Supporting Information

Series of Anthraquinone Derivatives from a Fungus Alternaria sp. XZSBG-1

Bin Chen ^{1,2}, Qiong Shen ^{1,*}, Xun Zhu ³ and Yongcheng Lin ^{1,*}

- ¹ School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China; E-Mail: chenyishan@126.com
- ² Tibet Plateau Institute of Biology, Lhasa 850001, China
- ³ Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China; E-Mail: zhuxun8@mail.sysu.edu.cn
- * Author to whom correspondence should be addressed;
 E-Mails: cesshq@163.com (Q.S.); ceslyc@mail.sysu.edu.cn (Y.L.);
 Tel./Fax: +86-20-8403-9623 (Y.L.).

List of Supporting Information

Table S1. NMR Data of Compound 1 and 2 (DMSO- d6), Measured at 400 MHz (¹H) and 100 MHz (¹³C). Table S2. NMR Data of Compound 3 and 4 (DMSO- d6), Measured at 400 MHz (¹H) and 100 MHz (¹³C). Table S3. NMR Data of Compound 5 (DMSO- d6), Measured at 400 MHz (¹H) and 100 MHz (¹³C). Table S4. NMR Data of Compound 6 (DMSO- d6), Measured at 400 MHz (¹H) and 100 MHz (¹³C). Table S5. NMR Data of Compound 7 (DMSO- d6), Measured at 400 MHz (¹H) and 100 MHz (¹³C). Table S6. NMR Data of Compound 8 (DMSO- d6), Measured at 400 MHz (¹H) and 100 MHz (¹³C). Table S7. NMR Data of Compound 9 (DMSO- d6), Measured at 400 MHz (¹H) and 100 MHz (¹³C). Table S8. NMR Data of Compound 10 (DMSO- d6), Measured at 400 MHz (¹H) and 100 MHz (¹³C). Figure S1. ¹H-NMR Spectra of compound 2 (altersolanol O), Measured at 400 MHz (DMSO- d6). Figure S2. ¹³C-NMR Spectra of compound 2 (altersolanol O), Measured at 100 MHz (DMSO- d6). Figure S3. ¹H-¹H COSY of compound 2 (altersolanol O), Measured at 400 MHz (DMSO- d6). Figure S4. HSQC of compound 2 (altersolanol O), Measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- d6). Figure S5. HMBC of compound 2 (altersolanol O), Measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- d6). Figure S6. NOESY of compound 2 (altersolanol O), Measured at 400 MHz (¹H) and 100 Hz (¹³C) (DMSO- d6). Figure S7. HR-ESI-TOF-MS spectra of compound 2 (altersolanol O). Figure S8. CD spectra of compound 2 (altersolanol O)in acetonitrile solution. Figure S9. ¹H-NMR Spectra of compound 2 (alterporriol S), Measured at 400 MHz (DMSO- d6). Figure S10. ¹³C-NMR Spectra of compound 2 (alterporriol S), Measured at 100 MHz (DMSO- d6). Figure S11. ¹H-¹H COSY of compound 2 (alterporriol S), Measured at 400 MHz (DMSO- d6). Figure S12. HSQC of compound 2 (alterporriol S), Measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- d6). Figure S13. HMBC of compound 2 (alterporriol S), Measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- d6). Figure S14. NOESY of compound 2 (alterporriol S), Measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- d6). Figure S15. HR-ESI-TOF-MS spectra of compound 2 (alterporriol S). Figure S16. CD spectra of compound 2 (alterporriol S)in acetonitrile solution. Figure S17. ¹H-NMR Spectra of compound 3 (alterporriol T), Measured at 400 MHz (DMSO- d6). Figure S18. ¹³C-NMR Spectra of compound 3 (alterporriol T), Measured at 100 MHz (DMSO- d6). Figure S19. ¹H-¹H COSY of compound 3 (alterporriol T), Measured at 400 MHz (DMSO- d6). Figure S20. HSQC of compound 3 (alterporriol T), Measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- d6). Figure S21. HMBC of compound 3 (alterporriol T), Measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- d6).

