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Abstract: The present review describes research on novel natural antitumor alkaloids 

isolated from marine invertebrates. The structure, origin, and confirmed cytotoxic activity 

of more than 130 novel alkaloids belonging to several structural families (indoles, pyrroles, 

pyrazines, quinolines, and pyridoacridines), together with some of their synthetic analogs, 

are illustrated. Recent discoveries concerning the current state of the potential and/or 

development of some of them as new drugs, as well as the current knowledge regarding 

their modes of action, are also summarized. A special emphasis is given to the role of 

marine invertebrate alkaloids as an important source of leads for anticancer drug discovery. 
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1. Introduction 

Oceans cover more than 70% of the planet and provide a wealth of organisms that produce 

structurally unique bioactive metabolites. These molecules are originated from the phenomenon of 

biodiversity, in which the interactions among species and with the environment are devolved upon 

diverse complex chemical entities within the organisms that enhance their survival and 

competitiveness. The therapeutic area of infectious diseases and oncology have benefited greatly from 
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this chemical arsenal and, as with plants, researchers have recognized its potential use to kill bacteria 

or cancer cells. Incidence of biological activity in compounds derived from marine sources is high, 

especially with regard to cytotoxicity, where extracts of marine species surpass those of terrestrial 

origin. Marine natural products are able to interact with many specific targets within the cell and are 

finding increasing use as probes to interrogate biological systems as part of chemical genomics and 

related research. Most of the bioactive molecules from the sea are found in invertebrates and, with 

respect to antitumor agents, several promising molecules have been isolated from these sea creatures, 

which are soft bodied and have a sedentary life style demanding chemical means of defense. This 

review is focused on some major classes of invertebrates’ bioactive alkaloids, useful as lead structures 

in the research and development of new antitumor drugs or as biological probes for physiological 

investigation. Their structures, origin, and significant biological activity are illustrated. Recent 

discoveries concerning the current state of potential and/or development of some of them as new 

drugs, as well as the current knowledge regarding their modes of action, are also summarized. 

2. β-Pyridopyrrolopyrimidine Alkaloids: Variolins, a New Family of Cyclin-Dependent Kinases 

(CDKs) Inhibitors 

Altered protein phosphorylation is a frequent feature in numerous human diseases; this last decade 

has therefore witnessed considerable efforts to identify, optimize, and evaluate pharmacologic 

inhibitors of protein kinases. Among the 518 human kinases, CDKs have attracted considerable 

interest given their involvement in many essential physiologic pathways, especially in cancer. 

Consequently, many pharmacologic inhibitors of CDKs have been found to display promising 

antitumor activities, and CDKs represent a promising anticancer drug target. Variolins constitute a new 

family of inhibitors of CDKs. They are marine alkaloids possessing an uncommon 

pyrido[3',2':4,5]pyrrolo[1,2-c]pyrimidine skeleton, which were first isolated in 1994 from 

Kirkpatrickia variolosa, a rare Antarctic sponge [1,2]. Five variolins have been isolated: variolin A (1), 

variolin B (2), deoxyvariolin B (3), N(3')-methyl tetrahydrovariolin B (4), and variolin D (5)  

(Figure 1). Variolin D was found to be an artifact of the extraction process (aerial oxidation of the 

variolins) [3]. Variolin B exhibited anticancer activity on P388 murine leukemia cells with an IC50 of 

716 nM, whereas variolin A and N(3')-methyl tetrahydrovariolin B displayed only modest activities 

against this cell line, and variolin D was not active. Successively, variolin B was shown to be an 

efficient activator of apoptosis, showing potent cytotoxic activity against a variety of human cancer 

cell lines, including those overexpressing p-glycoprotein (pgp), a cell efflux pump responsible for the 

resistance of cancerous cells to multiple chemotherapy agents. However, further investigation of the 

molecular basis of variolin B activity was hampered by the limited amount of compound available 

from natural sources [3]. The completion of the first total synthesis of variolin B in 2001 [4] provided 

significant quantities of material, so that detailed studies into the mechanism of action of variolin B 

could begin. Cytotoxicity studies indicated that both variolin B (2) and its analogue deoxyvariolin B 

(3) possessed similar levels of cytotoxic activity, with both compounds exhibiting IC50 values of  

50–100 nM against a variety of cell lines [5]. With the similar cytotoxicity of variolin B (2) and 

deoxyvariolin B (3) established, studies were undertaken in order to identify the molecular target of 

these compounds. Based on the observation that both compounds affected cell cycle progression, their 
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ability to inhibit CDKs was investigated to understand the pivotal role of CDKs in the regulation of the 

cell cycle. Both variolin B and deoxyvariolin B were observed to inhibit the phosphorylation of histone 

H1 mediated by cyclin E-CDK2, cyclin A-CDK2, cyclin B-CDK1, cyclin H-CDK7, and cyclin  

D-CDK4, with IC50 values in the micromolar range. A preferential inhibition of CDK1 and CDK2 over 

CDK4 and CDK7 was observed. The inhibition of CDK1 and CDK2 is consistent with the observed 

cell cycle effects of the variolins. On the basis of these results, it was proposed that the primary 

mechanism of action of variolin B and deoxyvariolin B is to inhibit CDKs and interrupt the normal 

progression of the cell cycle [6]. Further understanding of the interaction between variolin B and 

CDKs was provided by Meijer and co-workers, who analyzed the interaction of variolin B with a 

variety of kinases. Inhibition of the CDKs was again observed, with the same preference of CDK1 and 

CDK2 inhibition over CDK4 and CDK7 inhibition. However, the inhibition of CDK9 (IC50 26 nM) 

was determined to be even more potent than that of either CDK1 (IC50 60 nM) or CDK2 (IC50 80 nM). 

Strong inhibition by variolin B of several other kinases was observed, including casein kinase-1 

(CK1), FMS-like tyrosine kinase 3, and glycogen synthase kinase-3 (GSK3) [7,8]. 

Figure 1. Structure of variolins. 
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The unique heterocyclic framework of variolin thus emerged as a new scaffold for the design of  

new inhibitors of CDKs. PharmaMar performed preclinical investigations on variolins and 

deoxyvariolin B [9–11] and selected deoxyvariolin B for further development due to its favorable 

physicochemical properties. On the basis of the SAR results of the initial screen, a medicinal chemistry 

program was initiated by PharmaMar, in collaboration with Molina and Fresneda; 16 novel analogues 

with different substituents at positions C5 and C7 were synthesized and tested against a panel of 16 

tumor cell lines [12]. From this study, two derivatives, compounds 6 and 7, were identified that 

displayed activity similar to that of natural variolin B. Furthermore, PharmaMar synthesized a series of 

variolin analogues with general structure 8 that showed potent cytotoxicity against a panel of colon, 

breast, melanoma, lung, ovary, cervix, kidney, pancreas, and endothelium cell lines, with GI50 in the 

micromolar to nanomolar range [10,13]. The structures of variolin analogues are shown in Figure 2.  

