates in a synthesis of 

salvadiol (22), whereas its enantiomer 28b permits a short synthesis of salvadione-B (24). For 

convenience sake we will first focus on our proposed synthesis of salvadiol. 

Scheme 9. Epoxide-based retrosynthetic analysis for salvadione-B (24) and salvadiol (22). 
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very close to the C-12 carbonyl, thereby permitting the formation of cyclic hemiacetal 34. Further 

treatment of 34 with aqueous acid should hydrate the C-1, C-10 double bond to afford salvadione-B 

(24). In intermediate 34 the C-11 carbonyl and the hydroxyl group at C-10 are in the same plane, 

which precludes an additional tetrahydrofuran ring from forming. 

Our cascade-based synthesis of perovskone suggests that the Diels-Alder reaction, the opening of 

the epoxide moiety by the latent 1,3-dione and the requisite carbonyl, and double bond hydrations may 

be achieved under Lewis acid-catalyzed conditions in a one-pot operation. If so, the reaction of 

racemic triene 28 with quinone (S)-2 under such optimized conditions would directly produce 

salvadione-B and salvadiol. While this cascade-based transformation is a worthy goal, we decided to 

first prepare these complex triterpenes in a step-wise fashion before advancing a cascade-based 

strategy. Nevertheless, both strategies require the preparation of epoxy triene (±)-28 and/or optically 

active epoxides 28a and 28b [82,83]. 

An attractive starting material for synthesizing epoxy triene 28 is β-myrcene (35) which has the 

complete carbon skeleton of 28 and one of the conjugated diene units (Scheme 10). The reaction of  

β-myrcene with singlet oxygen, followed by in situ reduction of the hydroperoxide 36 with sodium 

borohydride, provided allylic alcohol 37 in 50% yield [84,85]. We preferred to prepare allylic alcohol 

37 on a 5-gram scale by selectively epoxidizing myrcene with m-CPBA, followed by opening of the 

trisubstituted epoxide with sodium phenylselenide and then eliminating the selenoxide intermediate 

(56% over three steps) [86]. Sharpless has shown that vanadium catalysts can selectively oxidize the 

double bond of an allylic alcohol, even in the presence of other double bonds [87]. Thus, epoxidation 

of 37 using VO(acac)2 produced epoxide 38, which upon treatment with LDA at 0 °C, gave diol 39 in 

70% yield over two steps. The stereochemistry of the C-3 secondary alcohol can be introduced via an 

enantioselective Sharpless epoxidation of 37 [88,89]. Although traditional means of converting the diol 

39 into epoxy triene 28 failed [i.e., MsO-, TsO-, or Mitsunobu reactions], perfluorobutanesulfonyl 

fluoride in the presence of DBU [90] gave epoxy triene 28 in 92% yield. Epoxide 28 was stable in 

THF, toluene and DCM at temperatures below 50 °C, but polymerized when heated above 50 °C. 

While 28 is stable to mild europium Lewis acids for more than two days at 25 °C, these conditions did 

not promote a Diels-Alder reaction with quinone 2. We were disappointed to learn that regardless of 

the Lewis acid used, or the conditions employed, the hoped for Diels-Alder reaction was not observed.  

Scheme 10. Preparation of epoxytriene 28. 
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Interestingly, treatment of 22 with SO2 gave adduct 45 corresponding to the Diels-Alder addition to 

only the 4,6-diene moiety. Epoxy diene 46 was prepared in which the terminal double bond was 

masked as an acetate, which could be eliminated later in the synthesis after the Diels-Alder reaction 

had occurred. Inexplicably, diene 46 failed to undergo either thermal or Lewis acid-catalyzed Diels-Alder 

reaction with quinone 2. 

Scheme 11. Derivatives of triene diol 39. 

