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Abstract: Unlike organic molecules, reports on docking of metal complexes are very few; 

mainly due to the inadequacy of force fields in docking packages to appropriately 

characterize the metal atoms that consequentially hinder the rational design of metal-based 

drug complexes. In this study we have made used Molegro and Autodock to predict the 

anticancer activities of selected Ru(II) complexes against twelve anticancer targets.  

We observed that introducing the quantum calculated atomic charges of the optimized 

geometries significantly improved the docking predictions of these anticancer 

metallocompounds. Despite several limitations in the docking of metal-based complexes, 

we obtained results that are highly correlated with the available experimental results. Most 

of our newly proposed metallocompounds are found theoretically to be better anticancer 

metallocompounds than all the experimentally proposed RAPTA complexes. An 

interesting features of a strong interactions of new modeled of metallocompounds against 

the two base edges of DNA strands suggest similar mechanisms of anticancer activities 

similar to that of cisplatin. There is possibility of covalent bonding between the metal 

center of the metallocompounds and the residues of the receptors DNA-1, DNA-2, HDAC7, 

HIS and RNR. However, the general results suggest the possibility of metals positioning 

the coordinated ligands in the right position for optimal receptor interactions and 

synergistic effects, rather than forming covalent bonds. 
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1. Introduction 

There have been several ruthenium-based complexes synthesized as anticancer drugs [1–3] to serve 

as alternative to cisplatin, which is the most widely used and efficient anticancer agent [1,4]. One of 

the major limitations in the rational design of organometallic anticancer complexes is the lack of 

proper knowledge about their anticancer targets [5–9]. In our research group we have been making 

efforts to predict the possible targets of metal-based complexes as anticancer agents using theoretical 

docking methods. However, unlike their organic counterparts, there is a very serious limitation in 

making use of docking tools for metal complexes, mainly due to lack of proper force fields to 

accommodate the metal centre [10]. Even in the quantum computation field, the volume of works on 

metal-based complexes are very low compared to organic compounds due to the high computational 

demand and difficulties of finding an appropriate method for their optimization [11]. 

In our previous work [12,13], we have made used of docking packages like Glide, Gold and 

Autodock whereby some interesting results were obtained. In this work we have made use of another 

docking package called Molegro, which recognizes the ruthenium atom as a metal centre better than 

Glide, Gold and Autodock. Also, we have enhanced its performance including that of Autodock by 

introducing the atomic charges of each metallocompound obtained from the quantum optimized 

structures of the compounds. Other new metallocompounds are designed which we have never 

reported before and the binding of co-crystallized compounds that accompanied each of the receptors 

is set as references in this computational docking. In addition to the number of receptors considered in 

our previous works [12,13], we have also included DNA as one of the targets to see the possibility of 

some of these metallocompounds having favourable interaction properties like that of cisplatin. Other 

receptors considered in these work besides DNA are thioredoxin reductase (TrxR) [14], histone protein 

in a nucleosome core particle (HP-NCP) [15], BRAF Kinase [16], recombinant human albumin (rHA) 

[17,18], thymidylate synthase (TS) [19], ribonucleotide reductase (RNR) [20], histone deacetylase 

(HDAC7) [20], cathepsin B (CatB) [14], topoisomerase II (TopII) [21,22] and DNA gyrase. All these 

have been reported to play significant roles in cancer growth and metastasis, except DNA gyrase, 

which is a notable bacterial enzyme [23,24], considered in this project for the purpose of seeing if 

some of these metallocompounds can play a dual role. 

2. Results and Discussion 

2.1. General Features of the Binding Activities of the Metallocompounds 

In this paper the binding affinities and conformations of 30 metallocompounds including their 

hydrated forms (Figure 1) are reported. The 30 metallocompounds are docked against twelve receptors 

using the relaxed Molegro, constrained Molegro and Autodock docking approaches. The summary of 

72 poses of the best two metallocompounds in their interaction with the receptors are shown in Table 1, 

indicating the hydrogen bonding (HB) and the possible metal-receptor (MR) interactions with the 

receptor binding site residues. The results obtained from the docking of metallocompounds to twelve 

receptors using Autodock, relaxed Molegro without metal-residue covalent constraints and constrained 

Molegro with covalent constraints are shown in Tables 2 and 3, 4 and 5, and 6 and 7, respectively. The 

docking results obtained from both relaxed and constrained Molegro docking (Tables 4–7) give a 
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better ranking than the Autodock which cannot not be easily ranked since many of the Autodock values 

(Tables 2 and 3) are within its standard error margin of ~2.177 kcal/mol [25,26]. Tables 2, 4 and 6 contain 

binding affinities of non-hydrated complexes, while Tables 3, 5 and 7 contain the affinities of their 

respective hydrated complexes. The hydrated complexes are named after their respective non-hydrated 

type with the suffix “a”. 

Figure 1. The schematic structures of the anticancer metal-based complexes. 
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Figure 1. Cont. 

 

10a. RAphendioic 

 

11. Rapyrdipyrazole 

 

12. RAterpyrnic 

 

13. RAPTAB 

 

13a. RAPTAB-H2O 

 

14. RAPTAC 

 

14a. RAPTAC-H2O 

 

15. RAPTAT 

 

15a. RAPTAT-H2O 

 

16. RAPTAT-CF3 

 

16a. RAPTAT-CF3-H2O 

 

Cisplatin 

 

Cisp-W1 

 

Cisp-W2 

  

The PP = 4-Phenylpyridine, RA = Ruthenium-(6-arene); etdia = ethylenediamine, phen = phenanthroline; 

pyr = pyridine; pyraz = pyrazole, pta = 1,3,5-triaza-7-phosphaadamantane; Cp = cyclopentadienyl,  

Bk = β-diketone, piano = model of piano-stool. 

Generally, we observed that some of our new metallocompounds like complexes 1, 1a, 8, 8a, 9, 9a, 

10, 10a, 11 and 12 (Tables 4 and 5) have better binding affinities than the co-crystallized compounds 

of the CatB, HDAC7, TS and BRAF Kinase receptors. Though co-crystallized compounds bind better 

in TrXR, TopII, RNR and Gyrase than all the metallocompounds (Tables 4,5 and 6,7), many of our 

modeled metallocompounds (occasionally the bidentate RAPTA complexes 2 and 3) are found to be 

highly competitive with the co-crystallized compounds in their binding affinities (Tables 4,5 and 6,7). 

The newly modeled metallocompounds, especially 1 and 1a, 9 and 9a, 10 and 10a, 11 and 12 followed by 

the bidentate RAPTA (2 and 3) and hydrated RAPTA (13a, 14a, 15a and 16a) complexes are predicted to 

have stronger binding affinity to many of the receptors (Tables 4–7). 

The proposed mechanism of activation of the metallocompounds through hydration [2,18,27,28] is 

further confirmed through the docking results. In most of the receptor interactions, Autodock indicates 
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an enhanced binding energy with receptors for all the hydrated complexes (Tables 4 and 5). The same 

thing is observed for the covalent constrained docking of metallocompounds to DNA-1,DNA-2, CatB, 

RNR and TrXR and also for relaxed Molegro docking to DNA-1 and DNA-2 (Tables 2–5).In other 

receptors, only a few hydrated metallocompounds increase their binding energy as a result of the 

hydration and this depends on the type of the receptor targets. The binding activities of the hydrated 

forms of RAPTA complexes were greatly enhanced. Also, the bidentate form of RAPTA complexes 

are suggested to competitively bind strongly to receptors as the hydrated forms of RAPTA complexes, 

especially metallocompound 14a, though their activities are still lower than the modeled 

metallocompounds using the results of the three methods of docking (Tables 2,3; 4,5; 6,7). In many of 

the receptor interactions, metallocompounds 16 and 16a are predicted to have better binding affinity 

than 15 and 15a (Tables 4,5) except for receptors RNR which further supports the experimental report 

of higher anticancer activities of the first pair [27]. 

In many instances, the binding of the relaxed Molegro docking are stronger than the constrained 

Molegro docking, also the relaxed Molegro agrees better with the available experimental reports 

(Tables 8,9) and the experimentally proposed activation of metallocompounds by hydration (Tables 

4,5 and 6,7). This is an indication that the metal center will give preference to holding the coordinated 

ligands in appropriate position for optimal receptor residues interaction and synergistic effect than 

forming covalent bonding. In the absence of covalent constraints, the features of the affinities of the 

metallocompounds to receptors depends greatly on the type of metallocompounds from the results of 

strong binding interactions of 1 and 1a, 8 and 8a, 9 and 9a, 10 and 10a, 11 and 12 to most of the 

receptors. Even though the ranking of the metallocompounds against the receptors in the covalent 

constrained docking is similar to that of the unconstrained (Tables 4,5 and 6,7) type, yet the features of 

the metallocompounds’ affinity depend greatly on the type of receptors. 

All the docking methods clearly indicate that the best target of the hydrated cisplatin (Cisp-W1 and 

Cisp-W2) is DNA as they are found having higher binding energy with DNA compare to other 

receptors. The hydrated cisplatin, especially the doubly hydrated form (Cisp-W2) has the highest DNA 

binding compared to the other forms of cisplatin which further confirmed the need for hydration before 

activation [3,28]. However, in protein receptors, there is decrease in binding affinity of hydrated 

cisplatin compare to its non-hydrated type that further confirms that the protein is not its target. 