Figure 2. Analogs of variolins. 
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3. Indole Alkaloids: Meridianins, a New Scaffold for the Design of Novel CDK Inhibitors 

Meridianins are a family of 3-(2-aminopyrimidine)indoles isolated from Aplidium meridianum, an 

ascidian from the South Atlantic [14,15] that shares some structural similarity with variolins, with the 

meridianins possessing a pyrimidyl-substituted indole skeleton and variolin B possessing a pyrimidyl 

substituted pyrido[3',2': 4,5]pyrrolo[1,2-c]pyrimidine skeleton. Moreover, the meridianin structure was 

identified as a promising kinase-inhibitory scaffold [16]. The natural meridianins A–G (9–15), are 

brominated and/or hydroxylated 3-(2-aminopyrimidine)-indoles differing in the bromine and /or 

hydroxyl substitution (Figure 3). Meridianins inhibit various protein kinases, such as CDKs, glycogen 

synthase kinase-3, cyclic nucleotide-dependent kinases, and casein kinase 1; they also prevent 

proliferation and induce apoptosis probably due to their ability to enter cells and interfere with the 

activity of kinases important for cell division and death [14]. The unsubstituted meridianin skeleton 

found in meridianin G (15) was only weakly inhibitory, while a single bromine for hydrogen 

substitution at the 5- or 6- position of the indole ring (meridianin C (11) and D (12), respectively) 

resulted in considerable improvements in potency, with up to 1000-fold decreases in IC50 observed in 

favorable cases. Interestingly, in meridianin F (14), the presence of two bromine atoms, at both the  

5- and 6-positions, resulted in improved potency relative to meridianin G (15), but decreased potency 

compared to either monobrominated meridianins C (11) or D (12). Substitution of a hydroxyl group for 

hydrogen at the indole position 4, as seen in meridianin A (9), resulted in smaller improvements in 

potency, while a bromine at position 7 and a hydroxyl group at  position 4 (as seen in meridianin E 

(13)) resulted in the most potent compounds, with IC50 values in the low M to high nM range, 

depending on the target. 

Figure 3. Indole alkaloids (9–21). 
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More recently, an additional series of compounds with a similar structure to the meridianins was 

discovered. The aplicyanin family was isolated from the Antarctic tunicate Aplidium cyaneum and 

consists of six variants on a core 3-(tetrahydropyrimidyl)indole structure (aplicyanins A–F, 16–21, 

Figure 3); these alkaloids can be considered reduced forms of the relevant meridianins and, thus, their 

biogenetic precursors [17]. Aplicyanins B (17), D (19), and F (21) have been found to have significant 

cytotoxic activity, with IC50 values in the low to sub-μM range. Aplicyanins A (16) and C (18) were 

found to possess no cytotoxic activity at the concentrations tested, while aplicyanin E (20)  

possessed weak cytotoxic activity. These results indicate a vital role for the acetyl portion of the  

acetylguanidine group. 
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A new CDK inhibitory scaffold, with promising antitumor activity, has been identified by 

combining the common features of variolins and meridianins. A new class of 7-azaindole-containing 

analogues have been thus designed and the term “meriolin” has been coined to describe this hybrid 

structure (Figure 4) [7,8]. Meriolins (22–25) display potent inhibitory activity and relative selectivity 

toward CDKs and also exhibit better antiproliferative and proapoptotic properties in cell cultures than 

their ‘‘inspirational parent’’ molecules. Meriolins are particularly potent inhibitors of CDK2 and 

CDK9. The crystal structures of meriolin 3 (24) and variolin B in complex with CDK2/cyclin A 

revealed that the two molecules bind in very different orientations in the ATP-binding pocket of the 

kinase. Meriolins prevent phosphorylation at CDK1-, CDK4-, and CDK9-specific sites in 

neuroblastoma SH-SY5Y cells and induce the rapid degradation of the survival factor Mcl-1. Meriolin 

3 (24) potently inhibits tumor growth in two mouse xenograft models, Ewing’s sarcoma and LS174T 

colorectal carcinoma. Meriolins thus constitute a new kinase-inhibitory scaffold with promising 

antitumor activity derived from molecules initially isolated from marine organisms [7]. 

Figure 4. Structure of meriolins (22–25). 
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The sponge Topsentia genitrix, collected from Banyuls (France) is the source of the antitumor 

bisindole alkaloids topsentin (26) and bromotopsentin (27), containing 2-acyl imidazole moiety 

inserted between two indole units with different substitution on benzene rings [18]. In 1995, Capon et al. 

reported the isolation of isobromotopsentin (28) from the deep water sponge Spongosorites sp. 

collected from the coast of southern Australia [19]. Topsentin (26) inhibited proliferation of cultured 

human and murine tumor cells. It exhibited in vitro activity against P-388 with an IC50 value of  

3 μg/mL, human tumor cell (HCT-8, A-549, T47D) with IC50 value of 20 μg/mL, and in vivo activity 

against P-388 (T/C 137%, 150 mg/kg) and B16 melanoma (T/C 144%, 37.5 mg/kg) [20]. Bromotopsentin 

(27) showed antiproliferative activity against human bronchopulmonary cancer cells (NSCLC-N6) with 

an IC50 = 12 μg/mL [21]. Deoxytopsentin (29) was isolated from the sponge Hexadella sp. [22]. In 

1999, bromodeoxytopsentin (30) and isobromodeoxytopsentin (31) were isolated from sponge 

Spongosorites genitrix collected from Jaeju Island, Korea [23]. Structurally, topsentin (26) and 

deoxytopsentin (29) are the same except for the indole ring, which is unsubstituted in the case of 

deoxytopsentin (29). Deoxytopsentin (29) showed the antiproliferative activity against human 

bronchopulmonary cancer cells (NSCLC-N6) with an IC50 value of 6.3 μg/mL. It also displayed moderate 

activity against breast cancer and hepatoma (HepG2) with an IC50 of 10.7 and 3.3 μg/mL, respectively. 

Nortopsentins A (32), B (33), and C (34) (Figure 5), having a characteristic 2,4-bis(3-indolyl)imidazole 

skeleton, were isolated from the deep water marine sponge Spongosorites ruetzleri [24]. Nortopsentins 

A–C exhibited in vitro cytotoxicity against P388 cells: IC50 (μg/mL), 7.6, 7.8 and 1.7, respectively [25,26]. 

Indolylthiazole compound 35–44 analogs (Scheme 1) of nortopsentins were synthesized and evaluated 

for cytotoxicity in the NCI’s in vitro disease-oriented antitumor screen against a panel of 
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approximately 60 human tumor cell lines derived from leukemia, non-small-cell lung cancer, colon 

cancer, CNS cancer, melanoma, ovarian cancer, renal cancer, prostate cancer, and breast cancer [27]. 

Compounds 35–44 all exhibited cytotoxic activity against a variety of human cancer cell lines. 

Compound 35 selectively exhibited in vitro cytotoxicity against leukemia and ovarian cancer cell lines, 

affording a GI50 of 3.27 μM in K562, 5.31 mM in Molt-4, and 8.14 μM in an IGROV1 assay. In the 

other human tumor cell line assay, the GI50 of compound 35 exceeded 100 μM. To test the possibility 

that substitutions in the indole ring might result in a potency increase, most of the 2,4-bis(3-

substituted-indolyl)thiazoles showed broad effects on tumor cell lines from leukemia, colon cancer, 

CNS cancer, and breast cancer panels, while unsubstituted counterpart 35 brought out highly selective 

activity against leukemia cell lines and IGROV1 ovarian cancer cell lines. The position of bromine in 

the indole ring plays an important role in cytotoxicity. Dibrominated compound 44 effectively 

exhibited MCF 7 in breast cancer, affording a GI50 of 0.888 μM [28]. 