Figure S22. NOESY of compound 3 (alterporriol T), Measured at 400 MHz (¹ H) and 100 MHz (¹³ C) (DMSO- d6).
Figure S23. HR-ESI-TOF-MS spectra of compound 3 (alterporriol T).
Figure S24. CD spectra of Compound 3 (alterporriol T) in acetonitrile solution.
Figure S25. ¹ H-NMR Spectra of compound 3 (alterporriol T), Measured at 400 MHz (DMSO- d6).
Figure S26. ¹³ C-NMR Spectra of compound 4 (alterporriol U), Measured at 100 MHz (DMSO- d6).
Figure S27. ¹ H- ¹ H COSY of compound 4 (alterporriol U), Measured at 400 MHz (DMSO- <i>d</i> 6).
Figure S28. HSQC of compound 4 (alterporriol U), Measured at 400 MHz (¹ H) and 100 MHz (¹³ C) (DMSO- d6).
Figure S29. HMBC of compound 4 (alterporriol U), Measured at 400 MHz (¹ H) and 100 MHz (¹³ C) (DMSO- d6).
Figure S30. NOESY of compound 4 (alterporriol U), Measured at 400 MHz (¹ H) and 100 MHz (¹³ C) (DMSO- d6).
Figure S31. HR-ESI-TOF-MS spectra of compound 4 (alterporriol U).
Figure S32. CD spectra of Compound 4 (alterporriol U) in acetonitrile solution.
Figure S33. ¹ H-NMR Data of compound 5 (alterporriol E), Measured at 400 MHz (DMSO- d6).
Figure S34. ¹³ C-NMR Data of compound 5 (alterporriol E), Measured at 100 MHz (DMSO- d6).
Figure S35. DEPT-90 ¹³ C-NMR Data of compound 5 (alterporriol E), Measured at 100 MHz (DMSO- d6).
Figure S36. DEPT-135 ¹³ C-NMR Data of compound 5 (alterporriol E), Measured at 100 MHz (DMSO- d6).
Figure S37. ¹ H- ¹ H COSY of compound 5 (alterporriol E), Measured at 400 MHz (DMSO- d6).
Figure S38. HSQC of compound 5 (alterporriol E), Measured at 400 MHz (¹ H) and 100 MHz (¹³ C) (DMSO- d6).
Figure S39. HMBC of compound 5 (alterporriol E), Measured at 400 MHz (¹ H) and 100 MHz (¹³ C) (DMSO- d6).
Figure S40. NOESY of compound 5 (alterporriol E), Measured at 400 MHz (¹ H) and 100 MHz (¹³ C) (DMSO- d6).
Figure S41. HR-ESI-TOF-MS spectra of compound 5 (alterporriol E).
Figure S42. CD spectra of compound 5 (alterporriol E)in acetonitrile solution.
Figure S43. ¹ H-NMR Data of compound 6, Measured at 400 MHz (DMSO- d6).
Figure S44. ¹³ C-NMR Data of compound 6, Measured at 100 MHz (DMSO- d6).
Figure S45. HSQC of compound 6, Measured at 400 MHz (¹ H) and 100 MHz (¹³ C) (DMSO- d6).
Figure S46. HMBC of compound 6, Measured at 400 MHz (¹ H) and 100 MHz (¹³ C) (DMSO- d6).
Figure S47. NOESY of compound 6, Measured at 400 MHz (¹ H) and 100 MHz (¹³ C) (DMSO- d6).
Figure S48. CD spectra of compound 6 in acetonitrile solution.
Figure S49. HR-ESI-TOF-MS spectra of compound 6.
Figure S50. ¹ H-NMR Spectra of compound 7, Measured at 400 MHz (DMSO- <i>d</i> 6).
Figure S51. ¹³ C-NMR Spectra of compound 7, Measured at 100 MHz (DMSO- d6).
Figure S52. ¹ H- ¹ H COSY of compound 7, Measured at 400 MHz (DMSO- <i>d</i> 6).
Figure S53. HSQC of compound 7, Measured at 400 MHz (¹ H) and 100 MHz (¹³ C) (DMSO- d6).
Figure S54. HMBC of compound 7, Measured at 400 MHz (¹ H) and 100 MHz (¹³ C) (DMSO- d6).
Figure S55. NOESY of compound 7, Measured at 400 MHz (¹ H) and 100 MHz (¹³ C) (DMSO- d6).
Figure S56. HR-ESI-TOF-MS spectra of compound 7.
Figure S57. CD spectra of compound 7 in acetonitrile solution.
Figure S58. ¹ H-NMR Spectra of compound 8, Measured at 400 MHz (DMSO- <i>d</i> 6).
Figure S59. ¹³ C-NMR Spectra of compound 8, Measured at 100 MHz (DMSO- d6).
Figure S60. ¹ H- ¹ H COSY of compound 8, Measured at 400 MHz (DMSO- <i>d</i> 6).
Figure S61. HSQC of compound 8, Measured at 400 MHz (¹ H) and 100 MHz (¹³ C) (DMSO- d6).
Figure S62. HMBC of compound 8, Measured at 400 MHz (¹ H) and 100 MHz (¹³ C) (DMSO- d6).
Figure S63. NOESY of compound 8, Measured at 400 MHz (¹ H) and 100 MHz (¹³ C) (DMSO- d6).
Figure S64. HR-ESI-TOF-MS spectra of compound 8.
Figure S65. ¹ H-NMR Spectra of compound 9, Measured at 400 MHz (DMSO- <i>d</i> 6).
Figure S66. ¹³ C-NMR Spectra of compound 9, Measured at 100 MHz (DMSO- d6).
Figure S67. DEPT-90 ¹³ C-NMR Data of compound 9, Measured at 100 MHz (DMSO- d6).
Figure S68. DEPT-135 ¹³ C-NMR Data of compound 9, Measured at 100 MHz (DMSO- d6).