Considering the ranking of both relaxed and constrained Molegro docking, the best targets of the 

metallocomplexes follow the order HDAC7 > DNA-1 > rHA > CatB > DNA-2 > Gyrase > TrXR > 

TopII > TS > RNR > HiS > Kinase except in few cases like complex 12 that prefers CatB to rHA. The 

poorest binding affinity of the complexes is observed in the covalent constrained docking to rHA 

receptor. This suggest that the interaction of the metallocompounds with rHA as a transport receptor 

that is responsible for the pharmacokinetic availability of a wide range of drugs, including 

metallodrugs and consequentially determine their bioavailability and toxicology [29] is better 

described in terms of other interacting forces rather than covalent interaction of ruthenium metal with 

its residues. 
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2.2. The Interacting Poses of the Best Two Metallocompounds in the Receptor Binding Sites 

To have a better understanding of the binding site orientation poses and interaction of the 

metallocompounds with the residues of each receptor, we have selected two metallocompounds 

predicted by the relaxed Molegro, covalent constrained Molegro and Autodock methods to have the 

best binding to each of the receptors (Table 1). The binding site interactions are elaborated in terms of 

the hydrogen bonds (HB) and the metal-residues (MR). The MR considers possible covalent bonding 

interactions of the metal with a nucleophilic Centre of receptor residue, which was considered during 

the constrained docking. There is a possibility of metal-residue (MR) interaction of complex 4a with 

DNA-1 according to Autodock prediction (Table 1). The relaxed Molegro and Autodock dockings 

suggest a different binding site from that of constrained docking in the binding of the 

metallocompound to DNA-1 (Figure 2a). However, in DNA-2 both relaxed and Autodock dockings 

suggest similar binding sites to that of covalent constrained docking for many of the metallocompound 

interactions. Interestingly, the suggested conformation of complex 12 binding to DNA-2 from both the 

relaxed and covalent constrained dockings is perfectly superimposed (Figure 2b). There is also an 

interesting feature of possible intercalation of complex 12 with the two based pair nitrogen atoms (N7) 

of the guanine in DNA-2 by both relaxed and constrained docking as shown in Figure 2b. Ranked 

among the best binding metallocompounds against the DNA-1 and DNA-2 are complexes 10a and 12 

by both the relaxed and covalent constrained docking. Autodock also predicted complex 10a among 

the best five inhibitors of DNA within the interval of 0.60 Kcal/mol. The features of complex 10a in 

Autodock docking to CatB shows a very strong H-bond interaction of one of its carboxylic groups with 

the SG of the CYS 29, which supposed to be, center of metal-residue covalent interaction (Table 1). 

When covalent constraints were applied on the metallocompounds’ interaction with CatB, the 

possibility of metallocompound 12 forming HB with the receptor was traded for the formation of 

covalent bonds (Table 1) which subsequently led to a lower activity (comparing metallocompound 12 

in Tables 4,5 and 6,7). The same thing was observed for the interaction of metallocompound 1 with the 

TrXR receptor. Also, the tridentate ligand part of metallocompound 12 in the relaxed Molegro docking 

(cyan) and Autodock (magenta) fits properly into the hydrophobic pocket of the CatB as shown in 

Figure 2c, which was not the case in the constrained docking (green). This further suggest the possible 

reason why the binding affinities of the relax docking are higher than that of the constrained docking. 

The three methods of docking predicted 12 as one of the best binding metallocompounds to CatB. 

Also, the orientation and the interactions suggested Autodock and relaxed Molegro docking are the 

same with the structure of 12 on the binding site almost superimposed (Figure 2c). 

Both relaxed and constrained Molegro docking show a superimposed conformation for complex 

10a in which the arene unit is pointing toward the mouth of the inner pocket of the HDAC7 while the 

Autodock preferentially locates its outer pocket (Figure 2d). Complex 1a is rated to have the best 

binding affinity to HP-NCP in relaxed Molegro docking but it has no visible H-bond or metal-receptor 

interaction. The same is observed for Autodock docking of complex 5a to BRAF Kinase and relaxed 

Molegro docking of complex 10 to TopII. These suggest the significant importance of other interacting 

forces like Van der Waal and close contact interactions. The ruthenium metal appears to have 

interaction with the oxygen atom of residue GLU 61G of the HP-NCP from the Autodock prediction 

and constrained docking. The conformation of complex 1a as suggested by the relaxed Molegro 
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docking fits in totally into one side of the binding site pockets than the conformation suggested by the 

constrained and Autodock docking to HP-NCP. In Figure 2e, the experimental conformation from the 

crystal structure of RAPTA complex 14a in the HP-NCP binding site is compared to the conformation 

obtained from the docking results. This complex was rated best among the RAPTA complexes by 

Autodock; it is the fourth of the RAPTA complexes from relaxed Molegro while it is ranked low by 

constrained Molegro. However, the orientation suggested by the covalent constrained docking agrees 

strongly with one of the experimental orientations as shown in Figure 2e. Also the Autodock locates 

the same binding sites in agreement with the crystal structure but associated with the reverse 

orientation of complex 14a while relaxed Molgro located only one of the pockets suggested by the 

crystal structure. 

Figure 2. The receptor binding site interaction of the selected best binding metallocompounds 

from Autodock (magenta), unconstrained Molegro (cyan), constrained (green) and the 

experimental crystal structures (yellow). 
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In Autodock docking of complex 10 to rHA we observed possible covalent interactions of 

ruthenium with the NH3 unit of the LYS 195A residue characterized by a distance of 1.78 Å (Table 1). 

The three methods of docking suggested either the hydrated complex 10a or non-hydrated complex 10 

as the best binding metallocompound to rHA. They all predicted complex 1 as the best for RNR. The 

suggested conformation for the non-hydrated and hydrated complexes 1 and 1a, respectively, by 

constrained docking in RNR is almost superimposed with a little variation in the orientation of their 

arene unit. The conformation suggested for the docking of RAPTA complex 3 to RNR is shown in 

Figure 2f; both Autodock and Molegro suggest a very close position for the ruthenium atom but a 

different position for its coordinated ligands. In the constrained docking of complexes 9a and 8a to 

TrXR, there is possibility of the ruthenium atom forming a covalent bond with the bridged surphur 

(SG) residue CYS 64A or strong close contact van der Waal interactions with the two bridged surphur 

(SG) atoms of the residues CYS 64A and CYS 59A. 

Table 1. The two best binding metallocomponds of each receptor from Molegro and 

Autodock showing the existing Hydrogen Bond (HB) (in Å) and Metal-Residues (MR) 

interactions with binding site residues. 

DNA-1 Molegro metallocompound 10a {[HB: 2.39 O(COOH) i H(DC 18.B)],  

[HB: 1.91 H(COOH) ii N7(DG 16.B)]}; 

metallocompound 12 {[HB: 2.32 O(COOH) H(DA 17.B)],  

[HB: 1.44 H(COOH) O6(DG 7.A)]} 

Molegro-

Constrained 

metallocompound 10a {[HB: 1.71 O(COOH) i H(DC 2.A)], [HB: 1.89 H(COOH) i 

O6(DG 23.B)], [HB: 1.66 H(H2O) O6(DG 23.B)], [HB: 2.01 H(H2O) N7(DG 23.B)], 

[MR 4.49 N7(DG 34.B)], [MR 4.60 N7(DA 22.B)]}; 

metallocompound 9a {[HB: 2.05 H(COOH) i O6(DG 23.B)], [HB: 2.02 H(COOH) ii 

OP2(DG 23.B)], [HB: 2.11 H(H2O) N7(DA 22.B)], [MR 4.60 N7(DA 22.B)]}; 

Autodock metallocompound 9a {[HB: 2.00 H(COOH) i OP1(DT 5.A)], [HB: 1.65 H(COOH) ii 

OP2(DA 15.B)]} 

metallocompound 4a {[HB: 1.81 H(NH2) 
i OP1(DG 6.A)], [HB: 1.70 H(NH2)

ii 

OP2(DG 7.A)], [MR 3.32 O(DG 6.A)], [MR 3.88 O(DG 6.A)]} 

DNA-2 Molegro Metallocompound 10a {[HB: 1.92 O(COOH) i H(DG 7.T)],  

[HB: 1.76 H(COOH) i O4(DT 8.T)], [HB: 2.16 H(COOH) ii O3(DC 9.T)]};  

metallocompound 1a {[HB: 1.75 H(COOH) O2(DC 8.P)],  

[HB: 2.12 H(H2O) O4(DT 8.T)]} 

Molegro-

Constrained 

metallocompound 12 {[HB: 1.57 H(COOH) O6(DG 5.P)], [HB: 2.50 O(COOH) 

H(DC 9.T)], [HB: 2.80 O(COOH) H(DA 6.P)], [MR 3.64 N7(DG 6.T)],  

[MR 4.21 N7(DG 7.T)]}; 

metallocompound 1 {[HB: 1.95 N(arene) H(DA 6.P)], [MR 3.91 N7(DG 7.T)]} 

Autodock metallocompound 1a {[HB: 1.79 H(COOH) OP2(DG 6.T)]}; 

metallocompound 4a {[HB: 1.76 H(H2O) OP2(DG 7.T)],  

[HB: 1.96 H(NH2) 
i O3(DG 6.T)], [HB: 1.84 H(NH2) 

i OP1(DG 6.T)]} 
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Table 1. Cont. 