Figure 5. Bis indole alkaloids 26–34. 
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Scheme 1. Synthesis of indolylthiazole compounds 35–44. 
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4. Bis-Steroidal Pyrazines: Ritterazines and Cephalostatins, Potent Inducers of Apoptosis Acting 

via a Novel Antimitotic Mechanism 

Ritterazines are highly oxygenated dimeric steroidal alkaloids isolated by Fusetani and co-workers 

from 1994 to 1997 from the colonial tunicate Ritterella tokioka (family Policlinidae). Together with 

cephalostatins, isolated from the marine worm Cephalodiscus gilchristi, they make up a unique family 

of 45 trisdecacyclic bis-steroidal pyrazines that display extremely potent cytotoxicity against human 

tumors with unique cell selectivity and apoptotic response [29–31]. The outstanding antineoplastic 

potency, together with the new and challenging molecular architecture, made these marine invertebrate 

alkaloids promising anticancer leads. 
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Illustrative examples of cephalostatin and ritterazine structures are reported in Figures 6 and 7, 

respectively. The ritterazines and cephalostatins share many common structural features. Both consist 

of two highly oxygenated C27 steroid units fused via a pyrazine ring at C-2 and C-3; both chains of the 

steroid units usually form either 5/5 or 5/6 spiroketals. While cephalostatins in general are more 

oxygenated on the right side, the ritterazines have the more oxygenated left side. Hydroxyl groups are 

present at C-12, C-17, C-23, C-26, C-12′, and C-23′ in the cephalostatins, whereas C-12, C-7', C-12',  

C-17', and C-25' are hydroxylated in the ritterazines. Cephalostatins 5 (49) and 6 are unusual in that 

they both contain an aromatic C ring. While naturally occurring and synthetic steroids with aromatic A 

rings are well-known, steroids bearing an aromatic C ring are quite rare. Cephalostatin 12 (53) is the 

only symmetric constituent (right unit = left unit). Ritterazines N (57)-S, having two non-polar 

steroidal units, were much less active than ritterazine B. Ritterazines T (58)-Y are related to 

ritterazines A (54) and B (55), composed of polar and non-polar steroidal units, lacking the C7' and 

C17' hydroxyl groups. Ritterazine Y (60) differs from ritterazine B in the absence of the two hydroxyl 

groups, whereas ritterazines W and X have the 5/5 spiroketal terminus in the polar steroidal unit 

instead of the 5/6 spiroketal terminus. In ritterazines T and V, both steroidal units are rearranged. 

Figure 6. Selected cephalostatin structures. 
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Figure 7. Selected ritterazine structures. 
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Cephalostatin 1 (45) is among the most powerful anticancer agents ever tested, displaying 

subnanomolar-to-picomolar cytotoxicity against much of the National Cancer Institute’s (NCI) 60-cell 

line panel, with femtomolar activity against the P388 cell line and in the Purdue Cell Culture 

Laboratory (PCCL) human tumor panel [29,30]. Most of the remaining cephalostatins were similarly 

potent. A dramatic reduction in PS cell growth inhibition was displayed by cephalostatins 5 and 6, 

suggesting that preservation of structural integrity in the right-hand side unit, including C/D ring 

stereochemistry, is very important to realizing powerful cytotoxicity. Cephalostatin 12 also displayed 

significantly reduced inhibitory activity in comparison to other cephalostatins, suggesting that 

asymmetry is necessary for optimum cytotoxicity [29]. Ritterazines are less potent than cephalostatins, 

with P388 inhibitory activities ranging from 3.6 μM for ritterazine W (59) to 0.17 nM for ritterazine B 

(55) (see Table 1), the most active constituent of R. tokioka, which, not surprisingly, contains nearly 

the same right-hand side steroid unit (70: no 17R-hydroxy moiety) as the most active cephalostatins 

(45–48, 50–52 see Table 1). 

The 45 members of the cephalostatin/ritterazine family isolated to date, together with a growing 

number of analogues and related monosteroidal antineoplastics provide the basis for elucidating some 

structure–activity relationships (SAR) of these potent cytotoxins and for discovering the minimum 

pharmacophore required to maintain potent cancer cell growth inhibitory behavior. These studies 

suggest that four features conspire to provide active in vitro materials: (i) a molecular dipole consisting 
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of covalently linked lipophilic “nonpolar” and hydroxylated “polar” domains, with a molecular length 

of ~30 Å; (ii) a spiroketal or other latent precursor of an oxocarbenium ion; (iii) one or more 

homoallylic oxygen arrays; and (iv) a 17-OH function. The pyrazine ring, though present in most 

examples, is absent in several subnanomolar active monosteroids [30]. 

Table 1. Murine P388 lymphocytic leukemia inhibitory activity of ritterazines and cephalostatins.  

Ritterazine (ED50 nM) Cephalostatin (ED50 nM) Ritterazine (ED50 nM) Cephalostatin (ED50 nM) 

A l4.2 1 10−4–10−6 N 522 14 4.4 

B 0.17 2 10−4–10−6 O 2383 15 26.2 

C 102.3 3 10−4–10−6 P 819 16 <1.1 

D 17.5 4 10−4–10−6 Q 657 17 4.4 

E 3.8 5 42.5 R 2461 18 4.6 

F 0.81 6 2.3 S 539 19 7.9 

G 0.81 7 1–<0.1 T 522   

H 17.8 8 1–<0.1 U 2341   

I 15.3 9 1–<0.1 V 2341   

J 14.0 10 3.2 W 3631   

K 10.4 11 2.7 X 3404   

L 11.1 12 76.2 Y 4.0   

M 16.7 13 47.9 Z 2200   

A COMPARE pattern-recognition analysis gave correlation coefficients of ~0.9 between cephalostatin 

1 and ritterazine B in NCI-10 cell lines, suggesting that ritterazines act by the same mechanism as do 

cephalostatins; this mechanism, however, is presently largely unknown [32]. The fingerprint of 

ritterazines’ activity in the NCI 60-tumor panel is quite different from known anticancer agents, likely 

indicating a new mechanism of action. Bis-Steroidal pyrazine alkaloids do not contain functional groups 

commonly associated with cytotoxicity such as alkylation sites, Michael acceptors, intercalators, or 

redox-active quinones. Early speculation on the mode of action of these compounds centered around 

the likelihood of cell membrane penetration due to their steroidal nature and dimensions or, 

alternatively, the possibility that the compounds serve as a spatially defined set of hydrogen-bond 

donors/acceptors for enzyme binding [33]. Proapoptotic properties have been demonstrated for 

ritterazine B (55), although apoptosis induced by this compound appeared to be independent of the 

caspase pathway [32]. A recent biological study clearly demonstrated that cephalostatin 1 (45) evokes 

a new cytochrome c-independent apoptosis signaling pathway [34]. This is in contrast to most of the 

well-known anticancer drugs, which act in a cytochrome c-dependent route, showing that 

ritterazine/cephalostatin alkaloids family might be potent inducers of apoptosis, acting via a novel 

antimitotic mechanism, implying that they could be used to treat drug-resistant cancers [32,34–36]. 