 

In contrast, triene diol 39 underwent Diels-Alder reaction with quinone 2 using water as the 

reaction medium [91,92] in a 20% yield of the Diels-Alder adduct 48 (Scheme 12); an X-ray analysis 

of adduct 48 confirmed the predicted facial and regiospecificity of this cycloaddition [93]. We 

speculated that the in situ formation of hemi-ketal intermediate 47 causes an intermolecular 

cycloaddition to become an intramolecular one which controls the regiospecificity of the Diels-Alder 

reaction. Unfortunately, this aqueous cycloaddition could not be optimized because of the poor 

solubility of quinone 2 in water. The use of water-soluble co-solvents, such as THF or dioxane, did not 

improve the reaction yield; nor did adding weak bases, such as sodium bicarbonate or sodium 

hydroxide, to improve the solubility of the quinone [94]. 

Scheme 12. The aqueous Diels-Alder reaction of triene diol 39. 

 

Tethering quinone 2 and triene diol 39 together using a bidentate Lewis acid (cf. 49, Scheme 13) in 
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TMS ether 48a and acetate 48b were readily prepared from 48. However, the diol moieties of 48a or 

48b could not be converted into epoxides 48c/d and 48e/f, respectively. Thus, we concluded that a new 

strategy was needed to form the C-13, C-26 sigma bond. 
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Scheme 13. Copper nitrate-catalyzed Diels-Alder reaction of triene diol 39. 

 

2.2.2. An Alternative Diels-Alder Strategy to Synthesize Salvadione-B (24) 

Our revised strategy to prepare salvadione-B used triene acetate 50 in which the electron-withdrawing 

epoxide was replaced by a double bond (Scheme 14) giving two set of dienes that could take part in the 

cycloaddition. The presence of a Z-methyl substituent as part of the 4,6-diene moiety would reduce its 

reactivity by hindering the likelihood of the s-cis conformer 50a. In contrast, rotation about the C-5, C-6 

sigma bond allows the 3,4-diene to easily adopt a s-cis conformation without severe steric interactions 

(cf. 50b). 

Scheme 14. The Diels-Alder reaction of (S)-2 and triene acetate 51. 
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unreacted quinone and triene. The less polar product was identified as the desired Diels-Alder adduct 

51 (20%) while the more polar product, which was found to have similar spectra and same molecular 

weight to the desired adduct, was identified as the regioisomer 52 (10%). Conditions have been 

optimized so that only adduct 51 is produced in 70% yield. In 2009, cycloaddition adduct 51 was converted 

to salvadione-B (24) both in a stepwise fashion and via two consecutive one-pot operations [73,74]. 

2.3. Synthesis of (+)-Salvadione-A (23) 

(+)-Salvadione-A (23), which has six rings and eight chiral centers, was synthesized from quinone 

(S)-2 in four steps featuring a facial and regiospecific Diels-Alder reaction. 
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2.3.1. Diels-Alder reaction of triene ether 53 and quinone (S)-2 

The regiochemical outcome of the Diels-Alder reaction of triene 53 was easy to predict (Scheme 15). 

Scrutiny of triene 53 indicates that the presence of a Z-methyl substitutent as part of the 3,5-butadiene 

moiety hampers the formation of s-cis form 53a whereas the 5,7-diene moiety does not suffer such a 

steric effect (cf. 53b). Hence, the cycloaddition of quinone 2 with triene 53 was expected to involve 

only the 5,7-diene unit. 

Scheme 15. Comformational analysis of triene acetate 54. 

 

Epoxidation of trans-β-ocimene (54) with m-CPBA, followed by treating the intermediate epoxide 

with excess LDA, gave (3E,5E)-octa-3,5,7-trien-2-ol (55) in 60% overall yield (Scheme 16). Although 

tertiary alcohol 55 could be protected as an acetate, this acetate undergoes rapid decomposition at 

ambient temperature or upon attempted chromatography on silica gel. Methyl ether 56 was prepared in 

the hope that the methoxy group would be less prone to elimination.  