CatB Molegro metallocompound 12 {[HB: 1.66 H(COOH) O(GLY 24 D)]} 

metallocompound 1 {[HB: 2.21 H(COOH) O(MET 196 E)]} 

Molegro-

Constrained 

metallocompound 1a {[HB: 3.28 N(arene) SG(CYS 29D)],  

[HB: 2.61 H(COOH) O(GLY 198E)], [MR 4.60 SG(CYS 29D)]} 

metallocompound 8a {[MR 4.60 SG(CYS 29D)]} 

Autodock metallocompound 10a {[HB: 2.99 O(COOH) i SG(CYS 29 D)],  

[HB: 2.76 O(COOH) i H(GLN 23 D)], [HB: 1.70 H(COOH)i OE1(GLN 23D)], 

[HB: 2.14 H(COOH) ii OE2(GLU 122D)]}; 

metallocompound 1a {[HB: 1.72 H(COOH) OE1(GLU 122 E)],  

HB: 1.72 H(COOH) OE2(GLU 122E)]} 

Gyrase Molegro metallocompound 10 {[HB: 2.17 H(COOH) O(ASP 73A)]} 

metallocompound 11 {[none]} 

 Molegro-

Constrained 

metallocompound 10a {[HB: 2.24 H(COOH) i OD2(ASP 49A)],  

[HB: 1.92 H(COOH) ii O(GLY 117A)], MR: 4.60 ND2(ASP 46 A)]} 

metallocompound 9a {[HB: 1.50 H(H2O) OD1(ASP 46A)], [HB: 2.08 H(COOH) i 

O(ASP 46A)], [HB: 1.84 H(COOH) ii O(ASP 45A)], MR: 4.27 ND2(ASP 46 A)]}; 

 Autodock metallocompound 12 {[HB: 2.11 H(COOH) O(ASP 73A)], [HB: 1.81 H(COOH) 

O(ASP 73A)], [HB: 2.00 O(COOH) H(GLY 77A)]}; 

metallocompound 9a {[HB: 1.90 O(H2O) HD22(ASN 46A)],  

[HB: 1.63 H(COOH) i O(LYS 103 A)], [HB: 2.05 O(COOH) ii H(ALA 100 A)], 

[HB: 1.65 H(COOH) ii O(ILE 94 A)], [HB: 2.14 O(COOH) ii H(SER 121 A)]} 

HDAC7 Molegro metallocompound 1 {[HB: 1.82 N(arene) H(imi@HIS 709A)],  

[HB: 1.87 O(COOH) H(imi@HIS 669A)]}; 

metallocompound 12 {[HB: 2.36 H(COOH) O(ASP 707A)]} 

 Molegro-

Constrained 

metallocompound 10a {[HB: 1.89 H(COOH) i O(GLY 678A)],  

[HB: 2.43 O(COOH) i H(CYS 680A)], [HB: 1.99 O(COOH) i HE2(HIS 669A)], 

[MR: 3.43 NE2(HIS 709A)]} 

metallocompound 11 {[MR: 3.60 N(HIS 709A)]} 

 Autodock metallocompound 1a {[HB: 1.63 H(COOH) OD1(ASP 626A)],  

[HB: 1.90 H(H2O) OD1(ASP 626A)]}; 

metallocompound 9a {[HB: 1.80 O(COOH)i H(PHE 738A)],  

[HB: 1.79 H(COOH) i O(PRO 809 A)]} 

HP-NCP 

 

Molegro metallocompound 1a {[none]} 

metallocompound 11 {[MR: 3.38 OE(GLU 56G)]} 

 Molegro-

Constrained 

metallocompound 10a {[HB: 1.75 H(COOH) i OE1(GLU 92 G)],  

[[HB: 2.17 H(COOH) ii NE2(HIS 106 H)], [MR: 4.36 OE1(GLU 61 H)],  

MR: 4.44 NE2(HIS 106 H)]} 

metallocompound 11 {[MR: 4.36 OE1(GLU 61 H)], [MR: 4.60 NE2(HIS 106 H)]} 

 Autodock metallocompound 4a {[HB: 1.67 H(H2O) OE2(GLU 61 G)],  

[HB: 1.67 H(H2O) OE1(GLU 64G)]}; 

metallocompound 5a {[MR: 2.90 OE2(GLU 61 G)]} 

mailto:imi@HIS
mailto:imi@HIS
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Table 1. Cont. 

BRAF 

Kinase 

Molegro metallocompound 1a {[HB: 2.09 H(COOH) O(ASN 579A)]}; 

metallocompound 12 {[HB: 2.59 H(COOH) O(CYS 531A)],  

[HB: 1.66 O(COOH) H(CYS 531A)]} 

Molegro-

Constrained 

metallocompound 1 {[HB: 2.04 N(arene) H(SER 535A)], [MR: 4.61 SG(CYS 531 A)]} 

metallocompound 8 {[MR: 4.61 SG(CYS 531 A)]} 

Autodock metallocompound 4a {[HB: 1.91 H(NH2) 
i OD2(ASP 478A)],  

[HB: 2.03 H(H2O) OD2(ASP 478A)], [HB: 1.84 H(NH2) 
ii OE2(GLU 532A)],  

[HB: 1.94 H(H2O) OE2(GLU 532A)]}; 

metallocompound 5a {[none]} 

rHA Molegro metallocompound 10 {[HB: 2.24 O(COOH)i H(ARG 117A)],  

[HB: 2.05 O(COOH)ii H(ARG 186A)]}; 

metallocompound 12 {[HB: 2.16 H(COOH) O(ASP 108A)],  

[MR: 4.27 O(SER 193A)]} 

 Molegro-Constrain metallocompound 10a {[HB: 2.12 H(COOH) i OE2(GLU 37A)],  

[HB: 1.68 O(COOH) ii H(ARG 144A)], [HB: 1.82 H(COOH) ii O(GLN 33A)], 

[MR: 4.59 NH1(ARG 144A)]} 

metallocompound 2 {[HB: 1.91 O(COO)i H(ARG 144A)],  

[HB: 1.91 O(COO) i H(ARG 144A)], [MR: 4.59 NH1(ARG 144A)]}; 

 Autodock metallocompound 10 {[MR: 1.78 NZ(LYS 195A)], [MR: 4.52 NH2(ARG 222A)]}; 

metallocompound 4a {[HB: 1.85 H(H2O) OD2(ASP 38A)],  

[HB: 1.73 H(H2O) OH(TYR 84A)], [HB: 1.85 H(NH2) 
i OD2(ASP 34A)]} 

RNR Molegro metallocompound 1a {[HB: 1.59 H(H2O) O(PRO 621A)], [HB: 1.98 H(COOH) 

OE1(GLU 441A)], [HB: 2.39 O(COOH) HD22(ASN 437A)]}; 

metallocompound 3 {[HB: 1.88 O(COO) i H(GLU 623A)],  

[HB: 1.92 O(COO) i H(SER 625A)], [HB: 2.34 O(COO) ii H(THR 209A)]} 

 Molegro-

Constrained 

metallocompound 1a {[HB: 2.22 H(COOH) O(SER 224B)],  

[MR: 4.17 SG(CYS 439A)]}; 

metallocompound 10 {[HB: 2.27 H(COOH) i O(PRO 621A)],  

[HB: 2.16 H(COOH) ii O(SER 224A)], [MR: 4.26 S(CYS 439A)]} 

 Autodock metallocompound 1a {[HB: 1.68 H(COOH) OE1(GLU 623A)],  

[HB: 2.00 O(H2O) H(ARG 639A)], [MR: 3.69 NH2(ARG 639A)]}; 

metallocompound 12 {[HB: 2.60 O(COOH) H(GLU 623A)],  

[HB: 1.95 O(COOH) N(SER 625A)], [HB: 2.02 O(COOH) HG(SER 625A)],  

[HB: 1.77 H(COOH) OG1(THR 209A)]} 

TopII Molegro metallocompound 1 {[HB: 2.15 H(COOH) O(GLN 365B)],  

[HB: 3.38 O(COOH) O(THR 27A)]} 

metallocompound 10 {none}; 

 Molegro-

Constrained 

metallocompound 10a {[HB: 2.47 H(COOH) O(ILE 15A)], [MR: 4.60 NE2(HIS 20B)]}; 

metallocompound 1a {[MR: 4.60 NE2(HIS 20B)]} 

 Autodock metallocompound 5 {[HB: 2.21 O(COO) H(GLY)],  

[HB: 2.57 O(COO) NH2(GLN 365A)], [HB: 2.53 O(COO) NH3(LYS 367A)],  

[HB: 2.09 O(COO) H(ASN 142A)], [HB: 2.37 O(COO) H(ARG 141A)]}; 

metallocompound 9a {[HB: 1.90 H(COOH) i OD1(ASN 70A)], [HB: 1.88 

O(COOH) i HZ1(LYS 147A)], [HB: 1.85 H(COOH) ii OD1(ASN 129A)],  

[HB: 2.15 O(COOH) ii HD21(ASN 129A)]} 
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Table 1. Cont. 