Despite the number and value of synthetic contributions to the cephalostatins and ritterazines [29,30], 

owing to the complexity of the targets, only very small amounts of these substances were produced and 

in very low overall yields, not suitable to supply sufficient samples at reasonable cost for extended 

biological evaluation. The availability of these compounds from their only known natural sources, the 

marine worm C. gilchristi and the marine tunicate Ritterella tokioka, is still extremely limited; while 
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the isolation yields of the ritterazines are slightly better than the cephalostatins, they also are too low to 

supply clinical trials. As a result, in vivo anticancer evaluation of these very promising natural products 

and subsequent preclinical development have been greatly restricted. Nevertheless, the occurrence in 

different phyla of cephalostatins and ritterazines, closely related in structure metabolites, raises questions 

as to their true production and may indicate a microbial origin for this family of compounds [29,30]. 

The current good possibility that cephalostatin/ritterazine alkaloids inhibit cancer cell growth by 

affecting a novel molecular target(s), the ongoing total synthetic and SAR challenges, the possibility of 

locating a marine microorganism source actually responsible for their biosynthesis, and clinical 

development prospects all suggest that the bis steroidal alkaloids field will become increasingly 

productive and useful. 

5. Dopa [2-Amino,3-(3',4'-dihydroxyphenyl) Propionic Acid] Derived Pyrrole Alkaloids: 

Lamellarins, Potent Inhibitors of Topoisomerase (TOPO) I with Multi-Drug Resistance (MDR) 

Modulating Activity 

Among the most promising anti-cancer drug candidates derived from marine invertebrates is the 

family of lamellarins [37–41]. The lamellarins form a group of more than 50 highly condensed  

DOPA- derived pyrrole alkaloids that have attracted researchers’ interest due to both their structural 

originality and significant biological properties. Lamellarins were originally isolated from the 

prosobranch mollusk Lamellaria sp. in 1985 [42]. They were later extracted from various ascidians 

belonging to the Didemnum genus [43–48] and in some sponges [49,50] collected from widely varying 

locations, which suggests a potential microbial link to their biosynthesis. 

The lamellarins have a pyrrole ring as a core component of their skeleton. They fall into two 

structural groups, depending on whether the central pyrrole ring is fused (Group I) or unfused (Group 

II) to adjacent aromatic rings. Group I could be further divided into two subgroups, Ia, including 

compounds possessing an olefin at C5/C6, and Ib, with compounds in which this olefin is saturated 

(Figure 8). Each group includes derivatives in which phenolic hydroxyl groups are substituted by 

methoxy, sulfate, or acetate functions. The lamellarins isolated from ascidians possess the hexacyclic 

skeleton of Group I; selected structures of ascidians’ lamellarins (compounds 61–80) are reported in 

Figure 9. 

Figure 8. Core structures of lamellarins. 
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The most common and remarkable property of the lamellarins is their capacity to inhibit the 

proliferation of cancer cells [51–53]. The majority of lamellarins are considerably cytotoxic, with IC50 
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(or LD50) values in the nanomolar to micromolar range, depending on the experimental conditions and 

the nature of the compounds. A noticeable exception is the sulphated lamellarins, which are not 

cytotoxic presumably due to reduced cell uptake. Lamellarins D (81), K (79), and M (62), are the most 

potent compounds in the series [38], but lamellarin N (63) and dehydrolamellarin J (82) are also 

promising candidates. 

Figure 9. Selected structures of lamellarins isolated from ascidians (61–82). 
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No. Lamellarin R1 R2 R3 R4 R5 R6 R7 

61 H OH OH OH OH OH OH H 
62 M OH OMe OH OMe OMe OMe OH 
63 N OH OMe OMe OH OMe OH H 
64 N tri-acetate OAc OMe OMe OAc OMe OAc H 
65 X OH OMe OMe OH OMe OMe OH 
66 ɛ OH OMe OMe OMe OMe OMe OH 
67 α OH OMe OMe OH OMe OMe H 
68 α 20-sulfate OSO3Na OMe OMe OH OMe OMe H 
69 B 20-sulfate OSO3Na OMe OH OMe OMe OMe OMe 
70 α 13,20-disulfate OSO3Na OMe OMe OSO3Na OMe OMe H 
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No. Lamellarin R1 R2 R3 R4 R5 R6 

71 E OH OMe OMe OH OMe OH 
72 F OH OMe OMe OMe  OMe  OH 
73 G OMe OH OMe OH OH H 
74 C 20-sulfate OSO3Na OMe OH OMe OMe OMe 
75 L 20-sulfate OSO3Na OMe OMe OH OH H 
76 G 8-sulfate OMe OH OMe OH OSO3Na H 
77 I OH OMe  OMe  OMe  OMe  OMe 
78 J OH OMe OMe OMe OH H 
79 K OH OMe OH OMe  OMe  OH 
80 T OH OMe OMe OH OMe OMe 
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Figure 9. Cont. 
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Following the discovery of the potent anti-proliferative and proapoptotic activities of lamellarins, 

their biological activities have been extensively studied, in particular their capacities to interfere with 

topoisomerase (TOPO) I and mitochondria, both contributing to their potent cytotoxicity. Although all 

the aspects of the lamellarins’ mechanism of action are not completely known, it has been 

demonstrated that they are potent inhibitors of topoisomerase (TOPO) I, they interact with DNA, they 

target mitochondria directly, and they induce the release of cytochrome C and apoptosis-inducing 

factor (AIF) [51,53–58]. Lamellarin D (81) was identified as a potent TOPO I poison in 2003 [53]; it 

binds relatively weakly to DNA, presumably via the insertion of its planar pentacyclic chromophore 

between DNA base pairs. Intercalation of the flat chromophore between two adjacent base pairs 

exposes the perpendicular methoxyphenol moiety toward the major groove of DNA where the enzyme 

can be trapped [54,55]. This DNA interaction, although relatively weak, provides the necessary 

anchorage for stabilization of the enzyme-DNA complex. Inhibition of topoisomerase I by lamellarin 

D has been demonstrated by a variety of approaches, both in vitro (using recombinant enzymes and 

model DNA substrates) and in a cellular context, using immunoblot assays to detect the drug-stabilized 

topoisomerase I–DNA complexes in cells [40,41]. 

Cytotoxicity of lamellarin-D cannot be explained uniquely on the basis of TOPO I targeting. Early 

studies on the mechanism of action of lamellarin D already suggested the existence of alternative 

target(s) for this molecule in cancer cells [53]. This hypothesis was rapidly validated with the 

discovery of a nuclear TOPO I-independent, direct effect on mitochondria. Studies on the apoptotic 

pathway induced by lamellarin D revealed a very early mitochondrial dysfunction, including a 

reduction of mitochondrial membrane potential and the release of cytochrome c and AIF from the 

mitochondria to the cytosol [57,58]. It was then observed that lamellarin D could induce these 

alterations directly on isolated mitochondria. Both functional assays and direct observations by 

electron microscopy indicated that mitochondria represented targets for lamellarin D, and similarly for 

lamellarin M (62) [40]. 

Some lamellarins also function as multi-drug resistance (MDR) reversal drugs [51,56]. MDR is a 

term used to characterize the ability of tumors to exhibit simultaneous resistance to various 

chemotherapeutic agents through diverse mechanisms but, more frequently, through modification of 

drug efflux implicating ABC transporters, such as the multidrug resistance-associated protein (MRP) 

or P-glycoprotein (Pgp). In tumor cells expressing Pgp, the efflux of a given anticancer drug increases 

across the plasma membrane, thereby reducing the intracellular drug concentration and hence its 

cytotoxicity; Pgp activity can be reversed by a few specific molecules, referred to as MDR modulators. 

