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Abstract: This paper proposes a new mixed quantum mechanics (QM)—molecular 

mechanics (MM) approach, where MM is replaced by quantum Hamilton mechanics (QHM), 

which inherits the modeling capability of MM, while preserving the state-dependent nature 

of QM. QHM, a single mechanics playing the roles of QM and MM simultaneously, will be 

employed here to derive the three-dimensional quantum dynamics of diatomic molecules. 

The resulting state-dependent molecular dynamics including vibration, rotation and spin are 

shown to completely agree with the QM description and well match the experimental 

vibration-rotation spectrum. QHM can be incorporated into the framework of a mixed 

quantum-classical Bohmian method to enable a trajectory interpretation of orbital-spin 

interaction and spin entanglement in molecular dynamics. 

Keywords: molecular dynamics; state-dependent; quantum Hamilton mechanics; diatomic 

molecules; Bohmian mechanics 

 

1. Introduction 

One of the greatest challenges in molecular dynamics (MD) is to model processes involving many 

degrees of freedom, some of which have to be treated quantum mechanically. The combined quantum 

mechanics (QM) and molecular mechanics (MM) approach to MD [1,2] provides tremendous 

computational advantages over full quantum mechanical models by treating a limited region of a 

molecular system quantum mechanically, while treating the rest of the system by using conventional 
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MM methods. The QM part corresponds to what is to be studied in detail, such as the regions involving 

charge transfer, electron excitations or chemical reactions. The atoms in the QM part are explicitly 

expressed as electrons and nuclei such that their motions are described quantum mechanically. Quantum 

effects in MD simulation have been taken into account by various techniques, such as pseudo-spectral 

methods [3], path integral methods [4], Car–Parrinello-type simulations [5], molecular wave packet 

dynamics [6] and density matrix evolution method [7]. The performance of a hybrid QM/MM method 

has been extensively investigated by Billing and coworkers [8]. Brickmann and Schmitt [9] employed a 

sequence of approximations to transfer the mixed QM/MM dynamics into a Hamilton–Jacobi-type 

scheme, which is able to formulate the equations of motion by using a single Hamiltonian. 

The QM/MM approach to MD simulation of molecular systems mainly relies on the  

Born–Oppenheimer approximation that a molecular motion can be separated into two independent 

motions: one is the classical atomic motion on a single adiabatic potential energy surface and the other 

is the quantum electronic motion in the presence of a time-dependent potential generated by the moving 

classical atoms. However, there are a huge number of problems for which the interaction between 

classical and quantum motion is so significant that the Born–Oppenheimer approximation may become 

invalid. For such problems, the QM/MM approach to MD simulation inevitably faces the crucial issue 

of self-consistency. The quantum degrees of freedom must evolve correctly under the influence of the 

surrounding classical motion, and meanwhile, the classical degrees of freedom must respond correctly 

to the quantum transitions. Therefore, a self-consistent QM/MM approach has to consider not only the 

effect of the classical degrees of freedom on the quantum ones but also the backreaction of the quantum 

effect on the classical degrees of freedom. 

Two mixed quantum-classical methods that have been developed in the literature to treat the 

interactions between classical and quantum systems in a self-consistent way are the mean-field method [10] 

and the surface-hopping method [11]. The mean-field method calculates the force for the classical 

motion by averaging over the quantum wave function. This method is invariant to the choice of quantum 

representations and applicable to both bound and continuum states, but it suffers from the neglect of 

correlations between classical and quantum degree of freedom. On the other hand, the surface-hopping 

method was developed to manifest quantum-classical correlation, but it is not invariant to the choice of 

quantum representations and is intrinsically limited to discrete quantum states. Although both methods 

have their respective limitations, they have been proven to be successful in many applications. 

In the latest decade, a novel solution to the quantum backreaction problem in a mixed QM/MM 

simulation has been proposed using the Bohmian formulation of quantum mechanics [12,13]. The mixed 

quantum-classical Bohmian (MQCB) approach combines the merits of the above two methods and gives 

a consistent treatment of mixing quantum and classical degrees of freedom without reference to any 

basis set. The MQCB method has been applied to the process of vibrational decoherence of I2 in a dense 

helium environment [14], to the case of rotational diffractive surface scattering of a diatomic  

molecule [15] and to a model of O2 interacting with a Pt surface [16], all with good agreement with the 

full quantum-mechanical treatments. 

The current formulation of Bohmian mechanic is mainly based on Cartesian coordinates, which is 

inconvenient to the description of molecular angular motions. This paper aims to incorporate quantum 

Hamilton mechanics (QHM) [17–19] into the framework of the MQCB method to enhance its capability 

of handling orbital and spin angular motions. It is well known that the Bohmian velocity vanishes in all 
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of the stationary states with zero angular quantum number, and therefore, the corresponding Bohmian 

particles will remain standing at their initial positions at any time [20]. QHM, on the one hand, conquers 

the problem of Bohmian stationarity by formulating Bohmian mechanics in complex space, and on the 

other, describes MD in terms of Hamilton equations of motion, which are coordinate-independent and 

suitable to any curvilinear coordinates. 

With the proposed modifications by QHM, the computational procedures of MQCB developed in the 

literature can be used to simulate molecular dynamics, including vibration, rotation and spin motions. 

The correctness of the derived state-dependent molecular dynamics will be verified by comparing with 

the quantum mechanical description of a diatomic molecule for which the Schrödinger equation has an 

analytical solution. Of significance is that the spin dynamics, which cannot be described by spatial wave 

functions, emerges naturally from the established state-dependent molecular dynamics. 