Indeed, triene ether 56 was thermally stable and reacted with quinone (S)-2 at 80 °C over a 72-hour 

period to afford Diels-Alder adduct 57 in 76% yield. A discussion of the conversion of Diels-Alder 

adduct 57 to salvadione-A (23) can be found elsewhere [43,45]. 

Scheme 16. The Diels-Alder reaction between quinone (S)-2 and triene ether 56. 

 

2.3.2. The Microwave-Promoted Diels-Alder Reaction of triene ether 56 and (S)-2 

In 1986, Gedye and co-workers reported that hydrolysis reactions and some oxidations benefitted 

from microwave irradiation [96,97]. Soon afterwards, Giguere and Majetich reported their independent 

observations that Diels-Alder, Claisen, and ene reactions all demonstrated significant rate 

enhancements when compared to traditional heating methods [98–101]. A search of the terms 

“microwaves” and “synthesis” using SciFinder Scholar on May 23, 2013 produced a list of 64,739 

references that have been published in the past twenty-seven years. It is now commonplace to find 

OPG

53

OPG

53a

OPG

53b

rotation
about C-4, C-5
sigma bond

5

2

7

5

4

5

7

3



Molecules 2013, 18 6981 

 

 

microwave systems in academic, industrial, and hospitals settings for the rapid synthesis of 

radioisotope-labeled drugs. Thus, it is not surprising that we would investigate the use of microwave 

irradiation to promote the Diels-Alder reactions of quinone 2.  

Initially, we used water as the reaction medium or as a co-solvent because it couples very well with 

microwave irradiation. For example, the Diels-Alder reaction of triene acetate 50 to form cycloaddition 

adduct 51 was achieved using microwave heating (cf. Scheme 14). However, further study showed  

that this Diels-Alder reaction worked best under microwave heating without any solvent. The 

microwave-promoted Diels-Alder reaction of triene 56 and quinone (S)-2 neat produced Diels-Alder 

adduct 57 in good yield (Scheme 17). Addition of a catalytic amount of methanesulfonic acid 

dissolved in THF to the crude Diels-Alder adduct 57 gave a 76% yield of 58 the  

Diels-Alder/displacement product. Since Teflon reactions vessels were used [a Milestone Inc., Ethos 

One system], these observations suggest that one of the Diels-Alder components may be absorbing the 

microwave irradiation and thus thermally promoting the cycloaddition. If true, this may be an example of 

the long sought for “magical microwave effect.” However, we are skeptical of this conclusion and intend 

to re-investigate this transformation. 

Scheme 17. Tandem microwave-promoted Diels-Alder of 56 and SN2' displacement. 

  

2.4. Studies Directed toward a Synthesis of “peradione” (27) 

In 1993, Ahmad and co-workers isolated the triterpene peradione (59) from Perovskia 

abrotanoides, another widely-used Pakistani medicinal plant (Scheme 18) [79]. The structure of this 

compound was elucidated by extensive spectroscopic studies and the following conclusions were 

made: (1) the molecular formula of peradione is C30H42O4; (2) 13C-NMR analysis indicated the 

presence of seven methyl groups, seven methylene units, six methines, and ten quaternary carbon 

atoms; (3) two ketones are present; (4) two double bonds are present, (5) five tertiary methyl groups 

are present; (6) two secondary methyl groups are present; and (7) three oxygen-bonded quaternary 

carbons (δ 70.1, 90.5, and 100.4) are present. In addition, 13C decoupled HMQC [Heteronuclear 

Multiple Quantum Coherence], 2D-COSY [Correlation Spectroscopy], HMBC [Heteronuclear 

Multiple Bond Coherence] and HOHAHA [Homonuclear Hartmann-Hahn] experiments indicated the 

presence of three structural subunits (shown below). Based on this information, peradione was 

assigned structure 59. 
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Scheme 18. Key subunits of peradione based on NMR analysis. 