Lamellarins I (77), K (79), and T (80) have been reported to act as MDR modulators; these compounds 

exhibited equally effective cytotoxic activity against MDR cell lines and demonstrated that even at 
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non-cytotoxic concentration they reverse MDR by inhibiting P-glycoprotein-mediated drug efflux [56]. 

It has been demonstrated that lamellarin I (77) reversed MDR by directly inhibiting the  

P-glycoprotein-mediated drug efflux at nontoxic doses and that the potency of lamellarin I as an MDR 

modulator was 9–16-fold higher than that of approved anticancer agent verapamil, resensitizing the 

resistant malignant cells to frontline therapeutics [51]. 

Elegant synthetic routes to lamellarins or their key intermediates have been developed, which 

afforded sufficient quantities of structurally simplified lamellarin analogs for SAR and other biological 

studies [39,41]. In an early attempt to correlate the structures of lamellarins with their cytotoxic 

activities, Quesada et al., observed that an increase in the number of methylations and/or 

methoxylations appears to cause a decrease in the antitumor activities of the 13 lamellarins tested in 

their studies [51]. Most subsequent SAR studies have been directed at derivatives of lamellarin D, also 

by using their mechanism-based (i.e., TOPO I inhibition) activities in relation to their cytotoxicities 

and precise structure-activity relationships have been delineated. It has been demonstrated that the full 

pentacyclic structure of lamellarins is important for their biological activity. Simplification of the 

lamellarin D structure by opening the lactone ring results in a significant decrease in cytotoxicity 

toward certain human tumor cell lines. Most of the lamellarin D derivatives with an open lactone ring 

were found to be considerably less cytotoxic than lamellarin D, except when a lactonization potential 

is preserved. In this case, a marked toxicity toward A-549 lung carcinoma, HT-29 colon carcinoma, 

and MDA-MD-231 breast adenocarcinoma cells was maintained [59]. Another general observation is 

that the planarity of the pharmacophore conferred by the double bond between carbons 5 and 6 in the 

quinoline B-ring is a crucial element for cytotoxicity and TOPO I inhibition; when this double bond is 

lacking, as in lamellarin K (79), for example, the planar conformation no longer exists and the drug 

loses its capacity to interfere with TOPO I. This was clearly demonstrated using pairs of lamellarins, 

each of which contains exactly the same substituents and differs only in the nature of the C5/C6 bond, 

where the presence of the C5/C6 double bond significantly decreases the IC50 values [40,53,54,60]. 

The hydroxyl groups at the C8 and C20 positions of lamellarin D are important structural 

requirements for cytotoxic activity, whereas neither the hydroxyl group at C14 nor the two methoxy 

groups at C13 and C21 are necessary. However, it has been subsequently reported that all of the 

phenolic hydroxyl groups at each of the C8, C14, and C20 positions of lamellarin D are important for 

maintaining activity against TOPO I and potent cytotoxic action. It has been also found that these 

groups could be substituted with positively charged amino acid derivatives without loss of activity [54]. 

Furthermore, it has pointed out that almost any modifications of the substitution pattern on lamellarin 

D decrease the cytotoxicity of the molecule [38,60]. Substitution of the hydrogen atom at C7 with a 

hydroxyl group significantly increases the cytotoxicity of lamellarins with a C5/C6 double bond 

(compare lamellarin α (67) and lamellarin X (65)). On the other hand, methoxylation at this position 

may only slightly affect the cytotoxic activities of these compounds. Interestingly, the effect is 

significantly more pronounced if the C7 hydroxyl group is replaced by a methoxyl group. This clearly 

decreases the cytotoxic activities of the lamellarins, especially those containing a C5/C6 double bond. 

These results indicate that the hydroxyl group at this position is an important structural element that 

may also feature in an interaction with the putative biological target(s) [60]. Recently Khiati et al., 

investigated the effects of lamellarin D on mitochondrial topoisomerase I (Top1mt) using in vitro and 

in vivo DNA cleavage assays in addition to single-molecule supercoil relaxation measurements. They 
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found that Lam-D inhibits Top1mt by trapping the cleavage complex efficiently, in striking contrast to 

the inefficacy of camptothecin. This study provides evidence that Top1mt is a direct mitochondrial 

target of Lam-D and suggests that developing Top1mt inhibitors represents a novel strategy for 

targeting mitochondrial DNA. Furthermore, this study demonstrates that the marine alkaloid lamellarin 

D is the first drug to target mitochondrial DNA by trapping Top1mt cleavage intermediates (Top1mt 

cleavage complexes) and suggests that developing Top1mt inhibitors could be an alternative strategy 

for targeting mitochondrial DNA [61]. 

Recognition of the biological potential of this large class of alkaloids can be found in recent reports 

of lamellarins entering into preclinical development for the treatment of multidrug-resistant tumors. 

More than 300 derivatives have been synthesized by chemists at PharmaMar (Madrid, Spain) and drug 

candidates have been selected for the extended preclinical and toxicological studies required prior to 

human clinical trials [62]. 

6. Tetrahydroisoquinoline Alkaloids: Ecteinascidins, a New Class of DNA Binding Agents 

The tetrahydroisoquinoline alkaloids ecteinascidins, isolated mainly from the Caribbean ascidian 

Ecteinascidia turbinata, are probably the most useful anticancer agents found to date in a marine  

source [63,64]. The lead compound, trabectedin (ET-743, 84), is regarded as a successful story of 

modern marine drug research: it is indeed the first representative of a marine natural product to receive 

marketing authorization for the treatment of patients with advanced or metastatic soft tissue sarcomas 

(STS) and relapsed platinum-sensitive ovarian cancer under the brand name Yondelis® [65,66]. 

The first description and structural characterization of six new chemical entities called ecteinascidins, 

ET 729 (83), ET 743 (84), ET 745 (85), ET 759A (86), ET 759B (87), and ET 770 (88), was reported 

by the Rinehart group in 1990, of which ET-743 was the most abundant representative [67]. 

Simultaneously, Wright and co-workers described compounds 83 and 84 [68], but the unequivocal 

assignment of the absolute stereochemistry was achieved only when the X-ray crystal structures of the 

natural N12-oxide of ET-743 (89) and a synthetic O-methyl analogue of N12-formyl ET-729 (90) were 

solved [69]. Successively, a number of additional new members of this class of molecules have been 

isolated, such as compounds 91 and 92 [70], 93–96 [71], 97 [72], and 98–101 [73] (Figure 10). 