In Section 2, we introduce the working equations of the MQCB method to describe the motion of a 

diatomic molecule in Cartesian coordinates. QHM is then introduced in Section 3 to reformulate 

Bohmian mechanics under spherical coordinates. We show that QHM is a single mechanics 

simultaneously playing the roles of QM and MM by pointing out that QHM comprises two sets of 

Hamilton equations with the first set describing the vibration-rotation motion of the molecule and the 

second set describing the time evolution of the wave function. State-dependent vibrational dynamics 

fully consistent with QM is derived from QHM in Section 4. Section 5 demonstrates how to incorporate 

molecular spin dynamics into MD simulation under the same motion space governed by QHM. The 

resulting state-dependent molecular dynamics is found to agree with the prediction of QM and well 

match the experimental vibration-rotation spectrum. 

Figure 1. (a) A diatomic molecule composed of Nuclei A and B, together with a number  

of electrons; (b) An equivalent single-particle model of the diatomic molecule with rotation 

and vibration motion described by the spherical coordinates. 

 

2. Mixed Quantum-Classical Mechanics 

In this section, we review the basics of the MQCB method by applying it to simulate the motion of a 

diatomic molecule, which is composed of Nuclei A and B, of mass MA and MB together with a number 

N of electrons (see Figure 1). The internuclear position vector will be denoted by X and the position 
vectors of the electrons with respect to O, the center of mass of A and B, by r1, r2,⋯, rN. The position 
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vectors of A and B are denoted by  and , so that = − . The Schrödinger equation describing 

the motion of the molecule takes the following form [12,13]: 

2 2 2 2

2 2
( , , ) ( , ) ( , , )

2 2
i t V t

t m M

 ∂ ∂ ∂Ψ = − − + Ψ ∂ ∂ ∂ 
x X x X x X

x X

  , (2.1)

where = [ 	 ⋯ ] is the collective vector representing the quantum motion of the electrons and  

is the vector representing the classical motion of the nuclei. 

Writing the wave function as ( , , ) = ( , , )	exp	( ( , , )) with  and  being real, 

Equation (2.1) can be separated into three coupled equations in terms of ,  and their derivatives. 

For a computed , the Bohmian velocity is given by: 

1 ( , , ) 1 ( , , )
,    B Bd S t d S t

dt m dt M

∂ ∂= =
∂ ∂

x x X X x X

x X
, (2.2)

where  is the mass of electron and = /( + ) is the reduced mass of the molecule. With 

the introduction of the quantum potential: 

2 2 2 2

2 2

1 1
( , , )

2 2
B B

B B

R R
Q t

m R M R

∂ ∂= − −
∂ ∂

x X
x X

 
, (2.3)

Equation (2.2) can be recast into classical-like equations of motion: 

( )2

2

( , , ) ( , , )1 V t Q td

dt m d

∂ +
= −

x X x Xx

x
, (2.4)

( )2

2

( , , ) ( , , )1 V t Q td

dt M d

∂ +
= −

x X x XX

X
. (2.5)

A workable scheme of MQCB has been implemented successfully by replacing the full-dimensional 

wave function ( , , )  by a wave function ( , , )  in the  quantum subspace that depends 

parametrically on the classical position ( ) . The approximate wave function ( , , )  obeys the 

Schrödinger equation: 

2 2

2
( , , ( )) ( , ( )) ( , , ( ))

2

d
i t t V t t t

dt m

 ∂Ψ = − + Ψ ∂ 
x X x X x X

x

  , (2.6)

where /  denotes the material derivative / + ∙  along the classical trajectory ( ) . The 

MQCB method and the mean-field method share the same quantum degree of freedom described by 

Equation (2.4), but differ from each other in the way that the classical degree of freedom is governed by 

the quantum wave function. Instead of Equation (2.5), the classical trajectory ( )  for the  

mean-field method is computed by the mean potential: 

2
2

eff2

1 1
( , ) ( , , ) ( , )

d
V t t V d

dt M d M d

∂ ∂= − = − ΨX
X x X x X x

X X
. (2.7)

Upon applying Equation (2.5) or Equation (2.7) to a diatomic molecule, we find that it is convenient to 

express the vector  in the spherical coordinates ( , , ) in order to describe the vibration and rotation 

of the two atoms with respect to their center of mass. However, the expressions of quantum motion 

described by Equation (2.2) to Equation (2.7) are valid only for Cartesian coordinates. To give an explicit 
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manifestation of the orbital and spin angular motion of the molecules, the reformulation of Bohmian 

mechanics under spherical coordinates is necessary. 

It will be shown in the next section that QHM provides MQCB with state-dependent molecular 

dynamics, which preserve the quantization property of orbital and spin angular momentum. By contrast, 

in the mean-field method, the classical trajectories ( ) over different quantum states are averaged out 

to give a state-independent result, as can be seen from Equation (2.7). To compare with the QHM 

formulation discussed later, here let us have a quick look on the description of the vibration-rotation 

motion of a diatomic molecule by the classical Equation (2.7). With the effective potential  ( , ) = ( , , , ) given by Equation (2.7), the classical Hamiltonian governing the 3D relative 

motion of the two nuclei with respect to their center of mass can be expressed by: 

. (2.8)

The molecular dynamics ( ( ), ( ), ( )) can be solved from the Hamilton equations: 

, (2.9)

, 
(2.10a)

(2.10b)

.
 

(2.10c)

It is clear that the vibrational and rotational motions of the molecule are determined uniquely by the 
effective potential ( , , , ) with initial conditions ( (0), (0), (0)) and ( (0), (0), (0)). 
In the case of a central-force potential ( ), the total energy , the squared angular momentum  

and the z-component angular momentum  are conserved quantities along any dynamic trajectory ( ( ), ( ), ( )): 
, (2.11)

where the three conservation constants depend continuously on the initial conditions. In the next section, 

a quantum version of the classical Hamilton Equations (2.9) and (2.10) will be derived by QHM. The 

resulting quantum Hamilton equations can describe molecular dynamics in a general non-stationary 

quantum state Ψ( , , , ), and a quantum version of the conservation law (2.11) comes out naturally, 

if Ψ( , , , ) is an eigenfunction. 