Figure S69. ¹H-¹H COSY of compound 9, Measured at 400 MHz (DMSO- d6).
Figure S70. HSQC of compound 9, Measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- d6).
Figure S71. HMBC of compound 9, Measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- d6).
Figure S72. ESI -MS spectra of compound 9.
Figure S73. ¹H-NMR Spectra of compound 10, Measured at 400 MHz (DMSO- d6).
Figure S74. ¹³C-NMR Spectra of compound 10, Measured at 100 MHz (DMSO- d6).
Figure S75. DEPT-135 ¹³C-NMR Data of compound 10, Measured at 100 MHz (DMSO- d6).
Figure S76. ¹H-¹H COSY of compound 10, Measured at 400 MHz (DMSO- d6).
Figure S77. HSQC of compound 10, Measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- d6).
Figure S78. HMBC of compound 10, Measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- d6).
Figure S79. ESI -MS spectra of compound 10.
Figure S79. ESI -MS spectra of compound 10.

Figure S81. EI -MS spectra of compound 11.

Table S1. NMR data of compound 1 and 2 (DMSO- d6), measured at 400 MHz (¹H) and 100 MHz (¹³C).

		2		3			
Actom	δ _C , (ppm)	δ _H (ppm) (mult., J in Hz)	HMBC	δ _C , (ppm)	δ _H (ppm) (mult., J in Hz)	HMBC	
1	67.28	4.42 (d,8.1)	C-2	67.78	4.38 (d,4.32)	C-2,3,4a, 9,9a, 11	
2	71.84	3.27 (d,8.1)	C-1	71.69			
3	74.14			69.59	3.77 (dd,15.5,7.8)	C-4	
4	67.64	4.43 (s)	C-2, 3, 10,11	42.7	3.82 (dd,1.3,4.8)	C-3,4' ,4a,9a	
4a	68.37			149.43			
5	106.19	6.91 (d,2.48)	C-6, 7,8a, 10	163.04			
6	165.49			105.49	6.80 (d,2.5)	C-5,7, 8,10a	
7	106.98	6.81 (d,2.48)	C-5,6,8,8a	164.89			
8	162.11			105.63	7.05 (d,2.5)	C-6,7, 9,10a	
8a	110.0			133.69			
9	193.61			183.08			
9a	67.16			140.62			
10	191.12			188.59			
10a	134.46			109.91			
11	21.78	1.12 (s)	C-2,3, 4	22.22	1.13 (s)	C-1,2,3	
12	56.43	3.86 (s)	C-6	56.08	3.91 (s)	C-7	
1 - OH					5.12 (d,4.32)	C-1,2, 9a	
2-OH					4.14 (s)	C-1	
3-OH					4.09 (d,7.8)	C-3,4	
5-OH					12.26 (s)	C-5, 6, 10a	
8-OH		11.16 (s)					