TrXR Molegro metallocompound 10 {[HB: 1.77 O(COOH) i O(ALA 198A)],  

[HB: 2.60 O(COOH) ii H(ARG 166A)], [HB: 2.19 O(COOH) ii H(ARG 166A)]}; 

metallocompound 1 {[HB: 2.14 H(COOH) O(SER 222A)],  

[HB: 1.75 O(COOH) OH(SER 222A)]} 

Molegro-

Constrained 

metallocompound 9a {[HB: 2.27 O(COOH)i HZ1(LYS 67A)],  

[HB: 2.10 H(COOH) ii O(THR 373A)], [MR: 3.59 SG(CYS 64A)],  

[MR: 4.60 SG(CYS 59A)]} 

metallocompound 8a {[HB: 1.63 H(COOH) OD2(ASP 334A)],  

[HB: 2.11 O(COOH) HH21(ARG 293A)], [HB: 1.85 O(COOH) HE(ARG 293A)], 

[MR: 3.06 SG(CYS 64A)], [MR: 4.60 SG(CYS 59A)]} 

Autodock metallocompound 5a {[HB: 1.96 H(NH2) O(GLU 341A)], [HB: 1.89 H(NH2) 

OH(TYR 200A)], [HB: 2.10 O(COO) H(THR 343A)],  

[HB: 2.13 O(COO) H(THR 343A)], [HB: 2.02 H(H2O) OD1(ASP 334A)],  

[HB: 2.48 H(H2O) OD2(ASP 334A)]} 

metallocompound 12 {[HB: 1.69 H(COOH) O(GLU 341A)],  

[HB: 1.98 O(COOH) NH3(LYS 315A)], [MR: 3.47 H(LEU 340A)]}; 

TS Molegro metallocompound 12 {[HB: 2.22 H(COOH) O(SER 232A)]}; 

metallocompound 10 {[HB: 1.53 O(COOH) H(ASN 229A)]} 

Molegro-

Constrained 

metallocompound 10a {[HB: 2.40 O(COOH) H(CYS 198A)],  

[HB: 1.86 O(COOH) HH(TYR 146A)], [MR: 4.60 S(CYS 198A)]} 

metallocompound 1 {[HB: 2.13 H(COOH) O(SER 219A)], [HB: 2.70 O(COOH) 

H(ARG 218A)], [HB: 2.39 O(COOH) H(ARG 218A)], [HB: 2.38 O(COOH) 

H(ARG 23A)], [HB: 1.56 O(COOH) H(ARG 23A)], [MR: 3.55 S(CYS 198A)]}; 

Autodock metallocompound 9a {[HB: 1.82 H(COOH) i O(SER 219A)], [HB: 1.97 

O(COOH) i H(ASP 221A)], [HB: 2.45 O(COOH) i HG(CYS 198A)], [HB: 2.08 

O(COOH) ii HD21(ASN 229A)], [HB: 1.63 H(COOH) ii OE2(GLU 60A)]}; 

metallocompound 5a {[HB: 2.36 O(COO) HH(TYR 146A)], [HB: 1.71 H(H2O) 

OE1(GLU 60A)]} 

2.3. The Binding Affinity of the Metallocompounds to DNA 

An insight into the interaction of the metallocompounds with the two types of DNA (DNA-1 and 

DNA-2) is given for the Autodock (Tables 2,3), relaxed Molegro (Tables 4,5) and constrained 

Molegro (Tables 6,7) models. There is improved in the binding of many of the complexes to DNA-1 

and DNA-2 due to their hydration. Typical examples are complexes 1a, 8a, 9a, 10a and all the 

hydrated RAPTA complexes. In agreement with the literature, the best target of cisplatin is  

DNA [3,28] as the binding affinity decreases significantly in protein receptors compared to DNA-1 

and DNA-2. The features of cisplatin in all the dockings shows that its activity significantly increases 

when it is doubly hydrated (Cisp-W2) than when it is singly hydrated (Cisp-W1). The newly proposed 

model of complexes appears to have strong DNA interactions that suggest DNA as part of their possible 

targets. Most of the RAPTA complexes will target CatB or HDAC7 preferentially to DNA. The spectrum 

of the interactions of RAPTA complexes with DNA range from −116.96 to −49.53, with CatB from 

−124.88 to −60.05 and with HDAC7 from −127.16 to −55.13 considering both the realaxed and 

constrained docking which further confirm thats RAPTA complexes will target proteins preferably to  

DNA [14,15]. 
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Table 2. The binding energy of the metallocompounds from the Autodock docking. 

 DNA-1 DNA-2 CatB DNA_Gyrase HDAC7 HP-NCP BRAF KINASE rHA RNR topoII TrxR TS 

1 −4.32 −3.3 −4.26 −3.68 −3.15 −3.44 −3.25 −3.45 −3.15 −3 −3.43 −3.03 

2 −2.47 −3.08 −3.38 −3.21 −2.64 −3.43 −3.79 −4.19 −3.71 −2.65 −3.35 −4.14 

3 −2.73 −2.5 −3.43 −3.49 −2.5 −3.82 −3.29 −3.91 −3.49 −3.84 −3.35 −3.7 

4 −4.67 −3.88 −3.98 −3.49 −3.92 −4.16 −3.65 −3.86 −2.85 −3.05 −3.21 −2.84 

5 −2.93 −2.7 −3.27 −3.01 −3.02 −3.54 −3.39 −3.62 −3.07 −4.08 −3.39 −3.21 

6 −2.29 −1.9 −1.24 −1.31 −1.77 −2.46 −2.37 −2.32 −2.45 −1.62 −2.19 −1.31 

7 −2.82 −2.79 −3.42 −3.38 −3.1 −2.59 −3.97 −3.97 −3.6 −3.47 −2.79 −2.96 

8 −2.24 −3.41 −2.92 −3.09 −2.59 −3.29 −3.39 −3.4 −3.25 −3.03 −3.43 −2.53 

9 −4.27 −3.73 −4.02 −3.24 −3.5 −3.63 −3.66 −3.34 −3.39 −3.1 −3.92 −3.67 

10 −5.13 −4.94 −5.19 −4.86 −3.78 −5.14 −4.48 −5.24 −4.03 −3.86 −4.24 −4.51 

11 −5.02 −3.81 −4.5 −3.68 −4.01 −3.85 −3.12 −2.98 −2.43 −2.19 −2.91 −3.65 

12 −5.97 −4.65 −5.77 −5.12 −5.1 −4.56 −4.37 −4.16 −4.19 −3.4 −4.31 −5.23 

13 −2.5 −2.44 −3.35 −2.94 −2.78 −2.84 −3.13 −3.38 −2.88 −2.88 −2.86 −2.78 

14 −3.04 −3.14 −3.55 −3.54 −2.72 −3.83 −3.41 −4.29 −3.52 −3.98 −3.79 −3.7 

15 −2.43 −2.56 −3.38 −3.1 −2.82 −3.05 −3.27 −3.39 −3.09 −3.13 −2.83 −2.96 

16 −1.63 −1.87 −2.23 −2.15 −1.66 −2.22 −2.08 −2.59 −2.41 −2.08 −2.11 −2.4 

cisplatin −2.23 −2.94 −2.15 −1.34 −1.98 −2.18 −2.56 −1.65 −1.93 −1.95 −2.4 −1.23 

co-crystallized 

compounds 

  −5.49 −8.68 −4.35    −7.01 −12.48 −4.79 −9.19 
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Table 3. The binding energy of the metallocompounds from the Autodock docking of hydrated complexes. 

 DNA-1 DNA-2 CatB DNA_Gyrase HDAC7 HP-NCP BRAF KINASE rHA RNR topoII TrxR TS 

1a −6.53 −5.65 −6.47 −4.67 −5.97 −4.95 −4.97 −4.04 −4.39 −3.16 −4.26 −4.9 

4a −6.85 −5.87 −6.29 −4.82 −5.55 −5.58 −5.27 −4.54 −3.16 −3.47 −4.23 −4.72 

5a −5.58 −4.75 −5.65 −4.55 −5.08 −5.26 −4.98 −4.33 −4.13 −3.96  −5.35 

6a −5.35 −3.6 −3.6 −2.3 −3.39 −4.51 −4.26 −2.6 −2.37 −2.38 −3.54 −2.96 

8a −6.44 −5.03 −5.78 −4.76 −5.25 −5.22 −3.96 −4.02 −3.02 −3.06 −2.98 −4.2 

9a −6.98 −5.96 −6.19 −5.03 −5.56 −5.05 −4.77 −3.3 −3.95 −4.07 −3.94 −6.09 

10a −6.38 −5.22 −6.7 −4.61 −5.21 −4.58 −4.03 −4.48 −3.49 −3.51 −4.17 −5.26 

13a −4.86 −4.06 −5.19 −4.05 −4.81 −4.29 −3.59 −3.74 −3.32 −3.65 −3.61 −3.39 

14a −4.39 −3.75 −4.84 −4.19 −4.59 −4.32 −3.33 −3.99 −3.65 −3.73 −3.76 −3.17 

15a −4.86 −4.03 −4.38 −3.8 −4.79 −4.27 −3.64 −3.41 −3.14 −3.6 −3.65 −3.05 

16a −4.12 −3.24 −3.1 −3.28 −3.75 −3.62 −3.1 −2.91 −2.16 −2.77 −2.65 −2.31 

Cisp-W1 −4.31 −3.98 −2.1 −0.99 −2.55 −3.37 −3.25 −1.73 −1.04 −1.15 −2.63 −1.45 

Cisp-W2 −4.92 −4.4 −2.15 −0.93 −2.76 −3.18 −3.47 −1.72 0.02 −0.33 −1.79 −1.2 

Table 4. The binding energy of the metallocompounds from the relaxed Molgro docking. 