3. Quantum Hamilton Mechanics 

Consider the diatomic molecule as shown in Figure 1b. Let  be the internuclear position vector 

expressed in a curvilinear coordinate system, ( , ) be the instantaneous internuclear potential, and 

2
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 be the reduced mass. The Schrödinger equation describing the molecular motion can be recast into 

the quantum Hamilton-Jacobi equation [17,20]: 

eff
/

1 i
( , , ) ( , ) 0

2 2S
S

S S
H t V t

t t M MΨ =∇
=∂ ∂

∂ ∂  + = + ⋅ + − ∇⋅ = ∂ ∂  p
p q

q p p p q p


, (3.1)

where the action function  is the logarithmic wave function defined as: 

. (3.2)

The canonical momentum  in Equation (3.1) is related to the action function  via the law of canonical 

transformation: 

. (3.3)

The appearance of the imaginary number = √−1 indicates that the momentum  has to be defined in 

a complex domain. In Cartesian coordinates, we have = M  and the particle’s velocity  can be 

determined by the wave function Ψ as 

, (3.4)

which is the governing equation in the complex-valued Bohmian mechanics [21]. It is the complex 

momentum  from Equation (3.3) rather than the real momentum from Equation (2.2) that matches the 

momentum distribution provided by standard quantum mechanics [20]. The relationship between the 

real and complex momentum can be found as: 

1B B

B

S RS
i

R

∂ ∂∂ = −
∂ ∂ ∂q q q

 . (3.5)

It can be seen that the real Bohmian trajectory solved from = (1/ ) /  only carry information 

about the dynamics of the momentum flow, while the complex trajectory solved from 	= (1/ ) /  also includes information about the probability = |Ψ| . The dynamics in the 

complex phase space ( , ) thus explains in a natural way how to get the correct momentum distribution 

and explains why algorithms based on complex trajectories are stable and accurate [22–28]. The 

advantages of implementing numerical codes in a complex phase space are similar to those of 

considering complex fields instead of real ones in electromagnetism [20]. 

When compared with the classical Hamiltonian  in Equation (2.8), the quantum Hamiltonian  

defined in Equation (3.1) has an additional term called complex quantum potential, which in the state Ψ 

can be expressed by: 

. (3.6)

The state-dependent molecular dynamics to be developed here all originate from the state-dependent 

nature of . With the quantum Hamiltonian  defined in Equation (3.1), the accompanying Hamilton 

equations appear as the usual form: 

( , ) ln ( , )S t i t= − Ψq q

ln ( , )S t
i

∂ ∂ Ψ= = −
∂ ∂

q
p

q q


1 1
( , ),    ,  

d
i t

dt M M
= = − ∇Ψ ∈

Ψ
q

p q q p C


2
2 2i

ln ( , )
2 2 2p S

i
Q S t

M M M=∇

= − ∇ ⋅ = − ∇ = − ∇ Ψp q
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. (3.7)

The Hamilton equations are coordinate-independent and valid for arbitrary coordinate systems. 

Especially, in the Cartesian coordinates, we have ∂ / = /  and the first set of the Hamilton 

equations (3.7) turns out to be the Bohmian velocity, like the one defined in Equation (2.2). 

We now specialize  to the spherical coordinates = ( , , )  with  denoting the internuclear 

distance, and ( , ) denoting the orientation of the molecule. By expanding the inner product ∙  and 

the divergence ∇ ∙  in spherical coordinates, quantum Hamiltonian  in Equation (3.1) can be 

expressed by [17]: 

2 2
2 2

2 2 2

2
2 2

eff2 2

2 2
eff2

1 2 ln 1 ln
cot

2 i i 2 i i

1 ln
        ( , , , )

sin

1 1
( , , , ).

2 2

r r

r

H p p p p
M r r Mr

p V t r

P L V t r
M Mr

θ θ

φ

θ
θ

θ φ
θ φ

θ φ

Ψ

     ∂ Ψ ∂ Ψ= + + + + +     ∂ ∂     
 ∂ Ψ+ − + ∂ 

= + +

   

  (3.8)

This is the quantum counterpart of the classical Hamiltonian defined in Equation (2.8). Substituting  

into Equation (3.7), we obtain the first set of the Hamilton equations as: 

1 ln ( , , , ) 1

i i i
r

r

H p t r
r

p M Mr M r Mr

θ φΨ∂ ∂ Ψ= = + = +
∂ ∂

   , (3.9a)

2 2 2 2

cot ln ( , , , ) cot

i 2 i i 2

H p t r

p Mr Mr Mr Mr
θ

θ

θ θ φ θθ
θ

Ψ∂ ∂ Ψ= = + = +
∂ ∂

   , (3.9b)

2 2 2 2

ln ( , , , )

sin i sin

pH t r

p Mr Mr
φ

φ

θ φφ
θ θ φ

Ψ∂ ∂ Ψ= = =
∂ ∂

 , (3.9c)

where the canonical momentum ( , , ) has been given according to Equation (3.3): 

. (3.10)

Equation (3.9) is the quantum counterpart of the classical equation (2.9) and provides the vibrational and 

rotational dynamics ( ( ), ( ), ( )) of the molecule in the state Ψ( , , , ), which may be stationary 

or non-stationary. On the other hand, it can be shown that the second set of Hamilton equation (3.7) with 

 given by Equation (3.3) is just the Schrödinger equation. In other words, the two sets of Hamilton 

equations (3.7) provide a new approach to MM/QM formulation, where the first set plays the role of 

MM to derive the molecular dynamics (3.9), while the second set plays the role of QM to give the time 

evolution of the wave function Ψ. 

The quantum Hamiltonian (3.8) can be expressed in a more comprehensive way with the help of 

Equation (3.9): 

2 2 2
eff( ) ( sin ) ( , , , ) ( , , , )

2

M
H r r r V t r Q t rθ φ θ θ φ θ φ = + + + + 

 
, 

(3.11)

,    
H HΨ Ψ∂ ∂= = −
∂ ∂

q p
p q

 

ln ln ln
,    ,    rp i p i p i

r
θ φθ φ

∂ Ψ ∂ Ψ ∂ Ψ= − = − = −
∂ ∂ ∂
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where the first three terms constitute the classical kinetic energy , and the last two terms form the  

total potential: 

. (3.12)

The dynamic equations of motion for the molecule can be described either by the Hamilton equations (3.9) 

or by the Lagrange equations based on the quantum Lagrangian: 

, (3.13)

from which the quantum Lagrange equations of motion can be obtained as 

, (3.14a)

, (3.14b)

.
 