 

2.4.1. A Wrong Structural Assignment  

While modern spectroscopic techniques have greatly facilitated structural determination, errors do 

occur. For example, it is very difficult to make a Dreiding molecular model of the structure 

corresponding to compound 59, and its proposed biogenetic pathway requires a highly unlikely 

epoxidation sequence (Scheme 19). The researchers who assigned peradione this structure and 

suggested the biogenetic pathway were informed of our misgivings. To date, despite repeated requests, 

we have been denied copies of their NMR data or an authentic sample of peradione (59) to carry out 

our own structure determination. 

Scheme 19. The proposed biogenetic synthesis of peradione. 

 

Our proposed structure for “peradione” (i.e., 27, Scheme 7) benefits from the isolation of salvadione 

A in 1999 and its characterization by single-crystal X-ray diffraction analysis [33]. Comparison of the 
13C-NMR data of peradione with that of perovskone (1), salvadione-A (23), savadione-B (24), and 

salvadiol (22) reveals many similiaries. Most of the differences in these compounds lie in the 

connectivities of C-25 with either C-12 or C-13, and the oxidation state of C-11 or C-12. The 

published structure for peradione (cf. 59) has a C-11 carbonyl, a C-12, C-13-epoxide, and a tertiary 

alcohol at C-10. This structure is based on the interpretation that the δ 70.1, 90.5, and 100.4 quaternary 

carbons atoms are bonded to oxygen. We believe that these signals better correspond to a hemiacetal 

linking C-10 and C-11 (δ 90.5 and 100.4, respectively) and that the δ 70.1 signal corresponds to a 

quaternary carbon bearing the isopropyl group and positioned between the two ketones. We therefore 

believe that peradione is actually the C-25 epimer of salvadione-A (23). This belief allows us to 

suggest an expedient route to synthesize salvadione-A and validate our proposed structure for “peradione”. 
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2.4.2. A Displacement-Based Strategy to Prepare Salvadione-A (23) and Our Proposed Structure for 

Peradione (27) 

We believed that the Diels-Alder reaction of quinone (S)-2 with methyl ether 60a would occur at 

temperatures comparable to those used in our stepwise salvadione-A (23) synthesis (Scheme 16). The 

addition of Lewis acid to crude Diels-Alder adduct 61a would also promote the subsequent 

intramolecular SN2-alkylation (cf. 62, Scheme 20), and may aid in the sequential hydrations of the C-11 

carbonyl and tetrahydrofuran formation. Ideally, the use of methyl ether 60b will produce cycloaddition 

adduct 61b, followed by the SN2-alkylation to produce trione 63 which should culminate in a synthesis 

of “peradione” (27). 

Scheme 20. Proposed syntheses of “peradione” (27) and salvadione-A (23). 

 

(±)-Ether 60 was prepared via a Williamson ether synthesis from 2,6-dimethyl-2,5,7-octatrien-4-ol, 

a constituent of two narcissus varieties [102]. Unfortunately, in our hands, ether 60 was extremely 

sensitive and decomposed faster than it reacted in Diels-Alder fashion. Although conceptually 

attractive, this strategy to prepare salvadione-A (23) and “peradione” (27) was abandoned. 

3. Conclusions  

We have found that quinone (S)-2 undergoes Diels-Alder reactions which has facilitated the 

efficient syntheses of perovskone (1), salvadione-A (23) and salvadione-B (24). Unfortunately, the 

Diels-Alder reactions studied to prepare salvadiol (22) and “peradione” (27) failed because the diene 

component rapidly decomposed under the experimental conditions investigated. Nevertheless, we are 

confident these natural products will one day be synthesized using quinone (S)-2 and feature other 

Diels-Alder reactions of more stable dienes. We also believe that the genus Salvia will continue to 

yield new triterpenes structurally related to the perovskones and/or the salvadiones; thereby increasing 

the likelihood that quinone (S)-2 may be featured in future synthetic work. 
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