	4					5			
Actom	δ _C , (ppm)	δ _H (ppm) (mult., J in Hz)	НМВС	NOE	δ _C , (ppm)	δ _H (ppm) (mult., J in Hz)	HMBC	NOE	
1	68.39	4.47 (dd,5.78,7.06)	C-2,9a	Н- 4-ОН	68.45	4.48 (dd,5.60,6.87)	C-2,4a,9a,9	H-4	
2	73.78	3.57 (dd,7.06,7.06)	C-1	H-11	73.74	3.55 (dd,6.87,6.87)	C-1	H-11	
3	72.83				72.87				
4	68.22	4.03 (d,6.93)	C-2,3,4a, 10, 11	H-11,1-OH	68.27	4.05 (d,6.77)	C-2,9a, 0,4a,11	H-1,11	
4a	143.31				143.42				
5	122.86				122.59				
6	164.28				164.33				
7	103.77	6.93 (s)	C-5,8, 8a		103.77	6.92 (s)	C-6,8, 8a ,9	H-12'	
8	163.63				163.73				
8a	109.27				109.3				
9	188.77				188.79				
9a	142.78				142.61				
10	184.09				183.88				
10a	128.86				129.02				
11	22.18	1.13 (s)	C-3,4	Н-2,4,1-ОН	22.22	1.13 (s)	C-3,4	H-2,4	
12	56.74	3.70 (s)	C-6	H-7	56.71	3.69 (s)	C-6	H-7	
1-OH		5.64 (d,7.06)	C-1, 3,9a	H-4		4.98 (d,5.6)	C-1,2, 9a	H-4-OH	
2-OH		4.36 (s)	C-2,4			4.81 (d,6.87)	C-1,2,3	H-4-OH	
3-ОН		4.85 (d,6.93)	C-1			4.38 (s)	C-2,4, 11	H-1-OH	
4 - OH		5.04 (d,5.78)	C-2,4,4a	H-1		5.44 (d,6.77)	C-3,4, 4a	Н- 2-ОН	
8-OH		13.04 (s)	C-7,8,8a			13.04 (s)	C-7,8, 8a		
1'	110.44	7.56 (s)	C-2', 3', 9', 9a'		110.42	7.55 (s)	C-2',3', 9',9a',10'	Н-2'-ОН	
2'	161.19				161.24				
3'	125.25				125.27				
4'	130.18	7.70 (d,0.56)	C-3',4a',10', 11'	H-11'	130.33	7.70 (d,0.69)	C-2',4a', 9',10',11'	H-11'	
4a'	132.39	<u> </u>			132.38				

 Table S2. NMR data of compound 3 and 4 (DMSO- d6), measured at 400 MHz (¹H) and 100 MHz (¹³C).

4					5			
Actom	δ _C , (ppm)	δ _H (ppm) (mult., J in Hz)	НМВС	NOE	δ _C , (ppm)	δ _H (ppm) (mult., J in Hz)	HMBC	NOE
5'	121.81				123.12			
6'	164.18				165.25			
7'	104.01	6.94 (s)	C- 5',8', 8a',9'		103.54	6.94 (s)	C- 6,8', 8a',9'	Н-12,8'-ОН
8'	164.85				165.23			
8a'	109.98				109.92			
9'	186.7				186.61			
9a'	132.2				132.2			
10'	181.1				180.97			
10a'	131.48				130.43			
11'	16.03	2.20 (s)	C-2',4'	H-4'	16.09	2.19 (s)	C-2',3',4'	H-4'
12'	56.65	3.68 (s)	C-6'	H -7 '	56.83	3.72 (s)	C-6'	H - 7'
2'-OH		11.07 (brs)				11.03 (brs)		H - 1'
8' - OH		13.60 (s)	C-7',8',8a'			13.66 (s)	C-7',8',8a'	H - 7'

 Table S2. Cont.

	1						
position	δ _C , mult	δ _H (J in HZ)	HMBC	NOE			
1	68.4	4.48 (dd,5.63,6.96)	C-2,4a ,9a				
2	73.8	3.59 (dd,6.85,6.96)	C-1	H-11			
3	72.9						
4	68.2	4.10 (d,7.05)	C-3, 4a,10,9a, 11	H-11			
4a	142.8						
5	129.8						
6	163.5						
7	163.6						
8	104.2	6.91 (s)	C-10a,7,8a,9	H-12			
8a	121.4						
9	188.8						
9a	143.4						
10	184.1						
10a	109.3						
11	22.2	1.16 (s)	C-3,4	H - 2,4			
12	56.7	3.68 (s)	C-8				
1 - OH		4.98 (d,5.63)	C-1, 2,9a				
2-OH		4.80 (d,6.85)	C-1,3				
3 - OH		4.37 (s)	C-3,4,11	1 - OH			
4 - OH		5.63 (d,7.05)	C-3,4,4a				
6-OH		6.91 (s)					
8-OH							

Table S3. NMR data of compound 5 (DMSO- *d*6), measured at 400 MHz (¹H) and 100 MHz (¹³C).