(3.14c)

It can be seen that apart from the internuclear force produced by , there are additional quantum forces 

acting on the molecule yielded by the quantum potential . In the next two sections, we proceed to show 

that the action of the quantum potential leads to the state-dependent molecular dynamics compatible 

with the description of the wave function Ψ. 

4. State-Dependent Molecular Vibration 

By replacing Equations (2.2) and (2.5) with Equations (3.9) and (3.14), respectively, the 

computational procedures of MQCB developed in the literature can be used to simulate molecular 

dynamics including vibration, rotation and spin motions. Before this new QM/MM approach becomes 

workable, we have to verify that the governing equations derived in Section 3 yield correct molecular 

dynamics. The verification is based on the comparison with the quantum mechanical description of a 

diatomic molecule for which the Schrödinger equation relating to the nuclear motion has an analytical 

solution. The test model is illustrated in Figure 1a, which is an equivalent single-particle model of a diatomic 

molecule with rotational and vibrational motion described by the spherical coordinates. The effective 

internuclear potential is modeled by the Morse function and the corresponding Schrödinger equation is 
solved analytical in the appendix with eigenfunction Ψ , , ( , , ) = , ( )Θ , ( )Φ ( ) given 

by Equation (A15) and eigenvalue ,  given by Equation (A17). All of the parameters and constants 

appearing below refer to the Appendix. 
Substituting Ψ , , ( , , ) into Equation (3.9), we obtain the state-dependent molecular dynamics as: 

, (4.1a)

, (4.1b)

( )
2 2 2 2 2

2
Total eff eff 2 2 2 2 2 2 2

ln 1 ln 1 ln
4 cot

8 2 sin
V V Q V

Mr M r r r
θ

θ θ φ
 ∂ Ψ ∂ Ψ ∂ Ψ= + = + + − + + ∂ ∂ ∂ 

 

2 2 2
Total eff( ) ( sin ) ( )

2

M
L T V r r r V Qθ φ θ = − = + + − + 

 

( )2 2 2
eff

1
sinr r r V Q

M r
θ φ θ ∂− − = − +

∂
 

( )2 2 2
eff

1
2 sin cosr rr r V Q

M
θ θ φ θ θ

θ
∂+ − = − +

∂
  

( ) ( )2 2
eff

1
sin

d
r V Q

dt M
φ θ

φ
∂= − +

∂


( ),
1

ln ( )n J
dr d

rR r
d i drτ

=

,

2

1 ln ( ) cot

2
JJ md d

d ir d

θ θ θ
τ θ

Θ = + 
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,
 

(4.1c)

where ̅ =  is the dimensionless radial distance and = (ℏ / ) is the dimensionless time. In a 
quantum state specified by the three quantum numbers ,  and , the internuclear distance ( ) and 

the molecular orientations ( ) and ( ) can be expressed as functions of time by solving Equation (4.1). 

As a comparison, if the standard Bohmian mechanics based on Equation (2.2) is used to simulate the 
molecular dynamics in the eigenstate Ψ , , ( , , ), we will find the molecule to be motionless in all 

the states with = 0. The constitution of the complex momentum in Equation (3.5) explains why it is 

possible to observe non-vanishing momentum in cases where the Bohmian momentum ∇  vanishes. 

The first test on the accuracy of the state-dependent molecular dynamics is to examine the 
quantization laws existing in the eigenstate Ψ , , ( , , ). In the previous section, we have seen that 

in the conventional MM description, the three conservation constants depend continuously on the initial 

conditions, being unable to manifest the quantization laws. Now replacing Equations (2.8) and (2.9) by 

Equations (3.8) and (3.9), we can derive the expected quantization laws. With the eigenfunction Ψ , , ( , , ) given by Equation (A15) and ( , , ) given by Equation (3.10), the Hamiltonian , 

the squared angular momentum  and the z-component angular momentum  defined in Equation (3.8) 

can be computed as: 

2
2 2 2 2 2

2

ln ( , , )
( ( ), ( ), ( ))z J

r
L r t t t p mφ

θ φθ φ
φ

∂ Ψ= − =
∂

  , (4.2a)

2 2
2 2 2

2 2

ln ( , , )
( ( ), ( ), ( )) cot ( 1)

i i sin
zr L

L r t t t p p J Jθ θ
θ φθ φ θ

θ θ
 ∂ Ψ= + + + = + ∂ 

   , (4.2b)

2 2
2

eff ,2 2

1 2 ln ( , , )
( ( ), ( ), ( )) ( )

2 i i 2
r r n J

r L
H r t t t p p V r E

M r r Mr

θ φθ φ
  ∂ Ψ= + + + + =  ∂  

 
. (4.2c)

We find that the resulting values of ,	  and  are independent of time and are quantized according to 
the three quantum numbers ,  and . Unlike the probabilistic interpretation in standard quantum 

mechanics, here, we have given a dynamic interpretation of the quantization laws by showing that the 

three physical quantities have constant discrete values along any quantum trajectory ( ( ), ( ), ( )) 
solved from Equation (4.1) in the quantum state specified by the three quantum numbers ( , , ). 