 DNA-1 DNA-2 CatB Gyrase HDAC7 HP-NCP BRAF Kinase rHA RNR TopII TrXR TS 

1 −137.57 −133.77 −136.37 −131.99 −166.09 −111.45 −118.79 −142.13 −126.87 −154.82 −137.87 −127.39 

2 −113.84 −106.15 −124.88 −110.82 −127.16 −94.13 −110.31 −113.18 −98.90 −121.50 −103.71 −114.61 

3 −116.96 −97.09 −114.43 −103.00 −110.06 −91.82 −105.79 −135.47 −124.93 −118.69 −104.43 −111.20 

4 −77.36 −77.97 −72.59 −79.89 −83.51 −68.21 −67.34 −85.02 −74.88 −74.75 −75.04 −75.89 

5 −71.22 −82.12 −78.61 −73.09 −90.05 −68.85 −74.96 −86.25 −83.41 −84.15 −82.63 −79.76 

6 −86.14 −81.39 −88.78 −84.63 −95.90 −75.53 −84.76 −97.60 −88.56 −92.57 −100.22 −79.41 

7 −87.95 −84.94 −93.69 −94.11 −102.98 −75.06 −99.78 −100.28 −92.07 −97.69 −106.18 −83.43 

8 −119.77 −111.18 −118.67 −110.79 −107.93 −96.84 −117.76 −126.06 −116.02 −115.67 −121.37 −111.59 

9 −124.03 −122.96 −125.25 −126.26 −131.56 −101.43 −115.00 −119.84 −106.90 −129.34 −119.82 −118.59 

10 −141.56 −126.74 −135.89 −142.43 −147.55 −107.85 −114.94 −147.15 −121.72 −129.66 −138.35 −129.75 

11 −143.11 −142.45 −131.53 −140.36 −157.61 −117.62 −114.61 −133.71 −114.68 −128.89 −121.04 −127.35 
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Table 4. Cont. 

 DNA-1 DNA-2 CatB Gyrase HDAC7 HP-NCP BRAF Kinase rHA RNR TopII TrXR TS 

12 −153.94 −129.90 −144.21 −138.83 −160.63 −104.74 −122.12 −142.37 −113.66 −129.13 −120.89 −135.47 

13 −62.98 −67.16 −83.32 −70.45 −90.53 −63.02 −73.54 −73.40 −74.49 −82.38 −70.73 −77.41 

14 −82.56 −85.26 −100.23 −85.99 −113.53 −71.41 −89.94 −97.88 −91.04 −102.67 −89.64 −85.02 

15 −66.45 −67.86 −89.21 −70.59 −101.13 −62.61 −74.58 −78.25 −81.13 −84.18 −78.17 −84.17 

16 −73.52 −76.16 −95.70 −80.20 −94.92 −71.53 −87.20 −87.77 −80.40 −93.80 −84.48 −87.89 

Cisplatin −47.86 −44.53 −38.09 −46.03 −45.22 −46.40 −39.91 −43.53 −40.83 −43.89 −38.82 −39.79 

co-crystallized 

compounds 

  −117.36 −162.48 −70.17  −121.74  −152.80 −192.15 −160.24 −106.57 

Table 5. The binding energy of the metallocompounds from the relaxed Molgro docking for hydrated compounds. 

 DNA-1 DNA-2 CatB Gyrase HDAC7 HP-NCP BRAF Kinase rHA RNR TopII TrXR TS 

1a −150.05 −145.76 −128.02 −136.31 −106.38 −129.59 −122.79 −137.56 −125.01 −84.25 −131.96 −127.11 

4a −94.36 −98.02 −77.65 −81.91 −81.50 −76.86 −61.37 −80.77 −73.66 −75.59 −87.09 −79.70 

5a −88.43 −96.33 −82.01 −76.01 −86.05 −75.74 −68.95 −87.31 −80.07 −82.79 −87.95 −86.37 

6a −100.04 −95.69 −91.02 −89.94 −96.65 −73.28 −85.05 −104.25 −86.02 −81.42 −99.80 −82.86 

8a −146.26 −127.46 −126.15 −136.28 −129.26 −113.66 −113.13 −129.33 −113.82 −116.42 −111.76 −118.85 

9a −144.54 −125.87 −123.34 −120.42 −90.58 −106.68 −109.38 −127.80 −106.99 −44.91 −131.76 −120.86 

10a −161.33 −145.84 −131.71 −142.22 −158.93 −113.82 −110.56 −121.54 −120.44 −79.33 −122.11 −126.24 

13a −77.52 −81.55 −90.06 −75.72 −94.57 −71.10 −71.20 −74.88 −80.32 −88.55 −71.37 −79.81 

14a −96.88 −106.30 −105.80 −99.03 −110.38 −80.03 −95.53 −86.14 −94.44 −106.7 −94.05 −86.26 

15a −84.66 −86.84 −91.02 −82.81 −101.74 −74.49 −74.40 −78.79 −83.59 −95.58 −80 −75.33 

16a −89.62 −89.80 −98.32 −85.32 −106.94 −81.19 −85.06 −90.37 −82.83 −99.96 −81.1 −84.77 

Cisp-W1 −62.38 −58.09 −46.27 −50.24 −44.07 −44.94 −35.32 −44.08 −41.17 −42.72 −44.55 −42.56 

Cisp-W2 −84.39 −70.95 −45.17 −57.47 −43.45 −42.73 −28.77 −37.91 −43.82 −42.74 −44.54 −41.68 
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Table 6. The binding affinities of the metallocompounds from the covalent constrained Molegro docking. 

 DNA-1 DNA-2 CatB Gyrase HDAC7 HP-NCP BRAF Kinase rHA RNR TopII TrXR TS 

1 −116.11 −128.23 −99.45 −107.80 −133.48 −95.08 −105.04 −27.44 −121.13 −43.60 −67.44 −110.86 

2 −97.80 −85.91 −82.34 −84.02 −74.26 −72.24 −10.28 −86.36 −99.26 −8.38 −14.82 −98.92 

3 −78.05 −72.06 −74.09 −72.94 −66.77 −76.14 −58.45 10.16 −90.08 −72.78 −40.92 −81.43 

4 −68.50 −61.59 −67.53 −50.22 −71.28 −61.87 −63.35 −43.68 −60.08 −38.15 −39.06 −54.89 

5 −61.04 −58.83 −63.33 −57.28 −76.44 −58.64 −70.82 26.31 −65.84 −44.97 −41.88 −61.54 

6 −71.93 −66.06 −72.19 −62.16 −94.46 −61.01 −65.64 −70.29 −71.03 −43.94 −47.54 −69.91 

7 −70.49 −65.18 −75.95 −67.76 −96.59 −67.18 −69.16 15.13 −75.00 −63.31 −53.38 −70.06 

8 −90.84 −88.44 −79.93 −82.66 −83.25 −81.53 −96.36 −2.29 −96.45 −49.40 −63.45 −102.19 

9 −111.80 −117.06 −99.06 −110.65 −87.96 −78.92 −79.57 −49.97 −104.49 −70.13 −62.38 −92.44 

10 −122.46 −117.40 −90.07 −90.46 −141.61 −102.69 −74.46 −88.52 −113.02 −47.87 −45.13 −99.57 

11 −124.47 −125.50 −111.86 −104.70 −144.86 −104.53 −92.96 −85.74 −107.52 −50.71 −91.01 −98.64 

12 −125.54 −129.90 −104.35 −107.26 −112.43 −97.12 −75.51 −66.29 −106.43 −8.28 −66.59 −91.48 

13 −49.78 −49.53 −60.05 −48.08 −55.13 −46.22 −59.27 −47.94 −62.99 −56.55 −28.91 −58.53 

14 −66.71 −68.14 −79.05 −65.58 −66.86 −51.48 −50.64 19.86 −77.96 0.00 −52.96 −78.21 

15 −54.61 −55.65 −64.40 −58.80 −58.83 −53.29 −63.23 −55.84 −64.54 −57.33 −36.73 −65.11 

16 −65.29 −64.79 −70.31 −68.07 −72.82 −58.20 −58.63 −66.45 −73.20 −37.72 −35.54 −71.26 

Cisplatin −38.97 −34.23 −43.49 −33.31 −49.14 −29.06 −36.20 −26.49 −30.79 −35.58 −33.00 −30.63 

co-crystallized 

compounds 

  −132.12 −120.11 −73.24 −30.80 −94.68  −126.37 −115.68 −144.33 −95.40 
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Table 7. The binding affinities of the metallocompounds from the covalent constrained Molegro docking of hydrated complexes. 