Table S4. NMR data of compound 6 (DMSO- *d*6), measured at 400 MHz (¹H) and 100 MHz (¹³C).

no	$\delta_{\rm C}$, mult	δ _H (J in Hz)	H-H-COSY	HMBC	NOESY
1	68.49	4.48 (dd,4.6,6.26,1H)	H-2,4	C-2, 4a ,10,10a	H-4
2	73.83	3.57 (m,1H)	H-1	C-1	
3	72.94				
4	68.22	4.08 (d,6.84,1H)	H-1	C-3, 4a, 5,10a, 11	H-1
4a	142.89				
5	183.82				
5a	128.9				
6	109.28				
7	164.73				
8	103.79	6.93 (s,1H)		C-6,9,9a, 10	H-12
9	164				
9a	122.45				
10	188.76				
10a	143.36				
11	22.25	1.15 (s,3H)		C-3,4	Н-1,2, 4,4-ОН
12	56.85	3.70 (s,3H)		C-7,8	H-8

Table S4. Cont.

no	$\delta_{\rm C}$, mult	δ _H (J in Hz)	H-H-COSY	HMBC	NOESY
	1 - OH	5.04 (d,4.6,1H)		C-1,2, 10a	Н-1,2-ОН
	2-OH	4.84 (s,1H)			H-1
	3 - OH	4.41 (s,1H)		C-3,4	
	4- OH	5.63 (d,6.84,1H)		C-3,4,4a	Н-1,4, 1-ОН ,2-ОН
	9 - OH	13.07 (br,1H)			Н-1,1-ОН,2-ОН, 4ОН

Table S5. NMR data of compound 7 (DMSO- *d*6), measured at 400 MHz (¹H) and 100 MHz (¹³C).

No.	δ _C , mult	$\delta_{\rm H}$ (J in HZ)	H-H-COSY	HMBC	NOESY
1	68.39 (CH)	4.49 (dd,5.40,7.11,1H)	Н-2, 1-ОН	C-2,4a,9a,9	
2	73.72 (CH)	3.58 (dd,6.66,6.66,1H)	Н-1,2-ОН	C-1	H-11
3	72.92 (C)				
4	68.2 (CH)	4.06 (s,1H)		C- 3,4a,9a, 10,11	H-11
4a	143.4 (C)				
5	122.89 (C)				
6	164.18 (C)				
7	103.95 (CH)	6.94 (s,1H)		C-5, 8, 8a,9	H-12
8	163.84 (C)				
8a	109.65 (C)				
9	189.04 (C)				
9a	142.69 (C)				
10	184.26 (C)				
10a	134.54 (C)				
11	22.21 (CH3)	1.13 (s,3H)		C-3,4	H-2,4
12	56.71 (CH3)	3.70 (s,3H)		C-6	H - 7
1 - OH		4.98 (d,5.40)	H-1	C-1,2,4a	
2-OH		4.79 (d,6.78)	H-2	C-1	H-4-OH
3-OH		4.33 (s,1H)		C-2,3,4	
4- OH		5.69 (br)			Н-1-ОН,2-ОН,
8-0H		13.06 (s)		C-67	3-OH
1'	125 81 (C)	15.00 (5)		0,7	
2,	159 19				
2 3'	131.56 (C)				
3 4'	129 47 (CH)	8 03 (d 0 66 1H)	H-11'	C-2' 4a' 9' 9a' 10' 11'	
4a'	125 43 (C)	0.00 (0,0.00,111)		c = , ,> ,> ,1 c ,11	
5'	106.44 (CH)	7.17 (d.2.57)	H-7'	C-6'.7.8a'.10	H-12'
6'	165.58 (C)) -)) -	
7'	105.99 (CH)	6.75 (d.2.57)	H-5'	C-5'.8'.8a'	H-12'
8'	164.41 (C)				
8a'	110.27 (C)				
9'	187.59 (C)				
9a'	130.92 (C)				
10'	180.71 (C)				
11'	17.15 (CH3)	2.31 (s)		C-2',3',4',4a'	H-4'
12'	56.2 (CH3)	3.90 (s)		C-6'	H-5',7'
8'-OH		12.54 (s)		C-7',8'8a'	