The second test is on the consistence between the predictions of the equilibrium bond length made 

between quantum mechanics and state-dependent molecular dynamics. We will show that the 
equilibrium bond length  that maximizes the radial probability  satisfies the dynamical equilibrium 

condition / = 0. We first prove this property for the ground vibrational state. Referring to the 

Appendix, the corresponding radial wave function with = 0	is given by 

. (4.3)

The dependence of , ( ) on the angular quantum number  is reflected in the relation of  and  to , 

as shown in Equation (A14). Substituting , ( ) into Equation (4.1a) yields the equation of motion for 

the rotation-dependent vibration in the ground state: 

2 2sin
Jd m

d r

φ
τ θ

=

01 /2 /2 ( )
0, ( ) ,    2z r r

JR r r e z z eα βη− − − −= =
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. (4.4)

The above radial dynamics has a stable equilibrium point at = , i.e., 

 (4.5)

The other equilibrium point is at = 0, i.e., ̅ = ∞, corresponding to the condition of molecular 

dissociation. Equation (4.5) expresses the equilibrium bond length ̅  as an explicit function of the 

angular momentum quantum number J. This closed-form expression describes analytically how the 
equilibrium bond length ̅  increases monotonically with the angular quantum number J. Of 

significance is that the equilibrium bond length ̅  obtained from the molecular dynamics (4.1a) always 

coincides with that obtained by QM method. This coincidence has its theoretic origin. We recall the 

definition of the radial probability: 

, (4.6)

by noting that , ( ̅) given by Equation (A13) is a real function of ̅. On the other hand, according to 

the dynamic Equation (4.1a), the equilibrium position ̅  satisfies the condition: 

. (4.7)

It appears that the equilibrium condition (4.7) is just the condition requiring the radial probability ,  

in Equation (4.6) to have an extreme value. 

All of the properties obtained from the dynamics equation (4.1a) can be re-derived from the action of 
the radial total force ̅ ( ̅). As an illustration, we consider the case with = 0 for which Θ , ( ) = 1 

and the total potential defined in Equation (3.12) has a simple expression, 

, (4.8)

where we note = 2 − 1 and =  from Equation (A14) for the case of = 0. The radial total force ̅ ( ̅) now can be determined from ( ̅) as 

. (4.9)

The internuclear distance free from radial force can be found from the condition ̅ ( ̅) = 0, which leads to 

. (4.10)

This value is exactly the equilibrium bond length ̅  already obtained in Equation (4.5) by using the 

equilibrium condition ̅/ = 0. 
The evaluation of ̅ ( ̅) in the vicinity of ̅  gives ̅ ( ̅) < 0, if ̅ > ̅ , and ̅ ( ̅) > 0, if ̅ < ̅ . The sign of ̅ ( ̅) in the neighborhood of ̅  indicates that the two nuclei attract each other 

when their distance is longer than ̅  and repel each other when their distance is shorter than ̅ . 

Consequently, there is always a restoring force to make ̅ return to its equilibrium position ̅ . 
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Figure 2 gives a numerical verification of the coincidence of four positions for the state with = 1 

and = 0: (a) the local minimum of the total potential; (b) the position with ( ) = 0; (c) the 

equilibrium position with zero velocity / = 0; and (d) the local maximum of the radial probability , , where the first three positions come from the state-dependent molecular dynamics, while the last 

position from the QM description. 

Figure 2. Illustration of the coincidence of four positions for the state with = 1 and = 0: 

(a) The local minimum of the total potential  and the local maximum of the radial 
probability , ; (b) The position free from the radial force ( ) = 0 ; (c) The 

equilibrium position with zero velocity / = 0. 
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The complex trajectories of ̅( ) solved from Equation (4.4) for the four types of diatomic molecules 

are shown in Figure 3a. It can be seen that the complex trajectories are closed contours circulating about 
their respective equilibrium positions ̅  computed from Equation (4.5) by using the molecular 

parameters listed in Table 1. We find that the period of vibration is independent of the actual trajectories 

and is quantized with respective to the angular quantum number J. This trajectory-independent property 

can be proven by applying the residue theorem to Equation (4.4): 

, (4.11)

where the contour  is an arbitrary closed trajectory solved from Equation (4.4). The contour integral 

depends only on the poles enclosed by the contours. Because all of the trajectories enclose only one pole 

at = , the contour integral has only one possible value equal to the residue evaluated at this pole. Due 

to the dependence of  on the angular quantum number J as shown in Equation (A14), the resulting 

period of vibration is allowed only for some discrete values determined by J. 

Figure 3. (a) The ground-state quantum trajectories solved from Equation (4.4) for the four 

types of diatomic molecules on the complex plane of ̅. The complex trajectories are closed 
contours circulating around their respective equilibrium positions ̅ ; (b) The time responses 

of Re( ̅( )) give the periods of vibration as = 0.3840, = 0.2496, = 0.1203, 

and = 0.0941 , from which the vibrational frequencies = 1/ = ℏ /( )  are 

computed and compared with the experimental data listed in Table 1. 

 

Figure 3b illustrates the time responses Re( ̅( )) for the four diatomic molecules in the ground state = = 0, wherein the periods of vibration have a simple expression 

. 
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The  values of the four molecules and their periods of vibration computed by Equation (4.12) are listed 
in Table 1. Also shown in Table 1 are the experimental values  of the ground-state vibration 

frequencies. The comparison between the computational and experimental results gives a relative error 

about 1%, which is caused by the inexistence of an exact solution to the Schrödinger Equation (A1). The 
radial wave function ,  given by Equation (A13) is only a second-order approximation as described 

by Equation (A6). The approximation gets better as  is closer to the equilibrium bond length  of the 

Morse potential. 

Table 1. Parameters of four diatomic molecules and the comparison of the computed  
ground-state vibration frequencies  with the measured frequency . 