Apart from the biological activity, ecteinascidins exhibit an extraordinary three-dimensional 

molecular architecture; their unique structure consists of a monobridged pentacyclic skeleton 

composed of two fused tetrahydroisoquinoline rings (subunits A and B) linked to a 10-membered 

lactone bridge through a benzylic sulfide linkage. Most ecteinascidins have an additional 

tetrahydroisoquinoline or tetrahydro-β-carboline ring (subunit C) attached to the rest of the structure 

through a spiro-ring (Figure 10). The carbon and nitrogen framework of units A–B of the 

ecteinascidins is the same as that of the saframycin, safracin, and renieramicin families of antitumor 

agents isolated from bacteria and sponges [74]. It has been proposed that A–B units could be formed by 

condensation of two DOPA-derived building blocks, and the tetrahydroisoquinoline ring in unit B is 

closed by condensation with a serine- (or glycine-) derived aldehyde as in the case of the related 

saframycins. S-Adenosylmethionine is the likely source of methyl groups at C-6, O-7, C-16, O-17,  

and N-12 [74]. 
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Figure 10. Structures of ecteinascidins (83–101). 
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Initial structure-activity relationships of natural members of ecteinascidins were established based 

on results from an in vitro cytotoxic screening assay against murine leukemia cells L1210. These data 

revealed that the carbinolamine of C-21 is crucial for optimal bioactivity and the presence of the 

aromatic C subunit was found to be important for potency. Later, these compounds were shown to 

possess strong in vivo antitumor effects in various mice models bearing P388 lymphoma, B16 

melanoma, M5076 ovarian sarcoma, Lewis and lX-1 human lung carcinoma, and MX-1 human 

mammary carcinoma xenografts [70]. ET-743 (trabectedin, 84) was selected for further development; 

the classical NCI60 human tumor cell lines anticancer drug screen revealed that the drug was several 

orders of magnitude more potent than other anticancer agents with prominent growth inhibition in the 

pM to low nM dose range, whereas no correlation with any other known drugs was detected by 

COMPARE analysis, indicating that trabectedin has a unique mode of action. Subsequent studies 

revealed it as the first of a new class of DNA-binding agents with a complex, transcription-targeted 

mechanism of action. In has been demonstrated that units A and B bind covalently and reversibly to 

the DNA minor groove, with preference for GC-rich triplets; subsequently, trabectedin forms covalent 

adducts with the N2-position through its carbinolamine moiety. This induces DNA bending towards 

the major groove. The third unit, C, being unbound, could interact with nuclear proteins. The 

transcriptional activation of inducible genes is inhibited depending on the presence of the DNA repair 

systems, particularly the transcription-coupled nucleotide excision repair (TC-NER) system. In the 

absence of trabectedin, TC-NER recognizes and removes DNA lesions from transcribed strands of 

expressed genes. This is followed by removal of the DNA segment containing the lesion and gap 

polymerization using the intact strand as a template. In the presence of trabectedin, the TC-NER 
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machinery is recruited into the DNA adduct region in an attempt to correct the DNA lesion but is 

blocked, creating strong cytotoxic complexes that will induce double strand DNA breaks and cell 

death. Thus, while all other known DNA-interacting agents require a deficient NER mechanism to 

exert their activity, trabectedin needs a proficient NER system to exert its cytotoxic activity [75–79]. 

Trabectedin was tested in a great variety and number of models against tumors of murine origin and 

human sensitive and resistant xenografts and showed a broad spectrum of antineoplastic activity. The 

observation that STS appeared more sensitive to the drug than other solid tumors came from Phase I 

clinical trials and the clinical benefit of trabectedin in STS patients was subsequently confirmed in 

Phase II clinical trials. Trabectedin, developed by the Spanish pharmaceutical company PharmaMar 

under the trade name Yondelis®, was approved for the treatment of refractory soft-tissue sarcomas by 

the European Commission in July 2007; the currently ongoing Phase III trials along with the already 

existing clinical evidence may provide enough data for the Food and Drug Administration to issue an 

approval in the US [80–82]. In November 2009 Yondelis® received its second marketing authorization 

from the European Commission for the treatment of relapsed platinum-sensitive ovarian cancer in 

combination with DOXIL®/Caelyx®. Phase II trials with Yondelis® are also being carried out for breast 

cancer and for pediatric tumors. Another Phase III trial is ongoing for soft tissue sarcoma in first line 

of treatment [83]. 

As is usual in marine natural products development, obtaining sufficient amounts of ET743 has 

been a significant challenge due to its restricted natural availability (1 g from 1 ton of tunicate). 

Methods of producing ecteinascidins by in-sea culture of E. turbinata have been evolved [84], and 

much synthetic effort has been directed towards the synthesis of ecteinascidins. The first total synthesis 

of ET-743 was published by the Corey group in 1996 [85]. The synthesis was inspired, at least in part, 

by the proposed biosynthesis of the natural product, which is believed to involve the dimerization of 

two tyrosine residues to form the pentacyclic core of the molecule, and was based on biomimetic 

disconnections leading to four ‘‘amino acid’’ subunits. The synthesis uses such reactions as the 

Mannich reaction, the Pictet–Spengler reaction, the Curtius rearrangement, and chiral rhodium-based 

diphosphine-catalyzed enantioselective hydrogenation. A separate synthetic process also involved the 

Ugi reaction to assist in the formation of the pentacyclic core. This reaction was unprecedented for 

using such a one-pot multi-component reaction in the synthesis of such a complex molecule. Further 

synthetic approaches have been reported by a number of research groups [86–91]; notable examples 

are the total synthesis accomplished by Fukuyama et al., [87] and Zhu et al., [88]. However, both 

aquaculture of the tunicate and total synthesis cannot provide economical access to the drug. Currently, 

ET-743 for clinical application is produced by a semi-synthetic process in 17 chemical steps developed 

by PharmaMar, starting from cyanosafracin B, an antibiotic produced by the fermentation of 

Pseudomonas fluorescens [92]. The semisynthetic approach provides access also to other natural 

members of the ecteinascidin family, such as ET-729 (83), ET-745 (85), ET-759B (87), ET-736 (92), 

and ET-594 (98) [93]. The desirability of finding simpler and more stable structural relatives of ET 

743 has led researchers to design, synthesize, and evaluate new members of the class; among them, 

phtalascidin (PT 650, 102, Figure 11) displayed an antitumor profile and activity comparable to ET 

743 and was more readily synthesized and more stable than ET 743 [94–96]. PM01183 (lurbinectedin, 

103, Figure 11) is another very promising synthetic analog of ET 743; it is structurally similar to ET 

743 except for the C subunit, where the tetrahydroisoquinoline present in ET 743 is replaced by a 
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tetrahydro β-carboline in PM01183 [97]. This structural variation is accompanied by important 

modification of pharmacokinetic and pharmacodynamic properties in cancer patients [75,98]. Like 

ET743, PM01183 covalently binds to the minor groove of the DNA-forming DNA adducts, which give 

rise to double strand breaks and perturbations of the cell cycle inducing cell death. In preclinical 

studies, the compound displays a potent cytotoxic activity against tumor cell lines of different origin. It 

is currently in Phase II clinical trials for relapsed ovarian, lung, breast, and pancreatic cancer. 

PM01183 is also undergoing Phase I development in combination with other chemotherapies and in 

hematological tumors. On August 20, 2012, PharmaMar received FDA orphan drug designation 

(ODD) for PM01183 for the treatment of ovarian cancer [98,99]. 

Figure 11. Structures of ET 743 synthetic analogs phtalascidin (PT 650, 102) and 

lurbinectedin (PM 01183, 103). 
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7. Pyridoacridine Alkaloids: DNA Intercalating Agents with Reactive Oxygen Species (ROS) 

Producing and TOPO-Inhibiting Activities 

Pyridoacridines are a class of strictly marine-derived alkaloids that constitute one of the largest 

chemical families of marine alkaloids, which share an 11H-pyrido[4,3,2-mn]acridine skeleton  

(Figure 12) [100]. 