No.	$\delta_{\rm C}$, mult	H-H-COSY	δ _H (J in HZ)	НМВС	NOESY
1	68.4 (CH)	Н-2	4.49 (dd,6.92,5.00,1H)	C-2,4a	H-4
2	73.81 (CH)	H-1	3.59 (dd,6.40,6.40,1H)	C-1	H - 4
3	72.88 (C)				
4	68.26 (CH)		4.05 (d,6.00,1H)	C-2,4a, 10,11	H-1
4a	143.39 (C)				
5	122.92 (C)				
6	164.21 (C)				
7	104.06 (CH)		6.92 (s,1H)	C-5,8, 8a,9	H-12
8	163.67 (C)				
8a	109.3 (C)				
9	188.79 (C)				
9a	142.8 (C)				
10	184.15 (C)				
10a	128.87 (C)				
11	22.23 (CH3)		1.13 (s,1H)	C- 3,4	H-1,2,4
12	56.8 (OCH3)		3.68 (s,1H)	C-7	H - 7
1 - OH			4.98 (d,5.00,1H)	C-1 (w),2 (w)	Н-3-ОН,4-ОН
2-OH			4.33 (s,1H)	C-1 (w)	H-4-OH
3- OH			4.80 (d,6.40,1H)		
4- OH			5.60 (d,6.92,1H)	C-4a (w)	Н- 1-ОН ,2-ОН
8-OH			13.02 (s,1H)		
1'	110 48 (CH)		7 56 (s 1H)	C-2',3'9',9a',10'	
1			,(5,111)	(w),11' (w)	
2'	161.3 (C)				
3'	125.24 (C)				
4'	130.24 (CH)	H - 11'	7.69 (d,0.72,1H)	C-2',4a',9' (w),10', 11'	H-11'
4a'	132.43 (C)				
5'	121.86 (C)				
6	164.31 (C)				
7'	103.83 (CH)		6.93 (s,1H)	C-5', 8',8a', 9'	H-12'
8'	164.9 (C)				
8a'	110.01 (C)				
9'	186.75 (C)				
9a'	132.27 (C)				
10'	181.15 (C)				
10a'	131.5 (C)				
11'	16.11 (CH3)	H - 4'	2.19 (s,1H)	C-2',4'	
12'	56.7 (OCH3)		3.70 (s,1H)	C-3',7' (w)	H-7'
8'-OH			13.58 (s,1H)	C-7',7',8a'	

Table S6. NMR data of compound 8 (DMSO- *d*6), measured at 400 MHz (¹H) and 100 MHz (¹³C).

No.	$\delta_{\rm C}$, mult	δ _H (J in HZ)	H-H-COSY	HMBC
1	188.21 (C)			
2	183 (C)			
3	165.72 (C)			
4	163.45 (C)			
5	144.01 (C)			
6	143.04 (C)			
7	133.58 (C)			
8	109.23 (C)			
9	107.05 (CH)	7.01 (d,2.5,1H)	H-10,14	C-2,3,7 (w),8, 10
10	105.7 (CH)	6.76 (d,2.5,1H)	H - 9,14	C-3,4,8,9
11	72.1 (C)			
12	69.38 (CH)	4.33 (s,1H)	H-15,16	C2,5,11,13,16-
13	66.91 (CH)	3.75 (dd,5.90,9.60,1H)	H-15	C-15
14	56.37 (OCH3)	3.88 (s,1H)	H-9,10	C-3
15	20.06 (CU2)	2.34 (dd,9.60,19.45,1H)	H-12,13,15	C-2 (w),5, 12
13	29.00 (CH2)	2.79 (dd,5.90,19.45,1H)	H-13,15	C-1,6,11,12
16	21.93 (CH3)	1.28 (s,1H)	H-12,16	C-11,12,13
	4- OH	12.15 (s,1H)		C-4,8,10

Table S7. NMR data of compound 9 (DMSO- *d*6), measured at 400 MHz (¹H) and 100 MHz (¹³C).

Table S8. NMR data of compound 10 (DMSO- *d*6), measured at 400 MHz (¹H) and 100 MHz (¹³C).