 DNA-1 DNA-2 CatB Gyrase HDAC7 HP-NCP BRAF Kinase rHA RNR TopII TrXR TS 

1a −126.70 −122.83 −127.33 −117.35 −99.20 −104.06 −86.78 −7.23 −113.75 −81.83 −101.44 −108.38 

4a −85.71 −72.54 −69.40 −65.33 −81.49 29.93 −59.98 36.01 −59.88 −39.37 −63.58 −53.49 

5a −77.64 −71.78 −68.57 −63.59 −86.11 −57.75 −67.38 29.87 −63.13 −47.71 −67.64 −64.37 

6a −94.75 −84.34 −81.49 −74.57 −96.64 −66.72 −64.99 24.66 −76.07 −54.41 −69.31 −73.20 

8a −128.21 −111.69 −110.41 −112.41 −129.27 −99.85 −92.82 −78.11 −110.43 −69.52 −103.76 −94.83 

9a −134.05 −125.46 −103.79 −119.20 −65.16 −81.50 −74.88 −52.63 −106.48 −68.35 −118.89 −100.43 

10a −135.60 −126.76 −116.86 −120.84 −158.92 −115.24 −72.50 −91.28 −110.44 −82.45 −84.59 −113.85 

13a −63.52 −63.46 −69.71 −57.52 −73.39 −60.84 −58.70 35.82 −67.58 −59.59 −33.43 −55.79 

14a −84.65 −78.01 −92.77 −69.23 −74.84 −60.37 −54.22 23.16 −82.70 −5.71 −11.37 −78.60 

15a −71.57 −68.76 −75.77 −66.29 −72.91 −66.99 −64.27 −37.41 −72.72 −66.08 −36.32 −62.97 

16a −74.70 −74.07 −73.81 −74.55 −72.88 −69.08 −60.26 −34.70 −76.95 −46.59 −42.19 −66.71 

Cisp-W1 −62.37 −45.20 −40.91 −36.93 −43.65 −35.62 −32.23 −31.06 −35.91 −29.93 −34.13 −29.65 

Cisp-W2 −78.38 −55.98 −34.03 −38.27 −43.46 −40.96 −29.51 −24.29 −32.68 −25.48 −32.34 −26.43 
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2.4. The Binding Affinities of the Metallocompounds to CatB and TrxR 

The results obtained from relaxed Molegro and Autodock docking (Tables 2–5) show that 12, 1 and 

1a, 10 and 10a, 9 and 9a and 11 bind strongly to CatB than its co-crystallized compound. Both 

Molegro and Autodock included the hydrated RAPTA complexes as part of the best binding 

metallocompounds to CatB while only Molegro ranked bidentate RAPTA complexes 2 and 3 better 

than the hydrated ones. In ranking, we give preference to the Molegro dockings than the Autodock 

ones, especially where there is a very close binding affinity prediction from the Autodock docking 

considering the standard error margin of ~2.177 kcal/mol [25,26] which is an indication that 

metallocompounds within this range of binding can be reordered. In the binding affinities of the 

metallocompounds to TrXR, the new models are still rated best followed by the bidentate RAPTA 

complexes (compounds 3 and 2) and the hydrated RAPTA complexes. The features of the predicted 

binding affinities of RAPTA complexes give a better insight into their reported experimental activities 

in CatB and TrXR. The experimental activities of the RAPTA complexes against CatB follow the 

order 15, 14, 2, while 3 and 13 rarely show any appreciable binding affinity and that of TrXR followed 

the order 2, 3, 14 and 15 while 13 has the lowest activity (Table 8) [14]. Selecting only the 

metallocompounds that have experimental values, the predicted binding affinities of the 

metallocompounds against TrXR using Molegro agree better with the experimental order of their 

inhibitory activities as metallocompound 13 is rated least in activities toward TrXR followed by 

metallocompound 15. Contrary to the experimental report, metallocompound 3 was predicted to bind 

strongly to CatB. However, the ranking of metallocompounds 14a and 15a among those that have the 

best binding to CatB and metallocompound 13 rated least agrees well with the experiment (Table 8). 

The rating of both hydrated and non-hydrated forms of metallocompound 14a among those that bind 

strongly to CatB, further give insight into their experimental finding as the best anticancer agents 

among the RAPTA complexes [5]. The three docking methods show that the interaction of the 

metallocompounds with CatB is stronger than with TrXR, which agrees well with the experimental 

report [14]. The binding affinities of the hydrated metallocompounds with CatB and TrXR are 

significantly enhanced (Tables 2–7) 

2.5. The Binding Affinity of the Metallocompounds with Gyrase, HDAC7, HP-NCP, BRAF Kinase, 

rHA, RNR, TopII and TS 

The features of the binding affinities of the metallocompounds against gyrase from both docking 

methods show that co-crystallized compound still preferentially bind to gyrase better than any of the 

metallocompounds, even though the activities of the new modeled metallocompounds are 

competitively close to that of its co-crystallized compound. The metallocompounds that have the best 

binding to gyrase using Molegro are 1 and 1a, 9 and 9a, 10 and 10a, 11 and 12 (Tables 4–7). 

Autodock included the hydrated RAPTA complexes 14a, 13a and 15a immediately after 

metallocompounds 12, 9a, 10, 4a, 8a, 1a, 10a and 5a (Tables 2–3). The binding affinities of the 

metallocompounds to HDAC7 show that the models 1, 12, 11, 10, 9 and their respective hydrolytic 

forms (where applicable) have better binding than its co-crystallized compound. This is also applicable 

to the RAPTA complexes. 
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Table 8. The docking results of metallocompounds with available experimental activities. 

CatB 

 Experiment Moldock-non Moldock-cons Autodock 

RAPTATh2o 1.5 −91.0243 −75.7655 −4.38 

RAPTACh2o 2.5 −105.798 −92.7676 −4.84 

CRAPTAC 5 −124.877 −82.3353 −3.38 

ORAPTAC 200 −114.427 −74.0878 −3.43 

RAPTABh2o 200 −90.0599 −69.7078 −5.19 

TrXR 

CRAPTAC 4.6 −103.714 −14.8246 −3.35 

ORAPTAC 32.5 −104.425 −40.9218 −3.35 

RAPTACh2o 37.1 −94.0454 −52.9618 −3.76 

RAPTATh2o 144 −80.0042 −36.727 −3.65 

RAPTABh2o 200 −71.3701 −28.9068 −3.61 

There have been experimental reports on HP-NCP also being a possible target of RAPTA 

complexes [15], but the new models metallocompounds 1, 9, 10, 11, 12 and their hydrated forms 

(where applicable) are predicted to bind better than RAPTA complexes by all three methods of 

docking. The crystal structure of HP-NCP shows RAPTA-C (metallocompound 14a) binding to two 

different sites on chain G and H of the receptor (Figure 2e). In order to make a parallel comparison of 

the poses of metallocompound 14a with the available experimental crystal structure, its docking 

features are shown in Figure 2f. The constrained Molegro and Autodock docking of complex 14a gives 

preference to the first binding site, which suggests that complex 14a will bind preferentially to the first 

site than the second. Also, the constrained Molegro docking shows that the PTA unit of this 

metallocompound locates the same receptor pocket as the crystal structure (Figure 2e). The new 

models of metallocompounds 1, 9, 10, 11, 12 and 8 (include their hydrated forms) are predicted among 

those that have the best binding to BRAF kinase (Tables 4,5). BRAF kinase has been proposed as a 

target of the “piano stool” type of Ru complexes [16]. This “piano stool” which was treated as a  

co-crystallized compound during docking was predicted in the relaxed Molegro docking (Tables 4,5) 

to have the affinity closest to the best binding complexes 1a and 12. The best binding 

metallocompounds to rHA from the three methods of docking are still 10, 12, 1, 3, 11, 8, 9, 3 and 14 

(including their hydrated forms where applicable). The rHA is predicted as an average target, 

suggesting that many of the Ru(II)-based complexes that are considered will on average be kinetically 

favourable which further support the experimental findings [3,5,27]. 