Figure 12. General structure of pyridoacridines. 
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Pyridoacridine alkaloids display diverse biological activities including cytotoxicity, production of 

reactive oxygen species (ROS), and topoisomerase inhibition. These activities are often dependent on 

slight modifications to the pyridoacridine skeleton. The first member of this family was calliactine, 

which was isolated from the marine anemone Calliactis effoeta in 1940 [101]. Over 40 years later, the 

second member, amphimedine, was found from the marine sponge Amphimedon sp. [102]. Since then, 

more than 80 pyridoacridines have been found in many marine organisms such as sponges, tunicates, 
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anemones, and mollusks [100,103,104]. Most pyridoacridines have been reported to have significant 

cytotoxicity due to a highly planar electron-deficient aromatic ring system that can intercalate DNA, 

resulting in the inhibition of cell growth [105]. Besides possessing a generally nonselective mechanism 

of cytotoxicity, pyridoacridines also have certain specific biological properties in living systems, 

including antibacterial, antifungal, antiviral, and antiparasitic activities [106–110]. These compounds 

show anticancer effect: they inhibit TOPO II and aspartate semialdehyde dehydrogenase, produce 

reactive oxygen species, cause the release of calcium from the sarcoplasmic reticulum, induce neuronal 

differentiation, and bind nucleotide receptors [105,111]. Structurally, pyridoacridines are highly-colored 

marine natural products with a polycyclic planar heteroaromatic 11H-pyrido[4,3,2,mn]acridine  

system [103]. The structure of pyridoacridines presents a large structural variety; a very interesting 

pyridoacridine family tree has been created to analyze the biodiversity in this rich family of marine 

compounds [112]. 

During the last few years, numerous additional compounds of this family were isolated; most of 

them are polycyclic with different substituents such as shermilamine, kuanoniamine, neoamphimedine, 

arnoamines, and styelsamines. It has been observed that almost all the pyridoacridines show promising 

cytotoxicity against different type of tumors. Therefore, interest grew in modifying the pyridoacridine 

moiety for developing a new generation of therapeutic agents. Research indicates that DNA binding, 

the inhibition of DNA metabolizing enzymes, and the production of ROS may all play a role in the 

cytotoxicity of the pyridoacridines [105]. 

Pyridoacridines vary structurally by attachment of different side chains or fusion of different rings 

to ring C of the basic structure (Figure 12) and less often to the acridine nitrogen. Halogen substitution 

in pyridoacridines is quite rare; even if it is present, then it is always bromine at C2 in ring A. 

Oxidation states of the rings are variable and in some cases ring D is partially saturated. Additional 

rings are often attached to ring C [113]. 

Nine cytotoxic tetracyclic alkaloids, cystodytins A–I (104–112) have been identified from yellow 

tunicate Cystodytes dellechiajei (Figure 13) [114,115]. Compounds 104, 105, and 106 showed potent 

cytotoxicity against L-1210 with IC50 values of 0.22, 0.22, and 0.24 μg/mL, respectively. Cystodytins  

D-I (107–112) were also found to be cytotoxic against murine lymphoma L-1210 cells, with IC50 

values of 1.1 (107 and 108), 0.068 (109 and 110), and 0.080 (111 and 112) μg/mL, and values of 1.4 

(107 and 108), 0.078 (109 and 110), and 0.092 (111 and 112) μg/mL against human epidermoid 

carcinoma KB cells in vitro. 

Figure 13. Structures of cystodytins A–K (104–114). 
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Cystodytin J (113), isolated from ascidian Cystodytes sp. [116], showed cytotoxic activity against 

HCT and xrs-6 with IC50 values of 1.6 and 135.6 μM, respectively. It also inhibited the topoisomerase 

(TOPO) II-mediated decatenation with IC50 value of 8.4 μM. Appleton et al., reported isolation of 

cystodytin K (114), a 12-methoxy derivative of cystodytin J (113) (Figure 13), from the extract of an 

ascidian Lissoclinum notti collected near Leigh Harbour, Northland, New Zealand [117]. Cystodytin K 

(114) exhibited cytotoxic activity against a P-388 murine leukemia cell line with an IC50 value of 1.3 μM. 

Two bright crimson pigments, varamine A (115) and B (116) (Figure 14), were isolated from the 

Fijian ascidian Lissoclinum vareau [118]. Varamine A (115) and B (116) exhibited cytotoxicity 

towards L-1210 murine leukemia cells with IC50 values of 0.03 and 0.05 μg/mL, respectively. 

Figure 14. Structures of pyridoacridine alkaloids (115–119). 
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In 1989, Ireland et al. isolated a tetracyclic alkaloid, diplamine (117), from the tunicate Diplosoma 

sp. collected from the Fiji Islands [119]. Diplamine (117) was found to be cytotoxic towards L-1210 

murine leukemia cells, with an IC50 value of 0.02 μg/mL. Two novel alkaloids, isodiplamine (118) and 

lissoclinidine (119), along with the previously known diplamine (117), were isolated from an ascidian 

Lissoclinum notti collected near Leigh Harbour, Northland, New Zealand (Figure 14). All the 

compounds (117–119) were tested for their cytotoxicity against murine leukemia (P-388), human 

colon tumor (HCT-116), and non-malignant African Green Monkey kidney (BSC-1) cell lines. 

Diplamine (117) was found to be the most active compound among the three and it was observed that 

movement of the thiomethyl group from C-9 (diplamine) to C-5 (isodiplamine) decreases cytotoxicity 

against all the cell lines and the same pattern also observed, when the thiomethyl group is cyclized into 

a benzoxathiole ring (lissoclinidine). These results were also found to be consistent with the proposed 

mechanism of cytotoxicity of diplamine, which includes DNA intercalation, inhibition of 

topoisomerase II, and other DNA processing enzymes and bioreductive activation. Lissoclinidine (119) 

was also evaluated against the NCI 60 cell line panel and demonstrated moderate activity and 

selectivity with panel average values of GI50 = 1.0 μM, TGI = 6.9 μM, and LC50 = 29 μM [117]. 

Schmitz et al., isolated amphimedine (120) as a sparingly soluble yellow pigment from  

Amphimedon sp. [102]. Later, Ireland et al., reported the isolation of a new pyridoacridine, 

neoamphimedine (121), along with amphimedine (120), from Xestospongia sp. from the Philippines 

and Xestospongia cf. carbonaria from Micronesia [106]. Deoxyamphimedine (122), along with 

compounds 120 and 121, was isolated from two tropical Xestospongia sponges [120]. Amphimedine, 

neoamphimedine, and deoxyamphimedine have the same skeleton, but they differ in biological 

activities; this is probably due to the differences in their structures. Neoamphimedine inhibits 
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topoisomerase II, while amphimedine is relatively nontoxic at the same dose level [121] and 

deoxyamphimedine damages DNA independent of topoisomerase enzymes through the generation of 

reactive oxygen species [122]. 
A pentacyclic alkaloid, ascididemin (123), was isolated from brown colored tunicate Didemnum sp. 

collected at Kerama Islands, Okinawa [123]. It was found to be cytotoxic against L-1210 murine 

leukemia cells in vitro with IC50 value of 0.39 μg/mL. Delfourne et al., synthesized an isomer of 

ascididemin, named as 9H-quino[4,3,2-de][1,7]phenanthroline-9-one (124) [124]. These compounds 

were tested in vitro at six different concentrations on 12 different human cancer cell lines such as 

glioblastomas, breast, colon, lung, prostate, and bladder cancers. The compounds showed significant 

cytotoxic activity; compound 124 was found to be as potent as, or slightly less potent than, the natural 

ascididemin (123) (Figure 15). Further examples of pentacyclic pyridoacridine alkaloids are 

shermilamine D (125) and E (126), isolated from the Indian Ocean tunicate Cystodytes  

violatinctus [125,126], dercitin (127), isolated from the deep water marine sponge Dercitus sp. s [127], 

nordercitin (128), dercitamine (129), and dercitamide (130), from a Stelletta sp. collected in  

Bahamas [128]. All these compounds were endowed with in vitro activity against several tumor cell 

lines at a micromolar level (Figure 16). 