Diatomic Molecules H-H H-Cl O-O N-N 

Bond length  (m) 74 × 10−12 127.5 × 10−12 148 × 10−12 145 × 10−12 
Reduced mass (kg/atom) 0.837 × 10−27 1.628 × 10−27 13.28 × 10−27 11.63 × 10−27 
Potential width   1.94 × 1010 1.81 × 1010 2.67 × 1010 2.70 × 1010 

 7.11 × 10−19 7.39 × 10−19 8.28 × 10−19 15.77 × 10−19 
 16.8403 25.6722 52.7203 67.2966 
 0.3845 0.2496 0.1203 0.09406 

 8.091 × 10−15 11.74 × 10−15 21.31 × 10−15 14.24 × 10−15 
 12,360 × 1010 8522 × 1010 4693 × 1010 7021 × 1010 

Experiment  12,470 × 1010 8652 × 1010 4666 × 1010 6987 × 1010 
 0.8821% 1.503% 0.5786% 0.4866% 

The vibration period  given by Equation (4.12) can also be derived by using a state-dependent force 

constant. A quantum force constant is defined as the second-order derivative of the total potential ( ̅) evaluated at the equilibrium position ̅ : 

. (4.13)

The resulting force constant is state-dependent by noting that  depends on the three quantum 
numbers ( , , )  as given by Equation (3.12). A specific  has been expressed explicitly in 

Equation (4.8) for the case of = = 0, and the substitution of  into Equation (4.13) yields the 

force constant as: 

. (4.14)

Then the classical relation between the vibration period  and the force constant  gives: 

, (4.15)

which reproduces the result of Equation (4.12) derived by state-dependent molecular dynamics. 

The above discussions of ground vibrational state reveal a remarkable observation that by replacing 

the internuclear potential with the total potential , the conventional MM turns out to be  

state-dependent MM, which then yields consistent results with QM. This observation applies to every 
quantum state of the molecule. In every quantum state Ψ , , , there is a total potential , which 
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completely determines the molecular quantum dynamics within this state. Figure 4 plots the total 

potentials for the first three vibrational states and their accompanying rotational states. It can be seen 

that for a vibrational state with quantum number , there are + 1 sub-shells, within which rotational 

states with different quantum number J reside. 

Figure 4. The variation of the total potential  with respect to the two quantum numbers 
 and J. The lowermost points ̅  of	  correspond to the equilibrium bond lengths, and 

the curvatures of	  at ̅  correspond to the force constants of the molecule. This figure 

schematically illustrates how the bond length and the force constant change due to the change 

of quantum states. 

 

In excited vibrational states ≥ 1, the quantum dynamics (4.1a) has multiple equilibrium points, and 

the total potential possesses multiple-shell structure. To illustrate this property, we consider the first 

excited state as an example. The corresponding radial wavefunction is given by: 

, (4.16)

and the radial dynamics is obtained from Equation (4.1a) as: 

. (4.17)

There are two stable equilibrium points in this state, which can be solved from the condition / = 0 as: 
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. (4.18)

On the other hand, the total potential in the first excited state is given by Equation (3.12): 

. (4.19)

By evaluating the constant  at = 1 with = 2 and = 3, we have: 

. (4.20)

Substituting this  into Equation (4.19), the variation of ( ̅, )  with respect to the angular 

quantum number J is plotted in Figure 4. It appears that there is a node at = + 1, where the total 

potential approaches to infinity. This infinite potential barrier separates ( ̅, ) into two shells. The 

lowermost point of the inner shell corresponds to the inner equilibrium point ̅( ), while the lowermost 

point of the outer shell corresponds to the outer equilibrium point ̅( ), as given by Equation (4.18). Also 

shown in Figure 4 is the total potential of the second excited state, which has three shells separated by 

the two nodes. 

5. State-Dependent Orbital and Spin Dynamics 

So far our discussions on molecular quantum dynamics are restricted to the radial vibration motion 

governed by Equation (4.1a). To take angular dynamics into account, all the three equations in  

Equation (4.1) have to be considered. In the previous sections we have seen that the QM descriptions of 
the quantum state	Ψ , ,  can be reproduced in terms of the state-dependent molecular dynamics. Here, 

we go one-step further to show that the spin dynamics, which cannot be described by the spatial wave 
function	Ψ , , , emerges naturally from the molecular dynamics (4.1) in the ground state where orbital 

angular momentum is zero. 
Setting = = = 0  and substituting , ( ) = / / / , Θ , ( ) = Φ ( ) = 1  into 

Equation (4.1) yields the 3D quantum dynamics in the ground state: 

, (5.1)

where  and  are given by Equation (A14) with = 0. We can see that even though the orbital angular 

quantum number J is set to zero, the angular velocity  is actually not zero. The main reason why spin 

motion cannot be attributed to orbital motion in standard quantum mechanics is due to the definition of 

the orbital angular momentum . To make this point more apparent, we inspect the expression of  

defined in Equation (4.2b) with the help of Equation (3.9b): 
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In case of = = 0, we have = = 0, lnΨ , , ( , , )/ 	= ln , ( )/ = 0 and 

the above equation is reduced to: 
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2 2 2 2( ) ( / 4)cot 0Mr θ θ+ =  . (5.3)

In the real domain, the only solution is = 0 and = /2, which is the well-known spinless motion. 

However, in the complex domain, Equation (5.3) has a nontrivial solution: 

2

cot

2

d
i

dt Mr

θ θ= − 
, (5.4)

which is just the  dynamics in Equation (5.1) in dimensionless form. In other words, the condition of = 0 does not completely nullify the complex-valued angular motion, and we can regard the spin 

dynamics as the remnant angular dynamics as the orbital angular momentum is zero. 

The integration of the  dynamics with = +  gives the three regions of trajectories as shown 

in Figure 5a. Within the Ω  region, the sign of /  changes alternatively and produces zero mean 

velocity. Within the Ω  region, ( ) is monotonically decreasing with a mean value of /  equal  

to −1. Within Ω  region, ( ) is monotonically increasing with a mean value of /  equal to one. 

Figure 5. The complex ( ) trajectories for the states (a) = 0, and (b) = 1 with = 0 

solved from Equation (4.1) with ̅ at its equilibrium position. The upper region Ω  contains 

spin-down dynamics with / < 0, the central region Ω  contains spinless dynamics 

exhibiting periodic motion around the equilibrium points and the lower region Ω  contains 

spin-up dynamics with / > 0. 