In the interaction of the metallocompounds with RNR, the binding site co-crystallized compound is 

found to bind preferentially to all the metallocompounds. The predicted best binding 

metallocompounds to RNR are 1, 10, 8, 11, 12 and 9 including the bidentate RAPTA complexes 3, 2 

and hydrated 14a. The suggested best binding metallocompounds to TopII after the co-crystallized 

compound are 1, 10, 9, 12, 11 and the RAPTA complexes 2, 3, 14a and 16a. Commonly predicted best 

binding metallocompounds to TS by the three methods of docking are 12, 10, 11, 9 and the bidentate 

RAPTA complexes 2 and 3 while only Molegro rated 1 as part of the best for TS. 
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2.6. Metal-Receptor Residues Covalent Interaction Using Constrained Molegro Docking 

Since the targets of many organometallic complexes are not yet known [5–9], there is yet to be clear 

evidence of their metal centre forming covalent bonding with the residues of the receptors. In docking, 

the possible covalent interaction of the metal with any of the target residues can best be computed 

using constraints [14] but the application is usually limited to the systems in which such interactions 

have been experimentally proven. Generally, it is understood that the metal centre (the acidic centre) in 

metallocompounds may interact with nucleophilic centres (the basic centres) like the sulphur atom of 

the thiol in cysteine and the thioether in methionine, the imidazole nitrogen atom in histidine (i.e., for 

protein receptors) and the N7 atom of the guanine in DNA [11,30]. There have been both reports of 

inhibitory activities of metal complexes where there is no observed metal-residues covalent interaction 

even within the 4.00 Å distance from the metal centre [16,31] and in cases in which there is the 

possibility of a covalent bond between the metal centre of metallocompounds and the receptor  

residues [15]. There is a clear indication that the metal atoms in many cases prefer to hold the ligands 

together for synergistic effects [17] and for better interaction with the receptor residues than forming 

covalent bonds. In order to apply the possibility of covalent bonding of the metal centre with the 

receptor residues, we apply a distance constraint of 2.00 to 4.60 between the metal and the 

nucleophilic center of residues that makes up the receptor-binding site. In this study, based on the 

available information on the binding site residues of each receptor, a nucleophilic atom was selected as 

centre of the interaction with the metal centre of the metallocompounds. The cysteine sulphur atom (SG) 

was selected for CatB (Cys A 29) [32], BRAF kinase (CYS A 531) [16], RNR (CYS B 439) [33], TrXR 

(CYS A 59) [34] and TS (CYS A 198) [35]; a histidine nitrogen atom was used for HDAC7  

(HIS A 709) [36], HP-NCP (HIS H 106) [15] and TopII (HIS B 20) [37]; while for gyrase [23] and 

rHA [31] where none of the HIS, CYS and MET are within the binding site residues, the nucleophilic 

nitrogen atoms of ASN A 46 and ARG A 144 were used, respectively. For DNA (4DL7) [38], the 

nitrogen atom (N7) of the guanine (DG T 7) was used. 

The general feature is that the binding affinity is lower when the covalent constraint is applied 

(Tables 6,7) compare to when it is not (Tables 4,5). This therefore shows that the ruthenium metal in 

many of the metallocompounds will prefer to position the ligands for optimum receptor interactions 

than to form covalent bonds with the residues of protein receptors. However, the binding affinities of 

some metallocomponds against targets like DNA-1, DNA-2, HDAC7, HIS and RNR during the 

covalent constrained docking is comparatively high as that of the relaxed docking, indicating the 

possibility of the ruthenium atom forming covalent interactions with the receptor residues. Whether the 

constraint is applied or not, some of our model metallocompounds like 1, 9, 10, 11 and 12 (including 

their hydrated forms where applicable) are still ranked among those that have the best binding 

affinities to all the receptors. The binding behaviour of many of the metallocompounds when the 

covalent constraint is applied or omitted shows that the functions of the metal centre of the 

metallocompounds are receptor dependent. 

In summary, the new models, especially complexes 1, 9, 10 and 12 (and their respective hydrated 

forms where applicable) are predicted by all the methods of docking between the best two inhibitors of 

all the receptors. Also, complex 11 is rated among the best three during the relaxed docking for gyrase 

and during the constrained docking for CatB and HDAC7. Specific to Autodock docking, the hydrated 
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complexes 4a and 5a are suggested among the best inhibitors of DNA-1, DNA-2, HP-NCP, Kinase, 

TopII, TrXR and TS. Ranked high among the RAPTA complexes in many of the receptor interactions 

are the bidentate complexes 3 and 4 followed by the hydrated complexes 14a and 16a. This gives 

further insight into the reported better anticancer activities of complexes 14a [5] and 16a [27]. 

Considering the ranking of the three methods of docking, the best five metallocompounds predicted as 

inhibitors of the receptors are mostly within the proposed new models except in TopII, RNR and rHA 

where some of the RAPTA complexes are ranked among the best five. However, there is none of the 

RAPTA complexes appear among the best two proposed inhibitors of the receptors considered in this 

work using the three methods of docking (Table 1) except in rHA and RNR, where the ranked first and 

the second complexes are the non-hydrated and hydrated form of the same compound (Tables 4,5  

and 6,7). This suggests the possibility of the new models acting a better anticancer than the  

RAPTA complexes. 

2.7. The Correlation of Factors that Determined the Binding Activities of the Metallocompounds 

The docking method of Molegro gives a more comprehensive insight into the factors that determine 

the binding affinities of the metallocompounds. Their correlation Tables 8 and 9 are constructed using 

the statistical package called R [39]. The most significant factors that influence the metallocompounds 

interaction with the DNA and many of the protein receptors are intramolecular van der Waal 

(E.Intra.vdw.), pose energy, steric and long range electrostatic interaction (ElectroLong in Tables 8,9). 

In all the protein receptors, the inter protein-ligand and the pose energies significantly determine the 

total binding energy of the metallocompounds. The presence of higher number of heavy atoms is 

proposed to favour better binding energy in all the receptor-ligand interaction. The presence of 

halogens also averagely favours the ligand-receptor interaction. A higher torsional bonds and lower 

steric hindrance are shown to favour the binding interaction of the metallocompounds. In the 

unconstrained docking, the short electrostatic interaction (Electro in Table 8) plays significant role in the 

binding affinity of the metal complexes to the receptors gyrase and RNR and the long range 

electrostatic interactions (ElectroLong in Table 8) influence the binding to DNA, TrXR and TS. The 

HB strongly affects the metallocompounds binding to TrXR while Van der Waal forces strongly 

influence metallocompounds binding to HP-NCP (VdW in Tables 8 and 9). In the constrained system, 

soft constraints strongly influence the binding affinities of metallocompounds to BRAF kinase and 

rHA. Also, steric interaction energies (Steric in Tables 8 and 9) between the receptors and the 

metallocompounds strongly influence the binding affinities in both constrained and unconstrained docking. 
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Table 8. The correlation of the factors that determine the biding interaction of the metallocompounds with the receptors using Molgro docking 

(unconstrained docking). 

 4DL7 CatB Gyrase HDAC7 HP-NCP BRAF Kinase rHA RNR TopII TrXR TS 

E.Inter.protein.ligand. 0.28 0.91 0.93 0.93 0.89 0.89 0.93 0.92 0.81 0.90 0.90 

E.Intertotal 0.84 0.91 0.93 0.93 0.89 0.89 0.93 0.92 0.81 0.90 0.90 

E.Intra.steric. 0.12 0.42 0.39 0.46 0.68 0.49 0.66 0.58 0.45 0.31 0.55 

E.Intra.tors. 0.26 −0.01 −0.11 0.07 0.20 0.05 0.15 −0.11 −0.10 −0.53 0.14 

E.Intra.tors.ligandatoms. 0.16 0.37 0.30 0.43 0.65 0.46 0.63 0.51 0.36 −0.01 0.52 

E.Intra.vdw. −0.91 −0.77 −0.82 −0.79 −0.67 −0.65 −0.69 −0.50 −0.32 −0.58 −0.74 

Electro −0.35 0.22 0.45 −0.14 −0.07 −0.04 −0.12 0.61 −0.19 0.26 0.07 

ElectroLong −0.76 0.20 0.31 −0.08 −0.21 −0.06 −0.29 0.36 −0.20 0.53 0.51 

HBond −0.47 0.20 0.17 −0.44 0.03 −0.14 0.11 0.34 0.13 0.71 0.31 

HeavyAtoms −0.71 −0.91 −0.82 −0.84 −0.80 −0.85 −0.76 −0.78 −0.52 −0.82 −0.84 

LE1 −0.13 −0.50 −0.20 −0.39 −0.21 −0.39 −0.11 −0.27 −0.23 −0.22 −0.30 

LE3 −0.11 −0.63 −0.39 −0.45 −0.43 −0.41 −0.42 −0.27 −0.40 −0.52 −0.11 

MW −0.51 −0.69 −0.65 −0.64 −0.60 −0.67 −0.54 −0.53 −0.13 −0.71 −0.56 

N −0.51 −0.57 −0.35 −0.63 −0.59 −0.49 −0.47 −0.63 −0.60 −0.64 −0.53 

NoHBond90 −0.35 0.19 0.15 −0.15 0.08 0.01 0.22 0.64 0.45 0.74 0.31 

PoseEnergy 0.80 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99 

RerankScore 0.81 0.69 0.48 0.08 0.52 0.54 0.32 0.85 −0.23 0.38 0.53 

Steric 0.48 0.85 0.90 0.94 0.89 0.87 0.92 0.77 0.80 0.85 0.86 

Torsions −0.31 −0.31 −0.55 −0.20 −0.41 −0.45 −0.38 −0.65 −0.27 −0.70 −0.37 

VdW.LJ12.6. 0.32 −0.01 −0.17 −0.30 −0.11 0.04 −0.29 0.35 −0.34 −0.37 0.20 

halogen 0.26 0.38 0.50 0.29 0.40 0.40 0.45 0.50 0.51 0.50 0.42 
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Table 9. The correlation of the factors that determine the binding interaction of the metallocompounds with the receptors using Molgro 

docking (constrained docking) 