No.	δ _C , mult	δ _H (J in HZ)	H-H-COSY	HMBC	NOESY
1	68.8	4.49 (dd 6.89,6.89)	Н-2	C-2,4a,9,9a	H-11
2	74.1	3.64 (dd 6.06,6.06)	H-1	C-1	H-1-OH,11
3	73.2				
4	68.7	4.32 (d 5.10)	Н-5.72-ОН	C-4a	H-11
4a	142.3				
5	106.9	7.03 (d 2.5)	H - 7	C-7,8a,10	H-12
6	165.8				
7	106.2	6.84 (d 2.5)	H-5	C-5,6 ,8,8a	H-12
8	163.4				
8a	109.8				
9	183.9				
9a	144.7				
10	188.7				
10a	133.6				
11	22.5	1.24 (s)	H-2	C-3,4	Н-1,2,2-ОН,4,4-ОН
12	56.5	3.91 (s)		C-6	H - 5,7
1 - OH		5.04 (d 5.18)			H-4-OH
2-OH		4.87 (d 6.41)			H-1-OH
3-OH		4.45 (d 5.10)			H-4-OH
4- OH		5.67 (d 6.08)	H-4		H-1,2
8-OH		12.16 (br)			

Figure S1. ¹H-NMR spectra of compound 1 (altersolanol O), measured at 400 MHz (DMSO- d6).

Figure S2. ¹³C-NMR spectra of compound 1 (altersolanol O), measured at 100 MHz (DMSO- d6).

Figure S3. ¹H-¹H COSY of compound 1 (altersolanol O), measured at 400 MHz (DMSO-*d*6).

Figure S4. HSQC of compound 1 (altersolanol O), measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- *d*6).

Figure S5. HMBC of compound 1 (altersolanol O), measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- *d*6).

Figure S6. NOESY of compound 1 (altersolanol O), measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- *d*6).

Figure S7. HR-ESI-TOF-MS spectra of compound 1 (altersolanol O).

Figure S8. CD spectra of compound 1 (altersolanol O) in acetonitrile solution.

Figure S9. ¹H-NMR spectra of compound 2 (alterporriol S), measured at 400 MHz (DMSO- d6).

Figure S10. ¹³C-NMR spectra of compound 2 (alterportiol S), measured at 100 MHz (DMSO- d6).

Figure S11. ¹H-¹H COSY of compound 2 (alterporriol S), measured at 400 MHz (DMSO- *d*6).

Figure S12. HSQC of compound 2 (alterportiol S), measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- *d*6).

Figure S13. HMBC of compound 2 (alterportiol S), measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- *d*6).

Figure S14. NOESY of compound 2 (alterportiol S), measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- *d*6).

Figure S15. HR-ESI-TOF-MS spectra of compound 2 (alterporriol S).

Figure S16. CD spectra of compound 2 (alterporriol S)in acetonitrile solution.

Figure S17. ¹H-NMR Spectra of compound 3 (alterportiol T), Measured at 400 MHz (DMSO- *d*6).

Figure S18. ¹³C-NMR spectra of compound 3 (alterportiol T), measured at 100 MHz (DMSO- *d*6).

Figure S19. ¹H-¹H COSY of compound 3 (alterportiol T), measured at 400 MHz (DMSO- *d*6).

Figure S20. HSQC of compound 3 (alterportiol S), measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- *d*6).

Figure S21. HMBC of compound 3 (alterportiol S), measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- *d*6).

Figure S22. NOESY of compound 3 (alterportiol S), measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- *d*6).

Figure S24. CD spectra of compound 3 (alterporriol S) in acetonitrile solution.

Figure S26. ¹³C-NMR spectra of compound 4 (alterportiol U), measured at 100 MHz (DMSO- d6).

Figure S27. ¹H-¹H COSY of compound 4 (alterportiol U), measured at 400 MHz (DMSO-*d*6).

Figure S28. HSQC of compound 4 (alterportiol U), measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- *d*6).

Figure S29. HMBC of compound 4 (alterportiol U), measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- *d*6).

Figure S30. NOESY of compound 4 (alterportiol U), measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- *d*6).

Meas. m/z Pred. m/z Df. (mDa)

617.1282 617.1301

Т

Df. (ppm)

-3.08

-1.9

Iso

84.47

DBE

20.0

Rank Score Formula (M)

80.07 C32 H26 O13

lon

[M-H]-

Figure S31. HR-ESI-TOF-MS spectra of compound 4 (alterporriol U).