Figure 15. Structures of compounds 120–124. 
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Arnoamines A (131) and B (132) (Figure 16), isolated from the ascidian Cystodytes sp. [129], are 

the first members of the pentacyclic pyridoacridine alkaloid group, having a pyrrole ring fused with  

the pyridoacridine ring system. Arnoamine A (131) exhibited cytotoxicity against the MCF-7, A-549, 

and HT-29 cell lines, with GI50 values of 0.3, 2.0, and 4.0 μg/mL, respectively, whereas arnoamine B 

(132) showed GI50 values of 5.0, 2.0, and 3.0 μg/mL against the MCF-7, A-549, and HT-29 cell  

lines, respectively. 

The methanol extract of the ascidian Cystodytes dellechiaijei, collected in Brazil, yielded two novel 

alkaloids, sebastianine A (133) and B (134) [130]. Sebastianine A (133) was found to be comprised of 

a pyridoacridine system fused with a pyrrole unit, and sebastianine B (134) has a pyridoacridine 

system fused with a pyrrolidine system condensed with R-hydroxyisovaleric acid. Sebastianine A 

(133) and B (134) showed cytotoxic activity against a panel of HCT-116 colon carcinoma cells. 
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Figure 16. Pentacyclic pyridoacridine alkaloids 125–132. 
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Ecionines A (135) and B (136), from the Australian sponge Ecionemia geodides [131], contain an 

imine moiety, which is very rarely found in the pyridoacridine class (Figure 17). Both compounds 

were tested against a panel of human bladder cancer cell lines (TSU-Pr1, TSU-Pr1-B1, and  

TSU-Pr1-B2) and the superficial bladder cancer cell line 5637. Compound 136 showed moderate 

cytotoxicity against all the cell lines, with IC50 values of 6.48 mM (TSU-Pr1), 6.49 mM (TSU-Pr1-B1), 

3.55 mM (TSU-Pr1-B2), and 3.66 mM (5637), whereas compound 135 showed cytotoxic effect on 

5637 and TSU-Pr1-B2 cells at 10 mM, with cell growth inhibitions of 54% and 51% cells, 

respectively, but did not have any effect on TSU-Pr1-B1 cells at 10 mM. Compounds 135 and 136 

were tested against the human prostate cancer cell line (PC3) and the human neonatal foreskin 

fibroblast non-cancer cell line (NFF). The results showed that these compounds were approximately 

10-fold more selective for prostate cancer PC3 cells, compared with non-cancer NFF cells. This is the 

first time such selectivity between PC3 and NFF cells by these compounds has been reported [132]. 

Figure 17. Structures of compounds 133–136. 
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Chemical investigation of the tunicate Cnemidocarpa stolonifera led to the isolation of cnemidine A 

(137) (Figure 18) with a selective cytotoxicity against human prostate cancer cells (PC3, IC50 = 1.1 μM) 

compared with human neonatal foreskin fibroblast non-cancer cells (NFF) [132]. The extracts of a 

deep violet sponge, Dercitus sp., collected in the Bahamas yielded a hexacyclic alkaloid cyclodercitin 
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(138). The sixth ring in cyclodercitin (138) is formally derived by cyclization of the 2-aminoethyl side 

chain to the acridine nitrogen, while the pyridine ring is substituted with an N-methyl group. 

Cyclodercitin (138) inhibited the proliferation of P-388 murine leukemia cells in vitro with an IC50 

value of 1.9 μM (Figure 18). Eilatin (139) isolated from the marine tunicate Eudistoma [133] is the 

only known heptacyclic pyridoacridine alkaloid of marine origin (Figure 18). Eilatin (139) was found 

to exhibit cytotoxic activity against an HCT cell line, with an IC50 value of 5.3 μM [134]. 

Figure 18. Structures of compounds 137–139. 
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8. Conclusions 

The undeniable role of marine invertebrate alkaloids as an important source of leads for anticancer 

drug discovery is now getting its due exposure. The remarkably high chemical diversity of their 

structures, including indoles, pyrroles, pyrazines, quinolines, pyridoacridines, and other structural 

families, represents a good resource for new anticancer therapy discovery programs [135,136]. Marine 

invertebrate alkaloids indeed exhibit varied physiological effects on different targets, ranging from the 

inhibition of cells’ activity-regulating enzymes (kinases) to DNA-damaging effects (TOPO-inhibition, 

intercalating agents) and proapoptotic activity (Figure 19). Some of them probably act through novel 

mechanisms, implying that they could be used to treat drug-resistant cancers. Unfortunately, these 

reported activities are mostly observed in vitro; without in vivo data it is difficult to fully appreciate the 

potential of these drugs. Although the supply issue of marine invertebrate alkaloids still remains, due 

to their very low availability from natural materials, their potential in medicinal chemistry can now be 

cleverly exploited. Thanks to current high-yield synthetic methods and recent advances in 

biotechnology, sufficient material for a broad biological screening, including in vivo tests, can be 

produced. Progress in genetic engineering techniques, like precursor-directed biosynthesis, 

combinatorial biosynthesis, and mutasynthesis approaches [137–140], opens up a structural space that 

is often orthogonal to classical natural product derivatization or total synthesis approaches. 

Understanding and exploiting the biosynthesis pathways of natural products has an increasing impact 

on accelerating their discovery and development process. However, the potential utility of marine 

natural products is not only to make drugs per se but mainly to be used as starting points to develop 

new drugs and/or therapeutic approaches. As an example, novel chemotypes could be “inspired” by 

marine natural molecules or even, as in the case of meriolins, “hybrid” frameworks can be designed by 

combining the chemical features of different compounds acting on the same target. Finally, the recent 

successful development of the use of monoclonal antibodies (mAbs) directed against targets that are 

specifically expressed in tumor cells linked to bioactive natural products should be mentioned. The 

covalent coupling of a targeting monoclonal antibody to a cytotoxic natural product is expected to 
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combine the specificity and tolerance of mAbs with the cell-killing efficiency of natural products in a 

single molecule, a so-called immunoconjugate or antibody–drug conjugate (ADC) [141]. Therefore, a 

multidisciplinary approach involving the generation of novel molecular diversity from natural product 

sources and exploitation of the new methods that have been developed in organic chemistry, 

biochemistry, molecular biology, and molecular genetics could answer the continuous need for new 

resources in anticancer drug discovery. 

Figure 19.  Principal mechanisms of action evidenced for antitumor marine alkaloids. 
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