 

Although orbital angular momentum is completely depressed by the condition = = 0, non-zero 

angular motion does exist in the regions of Ω  and Ω . To relate this remnant angular motion to spin, 

the next step is to identify the magnitude of this remnant angular momentum. In the regions of Ω  and Ω , we note the following relations for the complex variable = + : 

, (5.5a)

. (5.5b)
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Therefore, angular momentum in the  direction becomes: 

 (5.6)

In the region Ω , the ( ) dynamics exhibits periodic motion around the equilibrium points and yields 

zero mean angular velocity. According to the behavior of the  dynamics, three spin regions can  

be defined, 

 (5.7)

The spin dynamics we discuss so far originates from the wavefunction Ψ = , ( )Θ , ( )Φ ( ) 
with Θ , ( ) given by (cos ), the first-type Legendre function. Indeed, (cos ) is only a 

special solution for Θ , ( ) whose general solution can be represented by: 

, 1 2( ) (cos ) (cos )J J

J

m m
J m J JB P B Qθ θ θΘ = + , (5.8)

where ( ) is the second-type Legendre function. It can be shown by integration Equation (4.1) with Θ , ( ) = (cos ) that the direction of the angular motion produced by (cos ) is always  

anti-parallel to that produced by (cos ). Therefore, in the same quantum state specified by the 

spatial quantum numbers ( , , ), the molecule can behave either according to the spin dynamics with Θ , ( ) = (cos ) or to the anti-spin dynamics with Θ , ( ) = (cos ). For the former case, 

we say that the molecule is in a sub-state of ( , , ) denoted by ( , , , 1/2), and for the latter case, 

the molecule is in the sub-state ( , , , −1/2). Furthermore, an entangled spin dynamics can be 
simulated according to the state-dependent molecular dynamics by expressing Θ , ( ) as a linear 

combination of (cos ) and (cos ) as described by Equation (5.8). 

In the ground state, we have seen that the orbital angular motion vanishes and the remnant angular 

motion in the  direction emerges as the spin dynamics. We proceed to demonstrate that in excited states, 

orbital and spin motions coexist and both contribute to angular momentum. To examine the interaction 
between orbital and spin dynamics, we next consider quantum states with = 1 and = 0. Since the  

-component angular momentum  is zero in these quantum states, we are interested in where the 

orbital angular momentum emerges and how it interacts with the spin angular momentum. The  and  

dynamics for these quantum states are governed by Equations (4.1b) and (4.1c) as: 

. (5.9)

The trajectories of ( ) on the complex −  plane are illustrated in Figure 5b, where it can be seen 

that as in the ground state, three regions representing three angular motions come about. In the region Ω  ( ≫ 0),  is monotonically decreasing, while in the region	Ω  ( ≪ 0),  is monotonically 

increasing. In the central region Ω ,  is a periodic function of time. In conjunction with the  

relation (5.5), the mean angular momentum of Equation (5.9) becomes: 
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. (5.10)

Comparing with Equation (5.7), we find that in the regions of Ω  and Ω , the angular momentum 

contains an additional component ℏ  contributed from the orbital motion = 1  apart from the spin 
angular momentum ℏ/2, indicating that the orbital angular motion, in the states with = 1, and = 0, 

is produced solely by the  dynamics because of = 0. 
For a quantum state with quantum number ≠ 0  and ≠ 0 , the  and  dynamics can be 

expressed by: 

 (5.11)

Making use of Equation (5.5) once again, we obtain a general expression for the angular momentum in 

the  and  directions as: 

 (5.12)

In summary, in the Ω  region, one has zero-mean  dynamics and a quantized -component angular 
momentum ℏ, which is a well-known result in QM; while in the Ω  and Ω  regions, one has an 

angular momentum ±( + 1/2)ℏ in the  direction and a zero-mean orbital angular momentum in the 

 direction, which is otherwise unknown to QM. 

The angular momentum given by Equation (5.12), which is derived from the state-dependent 

molecular dynamics, provides us with a trajectory-based method to determine the rotational energy of a 

diatomic molecule and its rotational spectrum. The most used formula of rotational energy takes the 

following form: 

, (5.13)

which treats the molecule as a rigid rotor with moment of inertia = /2. A typical rotational 

spectrum consists of a series of peaks corresponding to transitions between adjacent levels satisfying ∆ = ±1: 
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The rigid-rotor model assumes a constant internuclear distance  and neglects the stretch of the bond as 

the molecule rotates. To account for bond stretching due to rotation, we consider a refined  

rotation-energy component  in the eigenvalue expansion given by Equation (A20), from which the 

wavenumber of the transition from + 1 to  can be derived as: 
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where  is a correction factor known as the centrifugal distortion constant. Table 2 lists the measured 
far infrared absorption spectrum ( ) [29] for the diatomic molecule  and the predicted spectrum 

by the rigid model ( ) and the non-rigid model ( ) with = 10.58	cm  and  = 5.6 × 10 	cm  determined from the molecular parameters listed in Table 1. 

Table 2. Comparisons of the four predictions , ,  and  with the 

measured rotational spectrum . 

Transitions 
νrigid 

(cm-1) 
νnon-rigid 
(cm-1) 

νQHM 
(cm-1) 

νfitting 
(cm-1) 

νexp 
(cm-1) 

 

J = 0 → 1 21.16 21.16 20.80 20.88 20.88 0.383% 
J = 1 → 2 42.32 42.30 41.57 41.74 41.74 0.407% 
J = 2 → 3 63.48 63.42 62.29 62.58 62.58 0.463% 
J = 3 → 4 84.64 84.49 82.93 83.38 83.32 0.468% 
J = 4 → 5 105.8 105.52 103.47 104.14 104.13 0.634% 
J = 5 → 6 126.96 126.48 123.87 124.83 124.73 0.689% 
J = 6 → 7 148.12 147.35 144.11 145.45 145.37 0.867% 
J = 7 → 8 169.28 168.13 164.16 165.97 165.89 1.024% 
J = 8 → 9 186.65 188.81 184.01 186.40 186.23 1.192% 

Instead of using the quantum rotational energy obtained from the eigenvalues of Schrödinger equation, 

we will give an estimate of the wavenumber of transition based on the classical expression of the 

rotational energy =  with  and  computed by the state-dependent molecular dynamics: 

, (5.16)

where  is given by Equation (5.12) and the bond length  is denoted by  to emphasize its dependence 

on the angular quantum number J as given by Equation (4.5) and Equation (A14). An alternative estimate 

of the wavenumber caused by rotation absorption transition turns out to be: 

. (5.17)

With the molecular parameters of  given by Table 1, the bond length	  is calculated by using 

Equation (4.5) and then substituted into Equation (5.17) to yield the estimated spectrum . 