 4DL7 CatB Gyrase HDAC7 HP-NCP BRAF Kinase rHA RNR TopII TrXR TS 

E.Inter.protein.ligand. −0.43 0.87 0.87 0.94 0.83 −0.17 0.31 0.89 0.67 0.52 0.85 

E.Intertotal 0.82 0.87 0.87 0.94 0.83 −0.17 0.31 0.89 0.67 0.52 0.85 

E.Intra.steric. 0.15 0.32 0.25 0.67 0.71 −0.39 0.29 0.53 −0.04 −0.18 0.61 

E.Intra.tors. 0.30 0.14 −0.01 0.46 0.35 −0.05 −0.21 −0.21 −0.25 −0.51 −0.04 

E.Intra.tors.ligandatoms 0.21 0.31 0.22 0.68 0.70 −0.37 0.22 0.44 −0.09 −0.28 0.54 

E.Intra.vdw. −0.71 −0.55 −0.79 −0.55 −0.65 −0.55 −0.43 −0.58 0.00 −0.71 −0.51 

E.SoftConstraintPenalty 0.14 0.15 0.46 −0.01 −0.37 0.76 0.89 NA 0.33 0.41 −0.45 

Electro 0.05 0.57 −0.33 −0.24 −0.07 −0.24 −0.10 0.19 0.06 −0.01 0.31 

ElectroLong −0.73 0.18 −0.33 0.16 0.72 0.17 0.08 −0.31 0.16 −0.33 −0.36 

HBond 0.04 0.10 0.42 0.12 0.10 0.15 0.25 0.53 0.17 0.62 0.34 

HeavyAtoms −0.53 −0.71 −0.81 −0.47 −0.65 −0.37 −0.71 −0.84 0.15 −0.67 −0.82 

LE1 0.08 −0.10 −0.20 0.16 0.06 0.78 0.79 −0.14 0.72 0.40 −0.10 

LE3 −0.02 −0.15 −0.25 0.09 0.17 −0.42 −0.59 −0.54 0.45 −0.09 −0.47 

MW −0.39 −0.35 −0.67 −0.23 −0.40 −0.50 −0.75 −0.61 0.39 −0.57 −0.55 

N −0.26 −0.42 −0.38 −0.41 −0.49 −0.18 −0.43 −0.63 −0.08 −0.73 −0.57 

NoHBond90 0.36 0.40 0.47 0.30 0.13 0.21 0.24 0.70 0.18 0.70 0.31 

PoseEnergy 0.83 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.98 

RerankScore 0.07 0.05 0.10 0.25 0.66 −0.40 −0.45 0.34 0.46 −0.03 −0.02 

Steric −0.20 0.81 0.85 0.92 0.72 −0.19 0.25 0.87 0.64 0.54 0.79 

Torsions −0.25 −0.62 −0.55 −0.04 −0.16 −0.17 −0.62 −0.63 −0.17 −0.70 −0.51 

VdW.LJ12.6. −0.11 −0.20 −0.23 0.08 0.48 −0.38 −0.44 −0.36 0.41 −0.17 −0.36 

halogen 0.37 0.44 0.38 0.35 0.45 −0.32 0.14 0.44 0.17 0.33 0.38 
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3. Computational Methods 

The geometries of the metallocompounds were first optimized in Gaussian 03/09 [40,41] using 

PBE0 hybrid density functional [42] with two different basis sets of 6-31G* for all atoms order than Ru, 

Cl and P, which were defined with SBKJC VDZ [43] with effective core potential. The atomic charges 

were recalculated using b3lyp hybrid functional [44] and all electron minimal basis set 3-21g [45] in 

order to have a uniform representation of the charges. The atomic charges were incorporated into the 

docking packages for each of the metallocompounds. The docking activities were done using 

Autodock 4.2 [46] and Molegro [47] that combines differential evolution with a cavity prediction 

algorithm. The parameter file of the Autodock was further modified to incorporate ruthenium metal 

van der Waals and other needed parameters which were obtained from the Autodock website [48] but 

Molegro has built-in parameters that recognise the ruthenium metal. In Autodock, the number of grid 

points in x, y, z-axes was set to 60 × 60 × 60 with each point separated by 0.375 Å. Docking 

calculations were carried out with Lamarkian Genetic Algorithm (LGA). Step sizes of 2Å for 

translation and 50° for rotation were chosen, the maximum number of energy evaluations was set to 2, 

500,000 and for each of the 20 independent runs, a maximum number of 27,000 GA operations were 

generated on a single population of 100 individuals. In Molegro, the docking scoring function of 

MolDock which make use of piece-wise linear potential (PLP) was used. The maximum iteration was 

set to 2,500 against the default 1,500 and the population number also increased from default values of 

50 to 100. Five maximum poses were selected and a more stringent re-scoring applied on them for a 

better prediction of the binding activities of the metallocompounds. MolDock scoring considers the 

hydrogen bonding, inter molecular protein-ligand and intra molecular ligand interactions and has been 

successfully applying for molecular docking [49]. Since the Molgro docking package is designed for 

the ligand-protein interaction, the simple trick employed to consider the ligand-DNA interaction is to 

include DNA as a cofactor of the protein. This is achieved by incorporating protein into the DNA pdb 

file 3LPV (named DNA-1) or using pdb 4DL7 input which contain both DNA and protein (named 

DNA-2) obtained from protein data base [50]. The view of the docking results and analysis of their 

surface with graphical representations were done using UCSF Chimera package [51]. 

4. Conclusion 

In this paper we have presented the binding affinities of new model metallocompounds and some of 

the experimentally available metallocompounds, especially those of RAPTA complexes using the 

Molegro and Autodock methods of docking. Making use of the atomic charges of the 

metallocompounds obtained from the optimized quantum calculation significantly improved the 

predicted activities and ranking of the metallocompounds, which strongly agrees with the available 

experimental results. In summary, the new models, especially the complexes 1, 9, 10 and 12 (and their 

respective hydrated versions where applicable) are predicted by all the methods of docking to be 

between the best two inhibitors of all the receptors. Ranked high among the RAPTA complexes in 

many of the receptor interactions are the bidentate complexes 3 and 4 followed by the hydrated 

complexes 14a and 16a in agreement with reported better anticancer activities of complexes 14a [5] 

and 16a [27]. Considering the ranking of both relaxed and constrained Molegro docking, the best 
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targets of the metallocompounds are in the order HDAC7 > DNA-1 > rHA > CatB > DNA-2 > 

Gyrase > TrXR > TopII > TS > RNR > HiS > Kinase except in few cases like complex 12 that prefers 

CatB to rHA. The general features are that the binding affinity is lower when the covalent constraint is 

applied (Tables 6,7) compare to when it is not (Tables 4,5). However, the binding affinities of some 

metallocomponds against targets like DNA-1, DNA-2, HDAC7, HIS and RNR during the covalent 

constrained docking is competitively as high as that of the relaxed docking, indicating the possibility 

that the ruthenium atom forms covalent interactions with the receptor residues. Also, only the new 

model metallocompounds are found to display strong binding affinities against DNA either as cofactor 

in Molegro or pure DNA as in Autodock docking of the metallocompounds against DNA-1 and DNA-2. 

The RAPTA complexes are suggested to target proteins like CatB and HDAC7 better than DNA, 

which further confirms the experimental suggestion that DNA may not be the target of RAPTA 

complexes [14]. The ranking order of the Molegro agrees better with the available experimental 

reports on some of the RAPTA complexes than the Autodock one, which is found to be within the 

error margin of Autodock predictions. The proposed mechanism of activation of metallocompound 

through hydration [2,28] is supported by the three methods of docking. Many of the hydrated forms of 

the complexes are found to significantly bind stronger than the non-hydrated complexes in many of the 

receptors. Also, the binding affinities of both hydrated and non-hydrated metallocompounds 16 and 

16a respectively are higher than that of metallocompounds 15 and 15a by the Molegro, which further 

agrees with the experimental reports [27]. Those predicted among the RAPTA complexes to have the 

best binding to many of the receptors are bidentate and hydrated RAPTA complexes 2, 3, 14a, 15a and 

16a. The lower binding affinities of the metallocompounds in the constrained metal-residues covalent 

bond type of docking compare to the relaxed Molegro docking and better correlation of the relaxed 

Molgro to the available experimental reports show that the metal atom in these type of 

metallocompounds will give preference to positioning the coordinated ligands in the right position for 

optimal receptor interactions and synergistic effects on each other than forming a covalent bond. Also 

from the Molegro docking, there is clear indication that the pose energy, inter protein ligand energy, 

intra molecular van der Waal and molecular weight strongly determine the final binding energy of the 

metallocompounds to the receptors. 
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