Figure S32. CD spectra of compound 4 (alterporriol U) in acetonitrile solution.

Figure S33. ¹H-NMR data of compound 5 (alterporriol E), measured at 400 MHz (DMSO- *d*6).

Figure S34. ¹³C-NMR data of compound 5 (alterporriol E), measured at 100 MHz (DMSO- *d*6).

Figure S35. DEPT-90 ¹³C-NMR data of compound 5 (alterportiol E), measured at 100 MHz (DMSO- *d*6).

Figure S36. DEPT-135 ¹³C-NMR data of compound 5 (alterportiol E), measured at 100 MHz (DMSO- *d*6).

Figure S37. ¹H-¹H COSY of compound 5 (alterporriol E), measured at 400 MHz (DMSO- *d*6).

Figure S38. HSQC of compound 5 (alterportiol E), measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- *d*6).

Figure S39. HMBC of compound 5 (alterportiol E), measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- *d*6).

Figure S40. NOESY of compound 5 (alterportiol E), measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- *d*6).

Figure S41. HR-ESI-TOF-MS spectra of compound 1 (alterporriol S).

Figure S42. CD spectra of compound 5 (alterporriol E) in acetonitrile solution.

Figure S44. ¹³C-NMR data of compound 6, measured at 100 MHz (DMSO- *d*6).

Figure S45. HSQC of compound 6, measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- *d*6).

Figure S46. HMBC of compound 6, measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- d6).

Figure S47. NOESY of compound 6, measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- *d*6).

Figure S48. CD spectra of compound 6 in acetonitrile solution.

Figure S50. ¹H-NMR spectra of compound 7, measured at 400 MHz (DMSO- *d*6).

Figure S51. ¹³C-NMR spectra of compound 7, measured at 100 MHz (DMSO- *d*6).

Figure S52. ¹H-¹H COSY of compound 7, measured at 400 MHz (DMSO- *d*6).

Figure S53. HSQC of compound 7, measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO-*d*6).

Figure S54. HMBC of compound 7, measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- *d*6).

Figure S55. NOESY of compound 7, measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- *d*6).

Figure S57. CD spectra of compound 7 in acetonitrile solution.

Figure S58. ¹H-NMR spectra of compound 8, measured at 400 MHz (DMSO- *d*6).

Figure S59. ¹³C-NMR spectra of compound 8, measured at 100 MHz (DMSO- *d*6).

Figure S60. ¹H-¹H COSY of compound 8, measured at 400 MHz (DMSO- *d*6).

Figure S61. HSQC of compound 8, measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO-*d*6).

Figure S62. HMBC of compound 8, measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- *d*6).

Figure S63. NOESY of compound 8, measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- *d*6).

Figure S64. HR-ESI-TOF-MS spectra of compound 8.

Figure S65. ¹H-NMR spectra of compound 9, measured at 400 MHz (DMSO- *d*6).

Figure S66. ¹³C-NMR spectra of compound 9, measured at 100 MHz (DMSO- *d*6).

Figure S67. DEPT-90 ¹³C-NMR data of compound 9, measured at 100 MHz (DMSO- *d*6).

Figure 68. DEPT-135 ¹³C-NMR data of compound 9, measured at 100 MHz (DMSO- *d*6).

Figure S69. ¹H-¹H COSY of compound 9, measured at 400 MHz (DMSO- *d*6).

Figure S70. HSQC of compound 9, measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- *d*6).

Figure S71. HMBC of compound 9, measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- *d*6).

Figure S72. ESI -MS spectra of compound 9.

Figure S73. ¹H-NMR spectra of compound 10, measured at 400 MHz (DMSO- *d*6).

Figure S75. DEPT-135 ¹³C-NMR data of compound 10, measured at 100 MHz (DMSO- *d*6).

Figure S76. ¹H-¹H COSY of compound 10, measured at 400 MHz (DMSO- *d*6).

Figure S78. HMBC of compound 10, measured at 400 MHz (¹H) and 100 MHz (¹³C) (DMSO- *d*6).

S52

Figure S79. ESI -MS spectra of compound 10.

Figure S80. ¹H-¹H COSY of compound 11, measured at 400 MHz (DMSO- *d*6).

Figure S81. EI -MS spectra of compound 11.