Table 2 compares the four predictions , ,  and  with the measured rotational 

spectrum . It can be seen that the wavenumber  is closest to , because  is obtained 

by tuning the parameters  and , so that Equation (5.15) best fits the experimental data. The curve 

fitting gives the best values as ∗ = 10.44	cm  and ∗ = 5.2 × 10 	cm . The two wavenumbers 
 and  can be compared on the same footing, since both adopt the same molecular 

parameters listed in Table 1 in the computation. Their difference lies in the model of rotational energy 
used to compute wavenumbers. The wavenumber  is based on the eigen-energy model (A20), 

while  is based on the QHM model (5.16). Table 2 reveals that the wavenumber  is much 

closer to the experimental results than .  
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Theoretically, the description of state-dependent molecular dynamics by QHM is equivalent to QM; 

however, the actual accuracy depends on the degree of approximation involved in the solution to the 
wave function. The equilibrium bond length  computed from Equation (4.5) is based on the radial wave 

function ,  given by Equation (A13), which is an approximate solution to the radial Schrödinger 

Equation (A5) by employing the second-order expansion (A6). When the quantum number J increases, 

the bond length deviates further from the equilibrium position  of the Morse potential, and the accuracy 

of the expansion (A6) gets worse. This tendency explains the degradation of the prediction accuracy of 
 with respect to the measured rotational spectrum . 

6. Conclusions 

A new QM/MM approach called quantum Hamilton mechanics (QHM), is proposed in this paper to 

establish state-dependent molecular dynamics (SDMD) in such a way that the governing equations of 

SDMD can be derived by MM with solutions compatible with QM. As a complex extension of Bohmian 

mechanics, QHM is coordinate-independent and especially suitable in curvilinear coordinates to 

simulate coupled orbital/spin dynamics. The correctness of SDMD has been verified by comparing with 

the quantum mechanical description of a diatomic molecule for which Schrödinger equation has an 

analytical solution. The resulting SDMD simultaneously satisfies the continuous-time dynamics 

governed by MM and the quantized dynamics governed by QM. QHM can be incorporated into the 

current framework of the mixing quantum/classical Bohmian (MQCB) method to simulate molecular 

dynamics. The incorporation of QHM with MQCB enables a trajectory interpretation of orbital-spin 

interaction and makes it possible for us to simulate spin entanglement in molecular dynamics. 
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Appendix 

Solving Schrödinger Equation with 3D Morse Potential 

The Schrödinger equation describing the motion of an atomic molecule as shown in Figure 1b takes 

the following form: 

, (A1)

Whose solution is expressible in terms of the product: 

, (A2)

2 2
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with ( )  denoting the associated Legendre polynomial. The radial function ( )  satisfies  

the equation: 

. (A3)

The effective internuclear potential ( ) is modeled by the Morse potential: 

, (A4)

where  is the equilibrium bond length,  is the potential energy for bond formation and  is a 

parameter controlling the width of the potential well. The three parameters , , and  are determined 

from the spectroscopic data. 

By rewriting ( ) = ( )/  and changing the independent variable from  to = ( ) , 

Equation (A3) can be recast into the following form: 

. (A5)

This equation has no analytical solution; an approximate approach is to expand /  with respect to − 1 and retain up to the second-order terms [30]: 

. (A6)

It is noted that as → 1, we have → . Hence, the accuracy of the approximation (A6) is higher when 

the molecule is closer to its equilibrium position. With this approximation, Equation (A5) becomes: 

, (A7)

where = /( ℏ /2 ), = /( ℏ /2 ), and: 

. (A8)

In order to transfer Equation (A7) into a standard differential equation, we introduce three  

new parameters: 

, (A9)

and express the solution ( ) to Equation (A7) in terms of the following form: 
. (A10)

Then Equation (A7) can be reduced to the hypergeometric equation: 

. (A11)
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To have a bound solution to the hypergeometric equation, the following condition must be imposed on 

the constants  and : 

, (A12)

where the integer  is known as the vibrational quantum number. Under this condition, the radial wave 

function turns out to be: 

, (A13)

where (− , + 1; ) is the -order hypergeometric polynomial. The parameters  and  in , ( ) 
are determined by the two quantum numbers  and J as: 

. (A14)

The substitution of the radial wave function , ( )  into Equation (A2) gives the full  

wave function: 

. (A15)

The bound condition (A12) leads to the quantization of energy. Inserting the definition of  from 

Equation (A9) to Equation (A12), we obtain: 

. (A16)

Solving for  yields the rotation-dependent energy levels ,  as: 

, (A17)

where we note that the three parameters ,  and  are functions of the rotational quantum number J 

as defined in Equation (A8). 

For pure vibrational motion with = 0, we have = = = 0 and Equation (A17) reduces to 

the pure vibrational energy level: 

. (A18)

The dependence of	 ,  on the rotational quantum number J can be illustrated by taking Taylor series 

expansion of	 ,  with respect to the kinetic rotation energy = ℏ ( + 1)/(2 ), 
, (A19)

where the second term  is attributed to a pure rotation motion: 

. (A20)

The third and fourth terms in ,  are, respectively, the first-order and second-order vibration-rotation 

coupling energies: 
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, (A21)

. 
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